Pub Date : 2024-12-11DOI: 10.1109/TASC.2024.3514608
Hongliang Tian;Haiwen Liu;Zeren Song;Yulian Xu;Ruolin Wang;Shaofei Wang
In this article, a cryogenic 4–8-GHz hybrid monolithic microwave integrated circuit (MMIC) low-noise amplifier (LNA), enhanced with an external high-temperature superconductor (HTS) impedance matching network (IMN), is proposed. It evolves from a reference InP MMIC LNA by substituting the on-chip IMN with an external HTS IMN, facilitating seamless integration with superconductor circuit units. The Gray Wolf Optimization algorithm is utilized to optimize the IMN. Compared with the reference MMIC LNA, the hybrid MMIC LNA exhibits an average noise reduction of approximately 5.2 K at 77 K and 1.9 K at 15 K during testing. These results make it a promising candidate for applications in superconductor receivers.
{"title":"Cryogenic C-Band Hybrid MMIC Low-Noise Amplifier Using HTS Input Matching Network Assisted by Gray Wolf Optimizer","authors":"Hongliang Tian;Haiwen Liu;Zeren Song;Yulian Xu;Ruolin Wang;Shaofei Wang","doi":"10.1109/TASC.2024.3514608","DOIUrl":"https://doi.org/10.1109/TASC.2024.3514608","url":null,"abstract":"In this article, a cryogenic 4–8-GHz hybrid monolithic microwave integrated circuit (MMIC) low-noise amplifier (LNA), enhanced with an external high-temperature superconductor (HTS) impedance matching network (IMN), is proposed. It evolves from a reference InP MMIC LNA by substituting the on-chip IMN with an external HTS IMN, facilitating seamless integration with superconductor circuit units. The Gray Wolf Optimization algorithm is utilized to optimize the IMN. Compared with the reference MMIC LNA, the hybrid MMIC LNA exhibits an average noise reduction of approximately 5.2 K at 77 K and 1.9 K at 15 K during testing. These results make it a promising candidate for applications in superconductor receivers.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 2","pages":"1-7"},"PeriodicalIF":1.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a 150 GHz waveguide Josephson array oscillator was designed, fabricated, and evaluated as a local oscillator (LO) source for superconductor-insulator-superconductor (SIS) mixer-based amplifiers. These amplifiers aim to reduce the power consumption of microwave amplifiers used in large-scale multi-pixel heterodyne receivers for radio astronomy and superconducting quantum computers. We fabricated a Josephson array oscillator of 11 Nb/Al–AlO x