首页 > 最新文献

IEEE Journal of Quantum Electronics最新文献

英文 中文
High Precision and Fast Distributed Temperature Data Demodulation Algorithm of Optical Frequency Domain Reflectometer Based on LSTM-CNN 基于 LSTM-CNN 的高精度、快速分布式光学频域反射仪温度数据解调算法
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-02 DOI: 10.1109/JQE.2024.3471988
Lei Huang;Min Liu;Yingqi Cui;Zhaohao Zhu;Ping Shum
A demodulation algorithm based on the LSTM-CNN is proposed to simultaneously achieve the demodulation of temperature data from distributed optical frequency domain reflectometry (OFDR). As for the local measurement range along the distributed fiber, the LSTM-CNN can achieve an average mean absolutely error (MAE) of only 0.0393 and the average demodulation time is only 0.1507 seconds. The comparison with the cross-correlation algorithm, Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN) demonstrates that the MAE is reduced by 85.98%, 77.23%, 88.25%, 80.95%, and 91.82%, and the average time is faster 38.19 times, 8.71 times, 3.28 times, 1.37 times, and 2.45 times, respectively. As for the full measurement range of the distributed fiber, the temperature distribution curve demodulated by LSTM-CNN is found to be consistent with the actual temperature distribution curve and the average demodulation time is 0.371 seconds, providing a new method for the temperature data demodulation in the distributed OFDR sensing system.
本文提出了一种基于 LSTM-CNN 的解调算法,可同时实现分布式光频域反射仪(OFDR)温度数据的解调。对于分布式光纤的局部测量范围,LSTM-CNN 的平均绝对误差(MAE)仅为 0.0393,平均解调时间仅为 0.1507 秒。与交叉相关算法、多层感知器(MLP)、极限学习机(ELM)、长短期记忆(LSTM)和卷积神经网络(CNN)相比,MAE 分别降低了 85.98%、77.23%、88.25%、80.95% 和 91.82%,平均时间分别缩短了 38.19 倍、8.71 倍、3.28 倍、1.37 倍和 2.45 倍。对于分布式光纤的全测量范围,LSTM-CNN解调出的温度分布曲线与实际温度分布曲线一致,平均解调时间为0.371秒,为分布式OFDR传感系统的温度数据解调提供了一种新方法。
{"title":"High Precision and Fast Distributed Temperature Data Demodulation Algorithm of Optical Frequency Domain Reflectometer Based on LSTM-CNN","authors":"Lei Huang;Min Liu;Yingqi Cui;Zhaohao Zhu;Ping Shum","doi":"10.1109/JQE.2024.3471988","DOIUrl":"https://doi.org/10.1109/JQE.2024.3471988","url":null,"abstract":"A demodulation algorithm based on the LSTM-CNN is proposed to simultaneously achieve the demodulation of temperature data from distributed optical frequency domain reflectometry (OFDR). As for the local measurement range along the distributed fiber, the LSTM-CNN can achieve an average mean absolutely error (MAE) of only 0.0393 and the average demodulation time is only 0.1507 seconds. The comparison with the cross-correlation algorithm, Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN) demonstrates that the MAE is reduced by 85.98%, 77.23%, 88.25%, 80.95%, and 91.82%, and the average time is faster 38.19 times, 8.71 times, 3.28 times, 1.37 times, and 2.45 times, respectively. As for the full measurement range of the distributed fiber, the temperature distribution curve demodulated by LSTM-CNN is found to be consistent with the actual temperature distribution curve and the average demodulation time is 0.371 seconds, providing a new method for the temperature data demodulation in the distributed OFDR sensing system.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-9"},"PeriodicalIF":2.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudo-Random Generator Based on a Photonic Neuromorphic Physical Unclonable Function 基于光子神经形态物理不可克隆函数的伪随机发生器
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-01 DOI: 10.1109/JQE.2024.3471951
Dimitris Dermanis;Panagiotis Rizomiliotis;Adonis Bogris;Charis Mesaritakis
In this work we provide numerical results concerning a silicon-on-insulator photonic neuromorphic circuit configured as a physical unclonable function. The proposed scheme is enhanced with the capability to be operated as an unconventional deterministic pseudo-random number generator, suitable for cryptographic applications that alleviates the need for key storage in non-volatile digital media. The proposed photonic neuromorphic scheme is able to offer NIST test compatible numbers with an extremely low false positive/negative probability below 10-14. The proposed scheme offers multi-functional capabilities due to the fact that it can be simultaneously used as an integrated photonic accelerator for machine-learning applications and as a hardware root of trust.
在这项工作中,我们提供了有关配置为物理不可克隆函数的硅衬底光子神经形态电路的数值结果。所提出的方案增强了作为非常规确定性伪随机数发生器运行的能力,适用于密码应用,减轻了在非易失性数字媒体中存储密钥的需要。所提出的光子神经形态方案能够提供与 NIST 测试兼容的数字,其假正/假负概率极低,低于 10-14。所提出的方案可同时用作机器学习应用的集成光子加速器和硬件信任根,因此具有多功能能力。
{"title":"Pseudo-Random Generator Based on a Photonic Neuromorphic Physical Unclonable Function","authors":"Dimitris Dermanis;Panagiotis Rizomiliotis;Adonis Bogris;Charis Mesaritakis","doi":"10.1109/JQE.2024.3471951","DOIUrl":"https://doi.org/10.1109/JQE.2024.3471951","url":null,"abstract":"In this work we provide numerical results concerning a silicon-on-insulator photonic neuromorphic circuit configured as a physical unclonable function. The proposed scheme is enhanced with the capability to be operated as an unconventional deterministic pseudo-random number generator, suitable for cryptographic applications that alleviates the need for key storage in non-volatile digital media. The proposed photonic neuromorphic scheme is able to offer NIST test compatible numbers with an extremely low false positive/negative probability below 10-14. The proposed scheme offers multi-functional capabilities due to the fact that it can be simultaneously used as an integrated photonic accelerator for machine-learning applications and as a hardware root of trust.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-8"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics information for authors IEEE 期刊《量子电子学》为作者提供的信息
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-27 DOI: 10.1109/JQE.2024.3463153
{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3463153","DOIUrl":"https://doi.org/10.1109/JQE.2024.3463153","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"C3-C3"},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697331","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics publication information IEEE 量子电子学报》出版信息
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-27 DOI: 10.1109/JQE.2024.3463157
{"title":"IEEE Journal of Quantum Electronics publication information","authors":"","doi":"10.1109/JQE.2024.3463157","DOIUrl":"https://doi.org/10.1109/JQE.2024.3463157","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"C2-C2"},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697354","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-27 DOI: 10.1109/JQE.2024.3463151
{"title":"Blank Page","authors":"","doi":"10.1109/JQE.2024.3463151","DOIUrl":"https://doi.org/10.1109/JQE.2024.3463151","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"C4-C4"},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697293","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TechRxiv: Share Your Preprint Research with the World! TechRxiv:与世界分享您的预印本研究成果!
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-27 DOI: 10.1109/JQE.2024.3465253
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/JQE.2024.3465253","DOIUrl":"https://doi.org/10.1109/JQE.2024.3465253","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"1-1"},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697332","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Burst-Mode Nd: YAG/Cr⁴⁺:YAG Laser With Tunable Pulse Chain Sequence and Intervals 具有可调脉冲链序列和间隔的脉冲串模式 Nd:YAG/Cr⁴⁺:YAG 激光器
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-26 DOI: 10.1109/JQE.2024.3468999
Nihui Zhang;Di Xin;Zhenjiao Shan;Fengxin Dong;Xuyan Zhou;Hongbo Zhang;Wanhua Zheng
We employed 808 nm and 885 nm pumping sources for time-shared pumping of the compact Nd:YAG/Cr4+:YAG passively Q-switched laser by incorporating time and sequence modulation functions into the electrical modulation signals. Through adjusting the pumping peak powers and pulse widths of the two pump sources, various burst-mode lasers were realized. The repetition frequency and time intervals between pulse chain sequences, as well as the intervals between sub-pulses within a sequence, could be adjustable, addressing the challenge of precise timing control in burst-mode lasers. The time-shared pumping Q-switched laser displayed significantly better controllable pulse characteristic compared to the conventional single-pulse output mode of burst-mode lasers. In conclusion, this work has effectively expanded the application scope of burst-mode lasers, representing a novel contribution to the field.
通过在电调制信号中加入时间和序列调制功能,我们采用 808 nm 和 885 nm 泵浦源对紧凑型 Nd:YAG/Cr4+:YAG 被动 Q 开关激光器进行分时泵浦。通过调整两个泵浦源的泵浦峰值功率和脉冲宽度,实现了各种猝发模式激光器。脉冲链序列之间的重复频率和时间间隔,以及序列内子脉冲之间的时间间隔均可调整,从而解决了猝发模式激光器中精确定时控制的难题。与猝发模式激光器的传统单脉冲输出模式相比,分时抽运 Q 开关激光器显示出明显更好的可控脉冲特性。总之,这项工作有效地拓展了猝发模式激光器的应用范围,为该领域做出了新的贡献。
{"title":"Burst-Mode Nd: YAG/Cr⁴⁺:YAG Laser With Tunable Pulse Chain Sequence and Intervals","authors":"Nihui Zhang;Di Xin;Zhenjiao Shan;Fengxin Dong;Xuyan Zhou;Hongbo Zhang;Wanhua Zheng","doi":"10.1109/JQE.2024.3468999","DOIUrl":"https://doi.org/10.1109/JQE.2024.3468999","url":null,"abstract":"We employed 808 nm and 885 nm pumping sources for time-shared pumping of the compact Nd:YAG/Cr4+:YAG passively Q-switched laser by incorporating time and sequence modulation functions into the electrical modulation signals. Through adjusting the pumping peak powers and pulse widths of the two pump sources, various burst-mode lasers were realized. The repetition frequency and time intervals between pulse chain sequences, as well as the intervals between sub-pulses within a sequence, could be adjustable, addressing the challenge of precise timing control in burst-mode lasers. The time-shared pumping Q-switched laser displayed significantly better controllable pulse characteristic compared to the conventional single-pulse output mode of burst-mode lasers. In conclusion, this work has effectively expanded the application scope of burst-mode lasers, representing a novel contribution to the field.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-7"},"PeriodicalIF":2.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Analysis of Relative Intensity Noise of Distributed-Feedback Fiber Lasers Considering Spatial Mode Profile 考虑空间模式轮廓的分布式反馈光纤激光器相对强度噪声数值分析
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-26 DOI: 10.1109/JQE.2024.3468998
Xuanchen Guo;Yinyang Pei;Jianzhong Zhang
The spatial mode profile of distributed feedback (DFB) lasers is a unique characteristic that distinguishes them from lasers based on F-P cavities. It is utilized to achieve single-mode operation and improve relative intensity noise (RIN) performance. The effective cavity length method, as an approximate method for spatial mode profiling, is conveniently used for theoretical analysis. In this paper, the RIN of DFB fiber lasers was analyzed by considering their spatial mode profile without any approximations, and the results were compared with experimental findings. Additionally, numerical simulations of DFB fiber lasers with different structures were conducted to analyze their noise characteristics and the impact of spatial mode profile on the RIN of the lasers was discussed. The spatial mode profile was solved using the shooting method, with boundary conditions provided based on the erbium ion gain model. The spatial mode profile was then substituted into the RIN expression, yielding the RIN of DFB lasers influenced by spatial mode profile. This physical model is widely applicable and can be used to effectively analyze the dynamic characteristics of most DFB fiber laser structures.
分布式反馈(DFB)激光器的空间模式轮廓是其区别于基于 F-P 腔的激光器的独特特征。利用它可以实现单模运行并改善相对强度噪声(RIN)性能。有效腔长方法作为空间模式剖析的近似方法,可方便地用于理论分析。本文通过不考虑任何近似值的空间模式剖面分析了 DFB 光纤激光器的 RIN,并将结果与实验结果进行了比较。此外,还对不同结构的 DFB 光纤激光器进行了数值模拟,以分析其噪声特性,并讨论了空间模式剖面对激光器 RIN 的影响。空间模式轮廓采用射击法求解,并根据铒离子增益模型提供了边界条件。然后将空间模式剖面代入 RIN 表达式,得出受空间模式剖面影响的 DFB 激光器 RIN。该物理模型具有广泛的适用性,可用于有效分析大多数 DFB 光纤激光器结构的动态特性。
{"title":"Numerical Analysis of Relative Intensity Noise of Distributed-Feedback Fiber Lasers Considering Spatial Mode Profile","authors":"Xuanchen Guo;Yinyang Pei;Jianzhong Zhang","doi":"10.1109/JQE.2024.3468998","DOIUrl":"https://doi.org/10.1109/JQE.2024.3468998","url":null,"abstract":"The spatial mode profile of distributed feedback (DFB) lasers is a unique characteristic that distinguishes them from lasers based on F-P cavities. It is utilized to achieve single-mode operation and improve relative intensity noise (RIN) performance. The effective cavity length method, as an approximate method for spatial mode profiling, is conveniently used for theoretical analysis. In this paper, the RIN of DFB fiber lasers was analyzed by considering their spatial mode profile without any approximations, and the results were compared with experimental findings. Additionally, numerical simulations of DFB fiber lasers with different structures were conducted to analyze their noise characteristics and the impact of spatial mode profile on the RIN of the lasers was discussed. The spatial mode profile was solved using the shooting method, with boundary conditions provided based on the erbium ion gain model. The spatial mode profile was then substituted into the RIN expression, yielding the RIN of DFB lasers influenced by spatial mode profile. This physical model is widely applicable and can be used to effectively analyze the dynamic characteristics of most DFB fiber laser structures.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-10"},"PeriodicalIF":2.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser Cavity Analysis Method Considering Dynamic Change of Thermal Lens Effect 考虑热透镜效应动态变化的激光腔分析方法
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-26 DOI: 10.1109/JQE.2024.3468994
Yuko Kono;Shigeyuki Takagi
We have developed an experimental method for estimating the thermal lens effect of a Nd:YAG rod during laser oscillation in a high-power pulsed laser. By combining a stability analysis by cavity simulation with the change in the focal length of the rod and the beam quality according to the input, we were able to correct the reduction of the thermal effect on the rod due to laser oscillation. The proposed method makes it possible to design a resonator that appropriately considers the stability of the resonator that changes in accordance with the input power.
我们开发了一种实验方法,用于估算高功率脉冲激光器中 Nd:YAG 棒在激光振荡过程中的热透镜效应。通过将空腔模拟稳定性分析与棒焦距和光束质量随输入的变化相结合,我们能够纠正激光振荡导致的棒热效应降低。所提出的方法使设计谐振器时适当考虑谐振器随输入功率变化而变化的稳定性成为可能。
{"title":"Laser Cavity Analysis Method Considering Dynamic Change of Thermal Lens Effect","authors":"Yuko Kono;Shigeyuki Takagi","doi":"10.1109/JQE.2024.3468994","DOIUrl":"https://doi.org/10.1109/JQE.2024.3468994","url":null,"abstract":"We have developed an experimental method for estimating the thermal lens effect of a Nd:YAG rod during laser oscillation in a high-power pulsed laser. By combining a stability analysis by cavity simulation with the change in the focal length of the rod and the beam quality according to the input, we were able to correct the reduction of the thermal effect on the rod due to laser oscillation. The proposed method makes it possible to design a resonator that appropriately considers the stability of the resonator that changes in accordance with the input power.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-7"},"PeriodicalIF":2.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-Compact, Fully Packaged Broadband Thin-Film Lithium Niobate Modulator for Microwave Photonics 用于微波光子学的超小型全封装宽带铌酸锂薄膜调制器
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-18 DOI: 10.1109/JQE.2024.3462950
Jinye Li;Dechen Li;Peng Wang;Jinming Tao;Run Li;Qianqian Jia;Jianguo Liu
Broadband, compact electro-optic modulator is one of the key components in optical communication networks and microwave photonic systems. Here, this paper reports a thin-film lithium niobate electro-optic modulator with a 3 dB electro-optic bandwidth greater than 50 GHz after encapsulation, and discusses the electro-optic response and thermo-optic phase-shifting performance of the device. The modulator chip has a 3 dB electro-optic bandwidth greater than 67 GHz, and the fully encapsulated device has a small size (31 mm $times 10$ mm $times 5.3$ mm) while having a high electro-optic bandwidth of up to 51 GHz and an excellent half-wave voltage length product as low as 2.5 V $cdot$ cm. The DC bias is thermally shifted with a 2.3V half-wave voltage for reliable and stable bias characteristics.
宽带、紧凑型电光调制器是光通信网络和微波光子系统的关键部件之一。本文报告了一种薄膜铌酸锂电光调制器,其封装后的 3 dB 电光带宽大于 50 GHz,并讨论了该器件的电光响应和热光移相性能。该调制器芯片的3 dB电光带宽大于67 GHz,完全封装后的器件体积小(31 mm×10 mm×5.3 mm),电光带宽高达51 GHz,半波电压长度积低至2.5 V cm。直流偏压采用 2.3V 半波电压热偏移,具有可靠稳定的偏压特性。
{"title":"Ultra-Compact, Fully Packaged Broadband Thin-Film Lithium Niobate Modulator for Microwave Photonics","authors":"Jinye Li;Dechen Li;Peng Wang;Jinming Tao;Run Li;Qianqian Jia;Jianguo Liu","doi":"10.1109/JQE.2024.3462950","DOIUrl":"10.1109/JQE.2024.3462950","url":null,"abstract":"Broadband, compact electro-optic modulator is one of the key components in optical communication networks and microwave photonic systems. Here, this paper reports a thin-film lithium niobate electro-optic modulator with a 3 dB electro-optic bandwidth greater than 50 GHz after encapsulation, and discusses the electro-optic response and thermo-optic phase-shifting performance of the device. The modulator chip has a 3 dB electro-optic bandwidth greater than 67 GHz, and the fully encapsulated device has a small size (31 mm \u0000<inline-formula> <tex-math>$times 10$ </tex-math></inline-formula>\u0000 mm \u0000<inline-formula> <tex-math>$times 5.3$ </tex-math></inline-formula>\u0000 mm) while having a high electro-optic bandwidth of up to 51 GHz and an excellent half-wave voltage length product as low as 2.5 V\u0000<inline-formula> <tex-math>$cdot$ </tex-math></inline-formula>\u0000 cm. The DC bias is thermally shifted with a 2.3V half-wave voltage for reliable and stable bias characteristics.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-9"},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Quantum Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1