首页 > 最新文献

IEEE Electron Device Letters最新文献

英文 中文
TechRxiv: Share Your Preprint Research with the World! techxiv:与世界分享你的预印本研究!
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-27 DOI: 10.1109/LED.2024.3505494
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/LED.2024.3505494","DOIUrl":"https://doi.org/10.1109/LED.2024.3505494","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2585-2585"},"PeriodicalIF":4.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Electron Device Letters Information for Authors IEEE电子器件通讯作者信息
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-27 DOI: 10.1109/LED.2024.3496147
{"title":"IEEE Electron Device Letters Information for Authors","authors":"","doi":"10.1109/LED.2024.3496147","DOIUrl":"https://doi.org/10.1109/LED.2024.3496147","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2579-2579"},"PeriodicalIF":4.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Nominations for Editor-in-Chief 征集总编辑提名
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-27 DOI: 10.1109/LED.2024.3490712
{"title":"Call for Nominations for Editor-in-Chief","authors":"","doi":"10.1109/LED.2024.3490712","DOIUrl":"https://doi.org/10.1109/LED.2024.3490712","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2584-2584"},"PeriodicalIF":4.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging the Data Gap in Photovoltaics with Synthetic Data Generation 用合成数据生成弥合光伏领域的数据鸿沟
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-27 DOI: 10.1109/LED.2024.3496149
{"title":"Bridging the Data Gap in Photovoltaics with Synthetic Data Generation","authors":"","doi":"10.1109/LED.2024.3496149","DOIUrl":"https://doi.org/10.1109/LED.2024.3496149","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2580-2581"},"PeriodicalIF":4.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kudos to Our Golden Reviewers 向我们的金奖评审者致敬
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-27 DOI: 10.1109/LED.2024.3498532
Sayeef Salahuddin
{"title":"Kudos to Our Golden Reviewers","authors":"Sayeef Salahuddin","doi":"10.1109/LED.2024.3498532","DOIUrl":"https://doi.org/10.1109/LED.2024.3498532","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2263-2263"},"PeriodicalIF":4.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Four-Port Folded Waveguide Slow Wave Structure for W-Band 1-kW Pulsed Traveling Wave Tube w波段1kw脉冲行波管的四端口折叠波导慢波结构
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-25 DOI: 10.1109/LED.2024.3505606
Xiaoqing Zhang;Jun Cai;Xuankai Zhang;Yinghua Du;Chang Gao;Hanshuo Mu;Jinjun Feng
This letter presents the development of a W-band, 1-kW pulsed traveling wave tube (TWT) featuring a pencil beam focused by a periodic permanent magnet (PPM) system with the four-port structure, designed to reduce the inner diameter of the magnetic field system. By employing the four-port slow-wave structure, the inner radius of the PPM system was reduced by approximately 25%, leading to an increase in the axial magnetic field amplitude from 0.6T to 0.8T. This enhancement allows for a substantial increase in the beam current at the same operating voltage. The assembled W-band, 1-kW TWT was tested at a beam current of 410mA and a beam voltage of 21.65kV. Testing demonstrated that the TWT achieved over 1kW of output power with a 1.3GHz bandwidth, with a peak output power of 1,130W.
这封信介绍了一种w波段,1kw脉冲行波管(TWT)的发展,其特点是通过四端口结构的周期性永磁(PPM)系统聚焦铅笔束,旨在减小磁场系统的内径。通过采用四端口慢波结构,PPM系统的内半径减小了约25%,导致轴向磁场振幅从0.6T增加到0.8T。这种增强允许在相同的工作电压下大幅增加光束电流。装配的w波段1 kw行波管在束电流410mA、束电压21.65kV下进行测试。测试表明,该行波管在1.3GHz带宽下实现了超过1kW的输出功率,峰值输出功率为1,130W。
{"title":"Four-Port Folded Waveguide Slow Wave Structure for W-Band 1-kW Pulsed Traveling Wave Tube","authors":"Xiaoqing Zhang;Jun Cai;Xuankai Zhang;Yinghua Du;Chang Gao;Hanshuo Mu;Jinjun Feng","doi":"10.1109/LED.2024.3505606","DOIUrl":"https://doi.org/10.1109/LED.2024.3505606","url":null,"abstract":"This letter presents the development of a W-band, 1-kW pulsed traveling wave tube (TWT) featuring a pencil beam focused by a periodic permanent magnet (PPM) system with the four-port structure, designed to reduce the inner diameter of the magnetic field system. By employing the four-port slow-wave structure, the inner radius of the PPM system was reduced by approximately 25%, leading to an increase in the axial magnetic field amplitude from 0.6T to 0.8T. This enhancement allows for a substantial increase in the beam current at the same operating voltage. The assembled W-band, 1-kW TWT was tested at a beam current of 410mA and a beam voltage of 21.65kV. Testing demonstrated that the TWT achieved over 1kW of output power with a 1.3GHz bandwidth, with a peak output power of 1,130W.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"100-102"},"PeriodicalIF":4.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Performance GAA FETs With 100 Ω Parasitic Resistance and 965 μA/μm On-State Current Using Quasi-Self-Aligned Landing Pads 采用准自对准着陆垫,具有100 Ω寄生电阻和965 μA/μm导通电流的高性能GAA fet
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-25 DOI: 10.1109/LED.2024.3505926
R. J. Jiang;P. Wang;J. X. Yao;X. X. Zhang;L. Cao;J. J. Li;G. Q. Sang;X. B. He;N. Zhou;Y. D. Zhang;C. C. Zhang;Z. H. Zhang;G. B. Bai;Y. H. Lu;L. L. Li;Q. K. Li;J. F. Gao;J. F. Li;Qingzhu Zhang;Huaxiang Yin;J. Luo;B. W. Dai
To overcome the challenges posed by the high parasitic resistance and poor driving performance induced by serious epitaxy defects in gate-all-around field-effect transistors (GAA FETs), a quasi-self-aligned landing pads (QSA LPs) technique is proposed, and defect-free connections among the multilayer stacked channels and single-crystal SiGe/Si superlattice source/drain (SD) structures are demonstrated in GAA FETs. When compared with devices with widely spaced LPs, reductions of 98.8% and 96.3% in the parasitic SD resistance ( ${R}_{textit {SD}}$ ) are observed for N/PFETs when using the QSA LPs technique, respectively. Therefore, the corresponding on-state current ( ${I}_{textit {on}}$ ) values are raised to $965~mu $ A/ $mu $ m and $669~mu $ A/ $mu $ m for 180 nm gate length N/PFETs, respectively. In addition, no significant changes are observed in the device subthreshold characteristics, including both the subthreshold swing and the on/off current ratios. The proposed scheme offers a new and promising approach to reduce the ${R}_{textit {SD}}$ values and enhance the performance of these advanced GAA devices.
为了克服栅极场效应晶体管(GAA fet)中严重外延缺陷导致的高寄生电阻和低驱动性能的挑战,提出了一种准自对准着陆垫(QSA lp)技术,并在GAA fet中实现了多层堆叠通道与单晶SiGe/Si超晶格源漏(SD)结构之间的无缺陷连接。与使用宽间距lp的器件相比,使用QSA lp技术时,N/ pfet的寄生SD电阻(${R}_{textit {SD}}$)分别降低了98.8%和96.3%。因此,对应的导通电流(${I}_{textit {on}}}$)值分别提高到$965~mu $ A/ $mu $ m和$669~mu $ A/ $mu $ m。此外,器件的亚阈值特性没有明显变化,包括亚阈值摆幅和通/关电流比。该方案为降低${R}_{textit {SD}}$值和提高这些先进GAA器件的性能提供了一种新的有前途的方法。
{"title":"High-Performance GAA FETs With 100 Ω Parasitic Resistance and 965 μA/μm On-State Current Using Quasi-Self-Aligned Landing Pads","authors":"R. J. Jiang;P. Wang;J. X. Yao;X. X. Zhang;L. Cao;J. J. Li;G. Q. Sang;X. B. He;N. Zhou;Y. D. Zhang;C. C. Zhang;Z. H. Zhang;G. B. Bai;Y. H. Lu;L. L. Li;Q. K. Li;J. F. Gao;J. F. Li;Qingzhu Zhang;Huaxiang Yin;J. Luo;B. W. Dai","doi":"10.1109/LED.2024.3505926","DOIUrl":"https://doi.org/10.1109/LED.2024.3505926","url":null,"abstract":"To overcome the challenges posed by the high parasitic resistance and poor driving performance induced by serious epitaxy defects in gate-all-around field-effect transistors (GAA FETs), a quasi-self-aligned landing pads (QSA LPs) technique is proposed, and defect-free connections among the multilayer stacked channels and single-crystal SiGe/Si superlattice source/drain (SD) structures are demonstrated in GAA FETs. When compared with devices with widely spaced LPs, reductions of 98.8% and 96.3% in the parasitic SD resistance (\u0000<inline-formula> <tex-math>${R}_{textit {SD}}$ </tex-math></inline-formula>\u0000) are observed for N/PFETs when using the QSA LPs technique, respectively. Therefore, the corresponding on-state current (\u0000<inline-formula> <tex-math>${I}_{textit {on}}$ </tex-math></inline-formula>\u0000) values are raised to \u0000<inline-formula> <tex-math>$965~mu $ </tex-math></inline-formula>\u0000A/\u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000m and \u0000<inline-formula> <tex-math>$669~mu $ </tex-math></inline-formula>\u0000A/\u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000m for 180 nm gate length N/PFETs, respectively. In addition, no significant changes are observed in the device subthreshold characteristics, including both the subthreshold swing and the on/off current ratios. The proposed scheme offers a new and promising approach to reduce the \u0000<inline-formula> <tex-math>${R}_{textit {SD}}$ </tex-math></inline-formula>\u0000 values and enhance the performance of these advanced GAA devices.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"4-7"},"PeriodicalIF":4.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Buried Interface Bilayer Engineering Toward High Efficiency and Stable Perovskite Modules 面向高效稳定钙钛矿组件的埋藏界面双层工程
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-25 DOI: 10.1109/LED.2024.3505233
Long Zhou;Xinyuan Feng;Jiaojiao Zhang;Xinxin Li;Yuanbo Du;Dazheng Chen;Weidong Zhu;He Xi;Jincheng Zhang;Chunfu Zhang;Yue Hao
The inferior buried film crystallinity and interface recombination have severely limited the development of large-area perovskite modules. Buried interface engineering and energy alignment engineering are critical to achieving high efficiency and stable perovskite modules. Herein, we present a hole transport bilayer to improve the buried perovskite film contact and large-area perovskite film uniformity. The self-assembled monolayer (SAM) layer of Me-4PACz was introduced to modify the surface of PTAA, resulting in the improved buried film contact and better energy alignment. The hole transport bilayers exhibit hole-extraction capacity and high conductance. As a result, the blade-coated state-of-the-art cells realize an impressive efficiency of 23.52% and a high efficiency of 20.18% for inverted perovskite modules with an aperture area of 65 cm2. Moreover, the improved buried film and suppressed interface non-radiative recombination are beneficial to enhance the film and device stability. Our works provide an effective strategy to promote the manufacturing application of the large-area perovskite modules.
埋膜结晶度差和界面复合严重限制了大面积钙钛矿组件的发展。埋藏界面工程和能量排列工程是实现高效稳定钙钛矿组件的关键。在此,我们提出了一种空穴传输双层膜,以改善埋置钙钛矿膜的接触和大面积钙钛矿膜的均匀性。引入Me-4PACz的自组装单层(SAM)层对PTAA表面进行修饰,改善了埋膜接触,改善了能量排列。空穴输运双层具有吸空穴能力和高电导率。结果,最先进的叶片涂层电池实现了令人印象深刻的23.52%的效率,对于孔径面积为65 cm2的倒置钙钛矿组件,效率高达20.18%。此外,改进的埋膜和抑制的界面非辐射复合有利于提高膜和器件的稳定性。我们的工作为促进大面积钙钛矿组件的制造应用提供了有效的策略。
{"title":"Buried Interface Bilayer Engineering Toward High Efficiency and Stable Perovskite Modules","authors":"Long Zhou;Xinyuan Feng;Jiaojiao Zhang;Xinxin Li;Yuanbo Du;Dazheng Chen;Weidong Zhu;He Xi;Jincheng Zhang;Chunfu Zhang;Yue Hao","doi":"10.1109/LED.2024.3505233","DOIUrl":"https://doi.org/10.1109/LED.2024.3505233","url":null,"abstract":"The inferior buried film crystallinity and interface recombination have severely limited the development of large-area perovskite modules. Buried interface engineering and energy alignment engineering are critical to achieving high efficiency and stable perovskite modules. Herein, we present a hole transport bilayer to improve the buried perovskite film contact and large-area perovskite film uniformity. The self-assembled monolayer (SAM) layer of Me-4PACz was introduced to modify the surface of PTAA, resulting in the improved buried film contact and better energy alignment. The hole transport bilayers exhibit hole-extraction capacity and high conductance. As a result, the blade-coated state-of-the-art cells realize an impressive efficiency of 23.52% and a high efficiency of 20.18% for inverted perovskite modules with an aperture area of 65 cm2. Moreover, the improved buried film and suppressed interface non-radiative recombination are beneficial to enhance the film and device stability. Our works provide an effective strategy to promote the manufacturing application of the large-area perovskite modules.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"88-91"},"PeriodicalIF":4.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Sensitivity Amorphous Boron Nitride Vacuum Ultraviolet Photodetectors 高灵敏度非晶氮化硼真空紫外探测器
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-25 DOI: 10.1109/LED.2024.3505235
Xiaohang Liu;Tianyu Wu;Jihong Zhao;Junjie Zhu;Xi Chen;Han Yu;Yanjun Gao;Ji Zhou;Zhanguo Chen
In this work, we fabricated a high-performance amorphous boron nitride vacuum ultraviolet (VUV) photodetector based on buried-electrode metal-semiconductor-metal structure for the first time. The device has a responsivity of 95.2 mA/W and an external quantum efficiency of up to 59.1% by improving carrier collection efficiency at 200 nm under a 20 V bias. At 300 K, the device exhibits a low dark current of 82 fA and a high specific detectivity of $8.3 times 10^{mathbf {{13}}}$ Jones. The response range between 163 nm and 215 nm covers the VUV spectrum and the VUV reject ratio against 254 nm and 450 nm is $4.2 times 10^{mathbf {{4}}}$ and $7.2 times 10^{mathbf {{7}}}$ , respectively. Even at 500 K, the device exhibits a dark current of only 1.2 pA and high responsivity, demonstrating excellent long-term stability and reliability. Furthermore, an ${8} times {8}$ -pixel array composed of the photodetectors achieved stable and rapid (< 1 ms) VUV imaging. These findings demonstrate the outstanding performance of the photodetector and the potential applications of combining buried electrode structures with other ultra-wide bandgap semiconductors.
本文首次制备了一种基于埋极金属-半导体-金属结构的高性能非晶态氮化硼真空紫外探测器。该器件响应率为95.2 mA/W,外部量子效率高达59.1%,在20v偏压下提高了200nm的载流子收集效率。在300 K时,该器件显示出82 fA的低暗电流和8.3 × 10^{mathbf {{13}}}$ Jones的高比探测率。163 nm至215 nm的响应范围覆盖了VUV光谱,254 nm和450 nm的VUV抑制比分别为4.2 乘以10^{mathbf{{4}}}$和7.2 乘以10^{mathbf{{7}}}$。即使在500k时,该器件也显示出仅1.2 pA的暗电流和高响应性,表现出出色的长期稳定性和可靠性。此外,由光电探测器组成的${8}$像素阵列实现了稳定和快速(< 1 ms)的VUV成像。这些发现证明了光电探测器的卓越性能以及将埋藏电极结构与其他超宽带隙半导体相结合的潜在应用。
{"title":"High-Sensitivity Amorphous Boron Nitride Vacuum Ultraviolet Photodetectors","authors":"Xiaohang Liu;Tianyu Wu;Jihong Zhao;Junjie Zhu;Xi Chen;Han Yu;Yanjun Gao;Ji Zhou;Zhanguo Chen","doi":"10.1109/LED.2024.3505235","DOIUrl":"https://doi.org/10.1109/LED.2024.3505235","url":null,"abstract":"In this work, we fabricated a high-performance amorphous boron nitride vacuum ultraviolet (VUV) photodetector based on buried-electrode metal-semiconductor-metal structure for the first time. The device has a responsivity of 95.2 mA/W and an external quantum efficiency of up to 59.1% by improving carrier collection efficiency at 200 nm under a 20 V bias. At 300 K, the device exhibits a low dark current of 82 fA and a high specific detectivity of \u0000<inline-formula> <tex-math>$8.3 times 10^{mathbf {{13}}}$ </tex-math></inline-formula>\u0000 Jones. The response range between 163 nm and 215 nm covers the VUV spectrum and the VUV reject ratio against 254 nm and 450 nm is \u0000<inline-formula> <tex-math>$4.2 times 10^{mathbf {{4}}}$ </tex-math></inline-formula>\u0000 and \u0000<inline-formula> <tex-math>$7.2 times 10^{mathbf {{7}}}$ </tex-math></inline-formula>\u0000, respectively. Even at 500 K, the device exhibits a dark current of only 1.2 pA and high responsivity, demonstrating excellent long-term stability and reliability. Furthermore, an \u0000<inline-formula> <tex-math>${8} times {8}$ </tex-math></inline-formula>\u0000-pixel array composed of the photodetectors achieved stable and rapid (< 1 ms) VUV imaging. These findings demonstrate the outstanding performance of the photodetector and the potential applications of combining buried electrode structures with other ultra-wide bandgap semiconductors.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"76-79"},"PeriodicalIF":4.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Measurement of a Zero-Index Metasurface for Microwave Power Transmission Applications 微波功率传输用零折射率超表面的设计与测量
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-25 DOI: 10.1109/LED.2024.3505203
Huaiqing Zhang;Zhenteng Fan;Jingjing Yang;Jinpeng He;Hui Xiao
In practical microwave power transmission (MPT) applications, the oblique incident angle always influences the captured power of the moving receiver. To mitigate this issue, a near-zero index metasurface (ZIM) is designed and investigated, the results prove that it can correct the wave vector direction for a wide range of the incident angle, and guarantee all outgoing waves propagate at the same angle (perpendicular to the receiver). Therefore, the harvested power at the receiving terminal can be enhanced in the MPT system. A system-level result indicates that, after loading a designed ZIM in the MPT system, the reception efficiency (RE) increased from 51.6% (without ZIM) to 63.8% at a working frequency of 5.8 GHz. In addition, although the received power inevitably decreases when the incidence angle increases, the fabricated ZIM retains a higher RE of the system than that without it.
在实际的微波功率传输应用中,斜入射角会影响移动接收机的捕获功率。为了解决这个问题,设计并研究了一种近零折射率超表面(ZIM),结果证明它可以在大范围的入射角范围内校正波矢量方向,并保证所有出射波以相同的角度(垂直于接收器)传播。因此,在MPT系统中,可以提高接收端的收获功率。系统级结果表明,在MPT系统中加载设计的ZIM后,在5.8 GHz工作频率下,接收效率(RE)从未加载ZIM时的51.6%提高到63.8%。此外,虽然随着入射角的增加,接收功率不可避免地会降低,但制造的ZIM保持了比没有它的系统更高的RE。
{"title":"Design and Measurement of a Zero-Index Metasurface for Microwave Power Transmission Applications","authors":"Huaiqing Zhang;Zhenteng Fan;Jingjing Yang;Jinpeng He;Hui Xiao","doi":"10.1109/LED.2024.3505203","DOIUrl":"https://doi.org/10.1109/LED.2024.3505203","url":null,"abstract":"In practical microwave power transmission (MPT) applications, the oblique incident angle always influences the captured power of the moving receiver. To mitigate this issue, a near-zero index metasurface (ZIM) is designed and investigated, the results prove that it can correct the wave vector direction for a wide range of the incident angle, and guarantee all outgoing waves propagate at the same angle (perpendicular to the receiver). Therefore, the harvested power at the receiving terminal can be enhanced in the MPT system. A system-level result indicates that, after loading a designed ZIM in the MPT system, the reception efficiency (RE) increased from 51.6% (without ZIM) to 63.8% at a working frequency of 5.8 GHz. In addition, although the received power inevitably decreases when the incidence angle increases, the fabricated ZIM retains a higher RE of the system than that without it.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"119-122"},"PeriodicalIF":4.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Electron Device Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1