首页 > 最新文献

IEEE Electron Device Letters最新文献

英文 中文
CMOS-Compatible Artificial Optoelectronic Synapse for Neuromorphic Computing 用于神经形态计算的cmos兼容人工光电突触
IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-15 DOI: 10.1109/LED.2025.3643167
Chao Gao;Zequn Zheng;Yihong Qi;Zhou Zhou;Xiaolin Liu;Qiang Chen;Jianchao Li;Xin Jin;Xiaoyang Qi;Binhong Wu;Kai Wang
A novel CMOS-compatible artificial optoelectronic synapse with combing a photodiode-body-biased MOSFET (PD-MOS) with a floating-gate Transistor (FGT) is proposed. The PD-FGT exhibits a broad spectral response (300–1100 nm) with a peak responsivity of 1.8 × 103 A/W at 600 nm, and a large memory window from -1.4 V to 4.1 V. Its opto-electronic performance makes a great promise of enabling emulation of biological synaptic characteristics (Excitatory Postsynaptic Current and Paired Pulse Facilitation) via optical and electrical pulse modulation. An optoelectronic artificial neural network based on this device can potentially obtain 92% accuracy in handwritten digit recognition. This optoelectronic dual-modulated synaptic device opens new avenues for artificial vision systems and future in-sensor computing and storage, laying a foundation for large-scale visual neuromorphic computing hardware systems.
提出了一种将光电二极管体偏置MOSFET (PD-MOS)与浮栅晶体管(FGT)相结合的新型cmos兼容人工光电突触。PD-FGT具有较宽的光谱响应(300-1100 nm),在600 nm处的峰值响应率为1.8 × 103 a /W,在-1.4 V至4.1 V范围内具有较大的存储窗口。它的光电性能使得通过光脉冲和电脉冲调制来模拟生物突触特性(兴奋性突触后电流和成对脉冲促进)成为可能。基于该装置的光电人工神经网络在手写体数字识别中可达到92%的正确率。这种光电双调制突触器件为人工视觉系统和未来传感器内计算和存储开辟了新的途径,为大规模视觉神经形态计算硬件系统奠定了基础。
{"title":"CMOS-Compatible Artificial Optoelectronic Synapse for Neuromorphic Computing","authors":"Chao Gao;Zequn Zheng;Yihong Qi;Zhou Zhou;Xiaolin Liu;Qiang Chen;Jianchao Li;Xin Jin;Xiaoyang Qi;Binhong Wu;Kai Wang","doi":"10.1109/LED.2025.3643167","DOIUrl":"https://doi.org/10.1109/LED.2025.3643167","url":null,"abstract":"A novel CMOS-compatible artificial optoelectronic synapse with combing a photodiode-body-biased MOSFET (PD-MOS) with a floating-gate Transistor (FGT) is proposed. The PD-FGT exhibits a broad spectral response (300–1100 nm) with a peak responsivity of 1.8 × 10<sup>3</sup> A/W at 600 nm, and a large memory window from -1.4 V to 4.1 V. Its opto-electronic performance makes a great promise of enabling emulation of biological synaptic characteristics (Excitatory Postsynaptic Current and Paired Pulse Facilitation) via optical and electrical pulse modulation. An optoelectronic artificial neural network based on this device can potentially obtain 92% accuracy in handwritten digit recognition. This optoelectronic dual-modulated synaptic device opens new avenues for artificial vision systems and future in-sensor computing and storage, laying a foundation for large-scale visual neuromorphic computing hardware systems.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"47 2","pages":"415-418"},"PeriodicalIF":4.5,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146081997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnO Nanowire Gate-Tunable Schottky Diodes by Adhesion Lithography ZnO纳米线栅可调谐肖特基二极管的粘附光刻技术
IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-15 DOI: 10.1109/LED.2025.3644685
Umer F. Ahmed;Andrew J. Flewitt
Electronic devices using nanomaterials have the potential to outperform equivalent devices using bulk materials, but only if nanoscale contacts can be made to the nanomaterial. This is achieved by a scalable process in this work through hydrothermal growth of horizontal ZnO nanowires (NWs) from a ZnO seed layer across a 40 nm nanogap created by adhesion lithography (A-lith). The asymmetric Ti and Au electrodes of the nanogap lead to the formation of Schottky diodes in the NWs, exhibiting rectification ratios >103. The addition of SiO2 dielectric around the NW improved the rectification ratio to almost 104 and allowed the addition of a bottom gate. The device demonstrated transistor-like behavior, most notably under reverse bias conditions. These characteristics are analogous to a source-gated transistor (SGT), with both accumulation and depletion modes of operation, demonstrating for the first time experimentally, SGTs with a size below 100 nm. This is significant as it opens up the possibility of nanoscale arrays of SGTs for ultra-high resolution displays or neuromorphic processors.
使用纳米材料的电子设备有潜力胜过使用大块材料的等效设备,但前提是纳米级的接触可以与纳米材料进行接触。这是通过一种可扩展的工艺实现的,通过水热生长,从ZnO种子层穿过40 nm的纳米间隙,通过粘合光刻(a -lith)产生水平ZnO纳米线。纳米间隙的不对称Ti和Au电极导致NWs中形成肖特基二极管,表现出整流比bbbb103。在NW周围添加SiO2介电介质将整流比提高到接近104,并允许添加底部栅极。该器件表现出类似晶体管的行为,尤其是在反向偏置条件下。这些特性类似于源门控晶体管(SGT),具有积累和耗尽两种工作模式,首次在实验中证明了SGT的尺寸小于100 nm。这一点意义重大,因为它为超高分辨率显示器或神经形态处理器提供了纳米级sgt阵列的可能性。
{"title":"ZnO Nanowire Gate-Tunable Schottky Diodes by Adhesion Lithography","authors":"Umer F. Ahmed;Andrew J. Flewitt","doi":"10.1109/LED.2025.3644685","DOIUrl":"https://doi.org/10.1109/LED.2025.3644685","url":null,"abstract":"Electronic devices using nanomaterials have the potential to outperform equivalent devices using bulk materials, but only if nanoscale contacts can be made to the nanomaterial. This is achieved by a scalable process in this work through hydrothermal growth of horizontal ZnO nanowires (NWs) from a ZnO seed layer across a 40 nm nanogap created by adhesion lithography (A-lith). The asymmetric Ti and Au electrodes of the nanogap lead to the formation of Schottky diodes in the NWs, exhibiting rectification ratios >10<sup>3</sup>. The addition of SiO<sub>2</sub> dielectric around the NW improved the rectification ratio to almost 10<sup>4</sup> and allowed the addition of a bottom gate. The device demonstrated transistor-like behavior, most notably under reverse bias conditions. These characteristics are analogous to a source-gated transistor (SGT), with both accumulation and depletion modes of operation, demonstrating for the first time experimentally, SGTs with a size below 100 nm. This is significant as it opens up the possibility of nanoscale arrays of SGTs for ultra-high resolution displays or neuromorphic processors.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"47 2","pages":"407-410"},"PeriodicalIF":4.5,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erase-Verify Operation in Ferroelectric 3D Vertical NAND Storage 铁电三维垂直NAND存储的擦除验证操作
IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-05 DOI: 10.1109/LED.2025.3640707
Shubham Kumar;Saikat Chakraborty;Yixin Qin;Moonyoung Jung;Kwangyou Seo;Kwangsoo Kim;Wanki Kim;Daewon Ha;Vijaykrishnan Narayanan;Jaydeep P. Kulkarni;Kai Ni
Ferroelectric 3D vertical NAND offers attractive benefits such as lower stack height and reduced write voltage, but enabling erase-verify remains a significant challenge because the erase operation places all FeFETs into a high-threshold-voltage (HVT) state, suppressing electron conduction through the string. This makes conventional electron-based erase-verify schemes ineffective. In this work, we propose a GIDL-assisted hole-based erase-verify method that generates holes through band-to-band tunneling in the source-side transistor and uses their propagation to distinguish fully erased (all-HVT) strings from those containing fail-to-erase low-Vth (LVT) cells. TCAD simulations show that GIDL-generated holes can propagate across an all-HVT string, raising the bitline potential, while an LVT FeFET blocks hole transport, enabling robust verify sensing. We further analyze device-level reliability considerations and evaluate the impact of channel thickness on sense margin. The proposed GIDL-assisted approach provides a compact and architecture-compatible solution for erase-verify in FE-NAND without modifying channel type, adding p+ regions, or requiring incremental erase schemes.
铁电3D垂直NAND具有较低的堆叠高度和较低的写入电压等优点,但实现擦除验证仍然是一个重大挑战,因为擦除操作将所有fet置于高阈值电压(HVT)状态,从而抑制了电子通过串的传导。这使得传统的基于电子的擦除验证方案无效。在这项工作中,我们提出了一种gidl辅助的基于空穴的擦除验证方法,该方法通过源侧晶体管的带对带隧道产生空穴,并利用它们的传播来区分完全擦除(all-HVT)字符串和包含失败擦除低vth (LVT)细胞的字符串。TCAD仿真表明,gidl生成的空穴可以在全hvt管柱上传播,提高位线电位,而LVT ffet则阻止了空穴传输,实现了鲁棒的验证传感。我们进一步分析了器件级可靠性考虑因素,并评估了通道厚度对感测裕度的影响。提出的gidl辅助方法为FE-NAND中的擦除验证提供了一种紧凑且架构兼容的解决方案,而无需修改通道类型,添加p+区域或需要增量擦除方案。
{"title":"Erase-Verify Operation in Ferroelectric 3D Vertical NAND Storage","authors":"Shubham Kumar;Saikat Chakraborty;Yixin Qin;Moonyoung Jung;Kwangyou Seo;Kwangsoo Kim;Wanki Kim;Daewon Ha;Vijaykrishnan Narayanan;Jaydeep P. Kulkarni;Kai Ni","doi":"10.1109/LED.2025.3640707","DOIUrl":"https://doi.org/10.1109/LED.2025.3640707","url":null,"abstract":"Ferroelectric 3D vertical NAND offers attractive benefits such as lower stack height and reduced write voltage, but enabling erase-verify remains a significant challenge because the erase operation places all FeFETs into a high-threshold-voltage (HVT) state, suppressing electron conduction through the string. This makes conventional electron-based erase-verify schemes ineffective. In this work, we propose a GIDL-assisted hole-based erase-verify method that generates holes through band-to-band tunneling in the source-side transistor and uses their propagation to distinguish fully erased (all-HVT) strings from those containing fail-to-erase low-Vth (LVT) cells. TCAD simulations show that GIDL-generated holes can propagate across an all-HVT string, raising the bitline potential, while an LVT FeFET blocks hole transport, enabling robust verify sensing. We further analyze device-level reliability considerations and evaluate the impact of channel thickness on sense margin. The proposed GIDL-assisted approach provides a compact and architecture-compatible solution for erase-verify in FE-NAND without modifying channel type, adding p+ regions, or requiring incremental erase schemes.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"47 2","pages":"395-398"},"PeriodicalIF":4.5,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Electron Devices Table of Contents IEEE电子器件汇刊目录
IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-04 DOI: 10.1109/LED.2025.3629307
{"title":"IEEE Transactions on Electron Devices Table of Contents","authors":"","doi":"10.1109/LED.2025.3629307","DOIUrl":"https://doi.org/10.1109/LED.2025.3629307","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 12","pages":"2384-C3"},"PeriodicalIF":4.5,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11278121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145665850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Papers for a Special Issue of IEEE Transactions on Electron Devices: Ultrawide Band Gap Semiconductor Devices for RF, Power and Optoelectronic Applications 《IEEE电子器件学报:用于射频、功率和光电子应用的超宽带隙半导体器件》特刊征文
IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-04 DOI: 10.1109/LED.2025.3629305
{"title":"Call for Papers for a Special Issue of IEEE Transactions on Electron Devices: Ultrawide Band Gap Semiconductor Devices for RF, Power and Optoelectronic Applications","authors":"","doi":"10.1109/LED.2025.3629305","DOIUrl":"https://doi.org/10.1109/LED.2025.3629305","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 12","pages":"2382-2383"},"PeriodicalIF":4.5,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11278207","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145665736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Electron Device Letters Information for Authors IEEE电子器件通讯作者信息
IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-04 DOI: 10.1109/LED.2025.3629283
{"title":"IEEE Electron Device Letters Information for Authors","authors":"","doi":"10.1109/LED.2025.3629283","DOIUrl":"https://doi.org/10.1109/LED.2025.3629283","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 12","pages":"2381-2381"},"PeriodicalIF":4.5,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11278122","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145665779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrections to “A Novel P-bit Unit Based on VGSOT-MTJ for Reconfigurable Ising Machine With Fully Parallel Spin Updating Design” 对“基于VGSOT-MTJ的全并行自旋更新可重构机p位单元”的修正
IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-04 DOI: 10.1109/LED.2025.3626118
Wentao Huang;Kaili Zhang;Junlin Wang;Yu Liu;Bolin Zhang;Youguang Zhang;Weisheng Zhao;Lang Zeng;Deming Zhang
In the above article [1], we have found several minor formatting errors. Specifically, there are formatting errors in the display of three parameters in Table I. In addition, there is a black dot appearing at the top of Fig. 2(b), and two black dots at the top of Fig. 3(a). These issues are purely typographical and do not affect the experimental results, analyses, or conclusions presented in the article.TABLE I Parameters ValuesGyromagnetic ratio, $gamma $ $2.2117 times 10^{5} mathrm {~m} /(mathrm {A} cdot mathrm {s})$ PMA coefficient, $mathrm {K}_{mathrm {i}}$ $3.2 times 10^{-4} mathrm {~J} / mathrm {m}^{2}$ Exchange bias, $mathrm {H}_{mathrm {EX}}$ 20 OeSpin polarization, P 0.58TMR ratio, TMR 100VCMA coefficient, $beta $ $160 mathrm {fJ} / mathrm {V} cdot mathrm {m}^{[{21}]}$ Gilbert damping constant, $alpha $ 0.05Spin hall angle, $theta _{text {SH}~}$ 0.25Fig. 2. Fig. 3.
在上面的文章[1]中,我们发现了一些小的格式错误。具体来说,表1中三个参数的显示存在格式错误。此外,图2(b)顶部出现一个黑点,图3(a)顶部出现两个黑点。这些问题纯粹是排版问题,不影响文章中呈现的实验结果、分析或结论。表1参数值 $gamma $ $2.2117 times 10^{5} mathrm {~m} /(mathrm {A} cdot mathrm {s})$ PMA系数; $mathrm {K}_{mathrm {i}}$ $3.2 times 10^{-4} mathrm {~J} / mathrm {m}^{2}$ 交换偏见; $mathrm {H}_{mathrm {EX}}$ 20 . OeSpin极化,p0.58 TMR比值,TMR 100VCMA系数, $beta $ $160 mathrm {fJ} / mathrm {V} cdot mathrm {m}^{[{21}]}$ 吉尔伯特阻尼常数, $alpha $ 0.05旋霍尔角; $theta _{text {SH}~}$ 0.25图2. 图3。
{"title":"Corrections to “A Novel P-bit Unit Based on VGSOT-MTJ for Reconfigurable Ising Machine With Fully Parallel Spin Updating Design”","authors":"Wentao Huang;Kaili Zhang;Junlin Wang;Yu Liu;Bolin Zhang;Youguang Zhang;Weisheng Zhao;Lang Zeng;Deming Zhang","doi":"10.1109/LED.2025.3626118","DOIUrl":"https://doi.org/10.1109/LED.2025.3626118","url":null,"abstract":"In the above article [1], we have found several minor formatting errors. Specifically, there are formatting errors in the display of three parameters in Table I. In addition, there is a black dot appearing at the top of Fig. 2(b), and two black dots at the top of Fig. 3(a). These issues are purely typographical and do not affect the experimental results, analyses, or conclusions presented in the article.TABLE I Parameters ValuesGyromagnetic ratio, $gamma $ $2.2117 times 10^{5} mathrm {~m} /(mathrm {A} cdot mathrm {s})$ PMA coefficient, $mathrm {K}_{mathrm {i}}$ $3.2 times 10^{-4} mathrm {~J} / mathrm {m}^{2}$ Exchange bias, $mathrm {H}_{mathrm {EX}}$ 20 OeSpin polarization, P 0.58TMR ratio, TMR 100VCMA coefficient, $beta $ $160 mathrm {fJ} / mathrm {V} cdot mathrm {m}^{[{21}]}$ Gilbert damping constant, $alpha $ 0.05Spin hall angle, $theta _{text {SH}~}$ 0.25Fig. 2. Fig. 3.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 12","pages":"2377-2378"},"PeriodicalIF":4.5,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11278124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145665803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EDS Meetings Calendar EDS会议日程表
IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-04 DOI: 10.1109/LED.2025.3629281
{"title":"EDS Meetings Calendar","authors":"","doi":"10.1109/LED.2025.3629281","DOIUrl":"https://doi.org/10.1109/LED.2025.3629281","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 12","pages":"2379-2380"},"PeriodicalIF":4.5,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11278125","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145665735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A1 Mode Lithium Niobate Solidly Mounted Filter for 5G NR and Wi-Fi 6E/7 Applications A1模式铌酸锂固体安装滤波器,用于5G NR和Wi-Fi 6E/7应用
IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-03 DOI: 10.1109/LED.2025.3640102
Peiran Li;Bin Peng;Yuedong Wang;Wei Fan;Sijia Huo;Zijie Wei;Dahao Wu;Wenbo Luo;Yao Shuai;Xinqiang Pan;Chuangui Wu
In this work, we propose a first-order anti-symmetric (A1) mode acoustic resonator and filter based on a 128째 YX-cut LiNbO3 (LN) solidly mounted resonator (SMR) structure. By adopting a non-periodic Bragg reflection layer structure, shear waves and longitudinal waves are effectively reflected at the designed frequency, reducing acoustic leakage loss and achieving a spurious-free resonator within the passband. Simulation results show that the frequency of the spurious-free A1 mode SMR can be adjusted in a wide-frequency range by optimizing the half period and metal ratio simultaneously, which is distinct from the conventional XBAR method that relies on LN film thinning. Then a 6th-order T-type A1 mode SMR filter was designed and fabricated, which exhibits a center frequency of 6.82 GHz, a minimum insertion loss of 2.2 dB, a 3dB bandwidth of 740 MHz, and out-of-band suppression exceeding 25 dB. This work demonstrates a SMR filter design method suitable for the A1 mode, and provides a feasible path and design ideas for engineering implementation of high-frequency acoustic filters.
在这项工作中,我们提出了一种一阶反对称(A1)模式的声学谐振器和滤波器,该谐振器和滤波器是基于128 30:1 x -cut LiNbO3 (LN)固体安装谐振器(SMR)结构。通过采用非周期布拉格反射层结构,横波和纵波在设计频率上被有效反射,降低了声漏损失,实现了通带内无杂散谐振腔。仿真结果表明,通过同时优化半周期和金属比,可以在较宽的频率范围内调节无杂散A1模式SMR的频率,这与传统的依赖于LN薄膜减薄的XBAR方法不同。设计并制作了一个6阶t型A1模SMR滤波器,其中心频率为6.82 GHz,最小插入损耗为2.2 dB, 3dB带宽为740 MHz,带外抑制超过25 dB。本文论证了一种适用于A1模式的SMR滤波器设计方法,为高频声学滤波器的工程实现提供了可行的路径和设计思路。
{"title":"A1 Mode Lithium Niobate Solidly Mounted Filter for 5G NR and Wi-Fi 6E/7 Applications","authors":"Peiran Li;Bin Peng;Yuedong Wang;Wei Fan;Sijia Huo;Zijie Wei;Dahao Wu;Wenbo Luo;Yao Shuai;Xinqiang Pan;Chuangui Wu","doi":"10.1109/LED.2025.3640102","DOIUrl":"https://doi.org/10.1109/LED.2025.3640102","url":null,"abstract":"In this work, we propose a first-order anti-symmetric (A1) mode acoustic resonator and filter based on a 128째 YX-cut LiNbO<sub>3</sub> (LN) solidly mounted resonator (SMR) structure. By adopting a non-periodic Bragg reflection layer structure, shear waves and longitudinal waves are effectively reflected at the designed frequency, reducing acoustic leakage loss and achieving a spurious-free resonator within the passband. Simulation results show that the frequency of the spurious-free A1 mode SMR can be adjusted in a wide-frequency range by optimizing the half period and metal ratio simultaneously, which is distinct from the conventional XBAR method that relies on LN film thinning. Then a 6th-order T-type A1 mode SMR filter was designed and fabricated, which exhibits a center frequency of 6.82 GHz, a minimum insertion loss of 2.2 dB, a 3dB bandwidth of 740 MHz, and out-of-band suppression exceeding 25 dB. This work demonstrates a SMR filter design method suitable for the A1 mode, and provides a feasible path and design ideas for engineering implementation of high-frequency acoustic filters.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"47 2","pages":"419-422"},"PeriodicalIF":4.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compact Modeling of β-Ga2O3 Lateral Depletion Mode MOSFET β-Ga2O3横向耗尽型MOSFET的紧凑建模
IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-02 DOI: 10.1109/LED.2025.3639367
Abu Shahir Md Khalid Hasan;Md Maksudul Hossain;Md Majharul Islam;Aireen Amir Jalal;Mohammad Dehan Rahman;Colin Shaw;Xiaoqing Song;H. Alan Mantooth
Gallium oxide (Ga2O3) holds significant potential to expand the boundaries of the wide bandgap (silicon carbide, gallium nitride and others) devices. The field plated structure of $beta $ -Ga2O3 lateral depletion mode MOSFETs has shown enhanced breakdown characteristics. In this work, a compact model describing channel current, resistances and non-linear capacitances has been developed for the $beta $ -Ga2O3 lateral MOSFETs. The model equations account for mobility, dielectric constant, voltage-dependent depletion region, and other physical factors. The DC characteristics are calibrated using experimental transfer and output data, while C-V characteristics are estimated through TCAD simulation of a 750V field-plated $beta $ -Ga2O3 MOSFET. The model aligns well with both DC and C-V characteristics, covering reverse transfer, output, and input capacitances. Temperature scaling is integrated to capture device behavior over a range of temperatures, and the model’s transfer characteristics show good agreement with experimental data up to 200°C.
氧化镓(Ga2O3)在扩大宽带隙(碳化硅、氮化镓等)器件的边界方面具有重要的潜力。$beta $ -Ga2O3横向耗尽型mosfet的场镀结构表现出增强的击穿特性。在这项工作中,为$beta $ -Ga2O3横向mosfet开发了一个描述通道电流,电阻和非线性电容的紧凑模型。模型方程考虑了迁移率、介电常数、电压依赖耗尽区和其他物理因素。直流特性使用实验传输和输出数据进行校准,而C-V特性通过TCAD模拟750V场镀$beta $ -Ga2O3 MOSFET进行估计。该模型很好地符合直流和C-V特性,涵盖反向转移、输出和输入电容。集成了温度缩放以捕获设备在一定温度范围内的行为,并且该模型的传输特性与高达200°C的实验数据显示出良好的一致性。
{"title":"Compact Modeling of β-Ga2O3 Lateral Depletion Mode MOSFET","authors":"Abu Shahir Md Khalid Hasan;Md Maksudul Hossain;Md Majharul Islam;Aireen Amir Jalal;Mohammad Dehan Rahman;Colin Shaw;Xiaoqing Song;H. Alan Mantooth","doi":"10.1109/LED.2025.3639367","DOIUrl":"https://doi.org/10.1109/LED.2025.3639367","url":null,"abstract":"Gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) holds significant potential to expand the boundaries of the wide bandgap (silicon carbide, gallium nitride and others) devices. The field plated structure of <inline-formula> <tex-math>$beta $ </tex-math></inline-formula>-Ga<sub>2</sub>O<sub>3</sub> lateral depletion mode MOSFETs has shown enhanced breakdown characteristics. In this work, a compact model describing channel current, resistances and non-linear capacitances has been developed for the <inline-formula> <tex-math>$beta $ </tex-math></inline-formula>-Ga<sub>2</sub>O<sub>3</sub> lateral MOSFETs. The model equations account for mobility, dielectric constant, voltage-dependent depletion region, and other physical factors. The DC characteristics are calibrated using experimental transfer and output data, while C-V characteristics are estimated through TCAD simulation of a 750V field-plated <inline-formula> <tex-math>$beta $ </tex-math></inline-formula>-Ga<sub>2</sub>O<sub>3</sub> MOSFET. The model aligns well with both DC and C-V characteristics, covering reverse transfer, output, and input capacitances. Temperature scaling is integrated to capture device behavior over a range of temperatures, and the model’s transfer characteristics show good agreement with experimental data up to 200°C.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"47 2","pages":"399-402"},"PeriodicalIF":4.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146081992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Electron Device Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1