首页 > 最新文献

IEEE Electron Device Letters最新文献

英文 中文
Bridging the Data Gap in Photovoltaics with Synthetic Data Generation 通过合成数据生成弥补光伏领域的数据差距
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-01 DOI: 10.1109/LED.2024.3459570
{"title":"Bridging the Data Gap in Photovoltaics with Synthetic Data Generation","authors":"","doi":"10.1109/LED.2024.3459570","DOIUrl":"https://doi.org/10.1109/LED.2024.3459570","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"2047-2048"},"PeriodicalIF":4.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701600","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-01 DOI: 10.1109/LED.2024.3459586
{"title":"Blank Page","authors":"","doi":"10.1109/LED.2024.3459586","DOIUrl":"https://doi.org/10.1109/LED.2024.3459586","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"C4-C4"},"PeriodicalIF":4.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701596","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Electron Device Letters Publication Information IEEE Electron Device Letters 出版信息
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-01 DOI: 10.1109/LED.2024.3459574
{"title":"IEEE Electron Device Letters Publication Information","authors":"","doi":"10.1109/LED.2024.3459574","DOIUrl":"https://doi.org/10.1109/LED.2024.3459574","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"C2-C2"},"PeriodicalIF":4.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701597","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices 电气和电子工程师学会电子器件期刊》智能传感器系统特刊
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-01 DOI: 10.1109/LED.2024.3459582
{"title":"Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices","authors":"","doi":"10.1109/LED.2024.3459582","DOIUrl":"https://doi.org/10.1109/LED.2024.3459582","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"2049-2050"},"PeriodicalIF":4.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701595","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Electron Device Letters Information for Authors IEEE Electron Device Letters 为作者提供的信息
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-01 DOI: 10.1109/LED.2024.3459580
{"title":"IEEE Electron Device Letters Information for Authors","authors":"","doi":"10.1109/LED.2024.3459580","DOIUrl":"https://doi.org/10.1109/LED.2024.3459580","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"2046-2046"},"PeriodicalIF":4.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701575","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Electron Devices Table of Contents IEEE 《电子器件学报》目录
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-01 DOI: 10.1109/LED.2024.3459584
{"title":"IEEE Transactions on Electron Devices Table of Contents","authors":"","doi":"10.1109/LED.2024.3459584","DOIUrl":"https://doi.org/10.1109/LED.2024.3459584","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"2051-C3"},"PeriodicalIF":4.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701599","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Record Low Contact Resistivity of 10-8 Ω cm² Ohmic Contacts on Oxygen-Terminated Intrinsic Diamond by Transition Metals Metallization 通过过渡金属金属化技术在氧淬火本征金刚石上实现 10-8 Ω cm² 欧姆触点的低接触电阻率记录
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-24 DOI: 10.1109/LED.2024.3458053
Sai-Fei Fan;Bo Liang;Xiao-Hui Zhang;Wen-Chao Zhang;Biao Wang;Tong-Bo Li;Tao Su;Ben-Jian Liu;Viktor Ralchenko;Kang Liu;Jia-Qi Zhu
For the first time, robust ohmic contacts were successfully prepared on oxygen-terminated intrinsic diamond with insulating surface and rare carrier concentration by transition metals (TMs, including Pt, Ru, W, Cr, Zr and V) metallization. The record low specific contact resistance of ${2}.{5}times {10} ^{-{8}}~Omega $ cm2 was obtained for Pt contacts, which diffused into diamond in a metallic state and did not generate carbide but sp2 carbon and vacancy defects. We found that the shallow damage layer full of conductive defects like TMs, TM carbides, sp2 carbon and nitrogen-vacancy color centers induced by metallization within diamond is the critical reason for the formation of ohmic contacts, which acts as conductive shunts to connect the electrode contact and bulk diamond. Our findings extended the methodology and theory for the formation of reliable and efficient ohmic contacts on diamond.
通过金属化过渡金属(TMs,包括铂、钌、钨、铬、锆和钒),首次在具有绝缘表面和稀有载流子浓度的氧封端本征金刚石上成功制备了稳健的欧姆触点。创纪录的低比接触电阻为 ${2}.{5}times {10}.^{-{8}}~Omega $ cm2,铂接触以金属状态扩散到金刚石中,没有产生碳化物,但产生了 sp2 碳和空位缺陷。我们发现,金刚石内金属化诱导的充满导电缺陷(如 TMs、TM 碳化物、sp2 碳和氮空位色心)的浅损伤层是欧姆接触形成的关键原因,它起到了连接电极接触和块体金刚石的导电分流作用。我们的研究结果扩展了在金刚石上形成可靠、高效欧姆接触的方法和理论。
{"title":"Record Low Contact Resistivity of 10-8 Ω cm² Ohmic Contacts on Oxygen-Terminated Intrinsic Diamond by Transition Metals Metallization","authors":"Sai-Fei Fan;Bo Liang;Xiao-Hui Zhang;Wen-Chao Zhang;Biao Wang;Tong-Bo Li;Tao Su;Ben-Jian Liu;Viktor Ralchenko;Kang Liu;Jia-Qi Zhu","doi":"10.1109/LED.2024.3458053","DOIUrl":"https://doi.org/10.1109/LED.2024.3458053","url":null,"abstract":"For the first time, robust ohmic contacts were successfully prepared on oxygen-terminated intrinsic diamond with insulating surface and rare carrier concentration by transition metals (TMs, including Pt, Ru, W, Cr, Zr and V) metallization. The record low specific contact resistance of \u0000<inline-formula> <tex-math>${2}.{5}times {10} ^{-{8}}~Omega $ </tex-math></inline-formula>\u0000 cm2 was obtained for Pt contacts, which diffused into diamond in a metallic state and did not generate carbide but sp2 carbon and vacancy defects. We found that the shallow damage layer full of conductive defects like TMs, TM carbides, sp2 carbon and nitrogen-vacancy color centers induced by metallization within diamond is the critical reason for the formation of ohmic contacts, which acts as conductive shunts to connect the electrode contact and bulk diamond. Our findings extended the methodology and theory for the formation of reliable and efficient ohmic contacts on diamond.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2062-2065"},"PeriodicalIF":4.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Integrated Lead-Free Perovskite/Graphene Array Toward High-Responsivity In-Sensor Computing 无铅过氧化物/石墨烯混合集成阵列,实现高共振频率传感计算
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-23 DOI: 10.1109/LED.2024.3465790
Jiahe Zhang;Guan-Hua Dun;Ken Qin;Ruolong Zhou;Zeshu Wang;Jiali Peng;Xiangshun Geng;Dan Xie;He Tian;Yi Yang;Tian-Ling Ren
Perovskite are expected to construct vision neuromorphic systems due to its unique photoelectric properties. However, the ion migration in perovskite films, as well as the toxicity of lead element limit their applications. Here we demonstrated a lead-free perovskite-graphene hybrid (PGH) integrated device via low temperature method. This hybrid structure decouples vertical carrier extraction under built-in electric field and horizontal carrier transport under applied high electric filed, which enhances carrier transport efficiency while alleviating ion migration issues. As a result, a responsivity of 199 A/W and a detectivity of ${0}.{53}times {10} ^{{10}}$ Jones were achieved under 405 nm light illumination (power intensity: ${0}.{24}times {10} ^{text {- {2}}}$ nW/ $mu $ m $^{{2}}text {)}$ . Furthermore, the ground-state current drift caused by charge trapping/detrapping in PGH band alignment facilitates in-situ preprocessing of visual information. A neuromorphic vision system with a ${6}times {6}$ sensor array was constructed, and it showed a significantly accuracy enhancement (69.2% to 89.5%) in recognition tasks. This work contributes to the development of high-performance perovskite-based neuromorphic devices.
由于其独特的光电特性,人们期待用包晶石构建视觉神经形态系统。然而,透镜薄膜中的离子迁移以及铅元素的毒性限制了其应用。在这里,我们通过低温方法展示了一种无铅包晶石-石墨烯混合(PGH)集成器件。这种混合结构将内置电场下的垂直载流子萃取和外加高电场下的水平载流子传输分离开来,从而提高了载流子传输效率,同时缓解了离子迁移问题。因此,其响应率达到 199 A/W ,检测率达到 ${0}.{53}times {10}$ ^{{10}}$ 。在 405 纳米光照下(功率强度:${0}.{24}/times {10}}$ Jones),实现了 199 A/W 的响应率和 ${0}.{53}times {10}} 的检测率。nW/ $mu $ m $^{{2}}text {)}$ 。此外,PGH 波段排列中的电荷捕获/俘获所引起的基态电流漂移有助于对视觉信息进行原位预处理。我们构建了一个具有 ${6}times {6}$ 传感器阵列的神经形态视觉系统,它在识别任务中的准确率显著提高(69.2% 至 89.5%)。这项工作有助于开发基于包晶的高性能神经形态器件。
{"title":"Hybrid Integrated Lead-Free Perovskite/Graphene Array Toward High-Responsivity In-Sensor Computing","authors":"Jiahe Zhang;Guan-Hua Dun;Ken Qin;Ruolong Zhou;Zeshu Wang;Jiali Peng;Xiangshun Geng;Dan Xie;He Tian;Yi Yang;Tian-Ling Ren","doi":"10.1109/LED.2024.3465790","DOIUrl":"https://doi.org/10.1109/LED.2024.3465790","url":null,"abstract":"Perovskite are expected to construct vision neuromorphic systems due to its unique photoelectric properties. However, the ion migration in perovskite films, as well as the toxicity of lead element limit their applications. Here we demonstrated a lead-free perovskite-graphene hybrid (PGH) integrated device via low temperature method. This hybrid structure decouples vertical carrier extraction under built-in electric field and horizontal carrier transport under applied high electric filed, which enhances carrier transport efficiency while alleviating ion migration issues. As a result, a responsivity of 199 A/W and a detectivity of \u0000<inline-formula> <tex-math>${0}.{53}times {10} ^{{10}}$ </tex-math></inline-formula>\u0000 Jones were achieved under 405 nm light illumination (power intensity: \u0000<inline-formula> <tex-math>${0}.{24}times {10} ^{text {- {2}}}$ </tex-math></inline-formula>\u0000 nW/\u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000m\u0000<inline-formula> <tex-math>$^{{2}}text {)}$ </tex-math></inline-formula>\u0000. Furthermore, the ground-state current drift caused by charge trapping/detrapping in PGH band alignment facilitates in-situ preprocessing of visual information. A neuromorphic vision system with a \u0000<inline-formula> <tex-math>${6}times {6}$ </tex-math></inline-formula>\u0000 sensor array was constructed, and it showed a significantly accuracy enhancement (69.2% to 89.5%) in recognition tasks. This work contributes to the development of high-performance perovskite-based neuromorphic devices.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2150-2153"},"PeriodicalIF":4.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Figure of Merit 4.5 GHz Solidly Mounted Resonator Fabricated Using High-Quality Al₀.₈Sc₀.₂N Films 使用高质量 Al₀.₈Sc₀.₂N 薄膜制作的高优越性 4.5 GHz 固体安装谐振器
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-23 DOI: 10.1109/LED.2024.3465567
Zekai Wang;Yao Cai;Tingting Yang;Binghui Lin;Yaxin Wang;Yuqi Ren;Yupeng Zheng;Shizhao Wang;Yan Liu;Chengliang Sun
How to simultaneously achieve a high effective electromechanical coupling coefficient and a high Q value for solidly mounted resonator (SMR) has become a key technical problem in filter applications. In this study, a new process flow for SMR devices using a wafer bonding technology is proposed. Based on this method, high-quality Al0.8 Sc0.2 N piezoelectric film grown on the metal-organic chemical vapor deposition (MOCVD) AlN buffer layer was successfully applied to fabricate SMR. A 4.5 GHz SMR resonator was demonstrated with an effective electromechanical coupling coefficient $({k}_{textit {eff}}^{{2}})$ of 12.27%, a Qp of 1009, and the figure of merit (FOM) up to 123. The better performance originated from the high-quality piezoelectric films enable SMR to be more widely used in various radio-frequency fields.
如何同时实现固体安装谐振器(SMR)的高有效机电耦合系数和高 Q 值已成为滤波器应用中的一个关键技术问题。本研究提出了一种使用晶圆键合技术制造 SMR 器件的新工艺流程。基于这种方法,在金属有机化学气相沉积(MOCVD)AlN 缓冲层上生长的高质量 Al0.8 Sc0.2 N 压电薄膜被成功用于制造 SMR。实验证明,4.5 GHz SMR 谐振器的有效机电耦合系数 $({k}_{textit {eff}}^{{2}})$ 为 12.27%,Qp 为 1009,优点系数 (FOM) 高达 123。高质量压电薄膜带来的更佳性能使 SMR 能够更广泛地应用于各种射频领域。
{"title":"High Figure of Merit 4.5 GHz Solidly Mounted Resonator Fabricated Using High-Quality Al₀.₈Sc₀.₂N Films","authors":"Zekai Wang;Yao Cai;Tingting Yang;Binghui Lin;Yaxin Wang;Yuqi Ren;Yupeng Zheng;Shizhao Wang;Yan Liu;Chengliang Sun","doi":"10.1109/LED.2024.3465567","DOIUrl":"https://doi.org/10.1109/LED.2024.3465567","url":null,"abstract":"How to simultaneously achieve a high effective electromechanical coupling coefficient and a high Q value for solidly mounted resonator (SMR) has become a key technical problem in filter applications. In this study, a new process flow for SMR devices using a wafer bonding technology is proposed. Based on this method, high-quality Al0.8 Sc0.2 N piezoelectric film grown on the metal-organic chemical vapor deposition (MOCVD) AlN buffer layer was successfully applied to fabricate SMR. A 4.5 GHz SMR resonator was demonstrated with an effective electromechanical coupling coefficient \u0000<inline-formula> <tex-math>$({k}_{textit {eff}}^{{2}})$ </tex-math></inline-formula>\u0000 of 12.27%, a Qp of 1009, and the figure of merit (FOM) up to 123. The better performance originated from the high-quality piezoelectric films enable SMR to be more widely used in various radio-frequency fields.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2229-2232"},"PeriodicalIF":4.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene/Silicon-on-Insulator Heterogenous Cascode Amplifier With High Gain 具有高增益的石墨烯/硅绝缘体上异质级联放大器
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-23 DOI: 10.1109/LED.2024.3464647
Tian Tian;Jinshu Zhang;Kai Xiao;Yingxin Chen;Yuxuan Zhu;Peng Zhou;Wenzhong Bao;Junhao Chu;Jing Wan
Although graphene field-effect transistors (GFET) exhibit high carrier mobility and transconductance, they suffer from low output resistance, resulting in limited voltage and power gain. In this study, a heterogenous process is developed to integrate single-layer graphene with silicon-on-insulator (SOI) substrate, then achieving a groundbreaking high-gain cascode amplifier. By combining the advantages of high transconductance from GFET and high output resistance from SOI-FET, the heterogenous cascode amplifier shows high output resistance and high voltage gain. Moreover, the heterogenous cascode amplifier demonstrates a significant improvement in transconductance (12.6 times of SOI-FET) and output resistance (98.7 times of GFET). A maximum gain of up to 80 is obtained by optimizing the bias conditions, vastly exceeding that of standalone GFET and SOI-FET devices. This graphene/SOI heterogenous cascode amplifier exhibits promising applications in radio-frequency transistor technology and wireless communication.
虽然石墨烯场效应晶体管(GFET)具有很高的载流子迁移率和跨导性能,但其输出阻抗较低,导致电压和功率增益有限。本研究开发了一种异质工艺,将单层石墨烯与绝缘体上硅(SOI)衬底集成在一起,从而实现了突破性的高增益级联放大器。通过结合 GFET 的高跨导和 SOI-FET 的高输出阻抗的优势,异质级联放大器显示出高输出阻抗和高电压增益。此外,异质级联放大器在跨导(SOI-FET 的 12.6 倍)和输出电阻(GFET 的 98.7 倍)方面也有显著改善。通过优化偏置条件,可获得高达 80 的最大增益,大大超过了独立的 GFET 和 SOI-FET 器件。这种石墨烯/SOI 异质级联放大器在射频晶体管技术和无线通信领域有着广阔的应用前景。
{"title":"Graphene/Silicon-on-Insulator Heterogenous Cascode Amplifier With High Gain","authors":"Tian Tian;Jinshu Zhang;Kai Xiao;Yingxin Chen;Yuxuan Zhu;Peng Zhou;Wenzhong Bao;Junhao Chu;Jing Wan","doi":"10.1109/LED.2024.3464647","DOIUrl":"https://doi.org/10.1109/LED.2024.3464647","url":null,"abstract":"Although graphene field-effect transistors (GFET) exhibit high carrier mobility and transconductance, they suffer from low output resistance, resulting in limited voltage and power gain. In this study, a heterogenous process is developed to integrate single-layer graphene with silicon-on-insulator (SOI) substrate, then achieving a groundbreaking high-gain cascode amplifier. By combining the advantages of high transconductance from GFET and high output resistance from SOI-FET, the heterogenous cascode amplifier shows high output resistance and high voltage gain. Moreover, the heterogenous cascode amplifier demonstrates a significant improvement in transconductance (12.6 times of SOI-FET) and output resistance (98.7 times of GFET). A maximum gain of up to 80 is obtained by optimizing the bias conditions, vastly exceeding that of standalone GFET and SOI-FET devices. This graphene/SOI heterogenous cascode amplifier exhibits promising applications in radio-frequency transistor technology and wireless communication.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2209-2212"},"PeriodicalIF":4.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Electron Device Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1