Thin-film surface acoustic wave (TF-SAW) devices are important for wireless communication systems in the new age. Nevertheless, there are still some technical challenges including transverse mode suppression. To find out a practical solution for the challenge, this work theoretically and experimentally investigates transverse mode generation in TF-SAW devices based on LiTaO3/sapphire in which only mature and commercial materials are adopted. The devices with various Al thicknesses and wavelengths are simulated, and slowness curves, admittance curve and displacement distributions are all analyzed. A large range of wavelength from $1.6~mu $