首页 > 最新文献

IEEE Journal of Quantum Electronics最新文献

英文 中文
A Verilog-A Laser Model for Use in Electro-Optical Simulations 用于电光模拟的Verilog-A激光模型
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-15 DOI: 10.1109/JQE.2025.3644246
Jaden Ingleton;Omid Esmaeeli;Sudip Shekhar
Electro-optical simulation of integrated photonics and electronics can be carried out today in most electronic design automation (EDA) software. However, lasers are still modeled simply as a continuous wave ideal light source, preventing the measure of the impact of its non-idealities in various optical systems. In this work, we construct an equivalent circuit model of the laser rate equations, including phase and accounting for the correlated noise sources, and implement the model in Verilog-A. Internal laser parameters are extracted from measurement data of a Distributed Feedback (DFB) laser, and we find good agreement between the measurements and simulations of the model. Furthermore, we demonstrate our model by simulating a quadrature phase-shift-keying (QPSK) circuit. Our laser model enables simulations of simple electro-optic circuits that capture the dynamics and noise characteristics of semiconductor lasers.
集成光子学和电子学的光电仿真可以在今天大多数电子设计自动化(EDA)软件中进行。然而,激光仍然被简单地建模为连续波理想光源,阻止了在各种光学系统中测量其非理想性的影响。在这项工作中,我们构建了激光速率方程的等效电路模型,包括相位和考虑相关噪声源,并在Verilog-A中实现了该模型。从分布式反馈(DFB)激光器的测量数据中提取了激光器内部参数,结果与模型仿真结果吻合较好。此外,我们通过模拟正交相移键控(QPSK)电路来验证我们的模型。我们的激光模型可以模拟简单的电光电路,捕捉半导体激光器的动态和噪声特性。
{"title":"A Verilog-A Laser Model for Use in Electro-Optical Simulations","authors":"Jaden Ingleton;Omid Esmaeeli;Sudip Shekhar","doi":"10.1109/JQE.2025.3644246","DOIUrl":"https://doi.org/10.1109/JQE.2025.3644246","url":null,"abstract":"Electro-optical simulation of integrated photonics and electronics can be carried out today in most electronic design automation (EDA) software. However, lasers are still modeled simply as a continuous wave ideal light source, preventing the measure of the impact of its non-idealities in various optical systems. In this work, we construct an equivalent circuit model of the laser rate equations, including phase and accounting for the correlated noise sources, and implement the model in Verilog-A. Internal laser parameters are extracted from measurement data of a Distributed Feedback (DFB) laser, and we find good agreement between the measurements and simulations of the model. Furthermore, we demonstrate our model by simulating a quadrature phase-shift-keying (QPSK) circuit. Our laser model enables simulations of simple electro-optic circuits that capture the dynamics and noise characteristics of semiconductor lasers.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"62 1","pages":"1-12"},"PeriodicalIF":2.1,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145957871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended Short-Wavelength Infrared AlInAsSb nBn Photodetectors 扩展短波长红外AlInAsSb nBn光电探测器
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-11 DOI: 10.1109/JQE.2025.3636522
Kubra Circir;Ellie Y. Wang;J. Andrew McArthur;Daniel Herrera;Seth R. Bank;Joe C. Campbell
Al0.3InAsSb/Al0.7InAsSb digital alloy nBn extended short-wavelength infrared photodetectors are reported. These devices exhibit a room-temperature cut-off wavelength of $sim $ 2.3 $mu $ m. Variable area diode analysis reveals that the bulk current density dominates for device diameters exceeding $64~mu $ m. At 300 K under −0.35 V bias, the dark current density is 1.75 mA/cm2, reducing to 4.9 nA/cm2 at 160 K under −0.25 V. The devices have a saturated room-temperature quantum efficiency of ~36% at $2~mu $ m without an anti-reflective coating, corresponding to a 33% improvement over an earlier design. The RA product is $408~Omega $ cm2 at −0.35 V bias, resulting in a shot-noise limited specific detectivity of $2.28times 10 ^{mathrm {10}}mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ and $1.1times 10 ^{12} mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ at 300 K and 160 K, respectively.
报道了Al0.3InAsSb/Al0.7InAsSb数字合金nBn扩展短波红外探测器。这些器件的室温截止波长为$sim $ 2.3 $mu $ m。变面积二极管分析表明,当器件直径超过$64~mu $ m时,体电流密度占主导地位。在−0.35 V偏置下300 K时,暗电流密度为1.75 mA/cm2,在−0.25 V偏置下160 K时,暗电流密度降至4.9 nA/cm2。该器件的饱和室温量子效率为36% at $2~mu $ m without an anti-reflective coating, corresponding to a 33% improvement over an earlier design. The RA product is $408~Omega $ cm2 at −0.35 V bias, resulting in a shot-noise limited specific detectivity of $2.28times 10 ^{mathrm {10}}mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ and $1.1times 10 ^{12} mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ at 300 K and 160 K, respectively.
{"title":"Extended Short-Wavelength Infrared AlInAsSb nBn Photodetectors","authors":"Kubra Circir;Ellie Y. Wang;J. Andrew McArthur;Daniel Herrera;Seth R. Bank;Joe C. Campbell","doi":"10.1109/JQE.2025.3636522","DOIUrl":"https://doi.org/10.1109/JQE.2025.3636522","url":null,"abstract":"Al0.3InAsSb/Al0.7InAsSb digital alloy nBn extended short-wavelength infrared photodetectors are reported. These devices exhibit a room-temperature cut-off wavelength of <inline-formula> <tex-math>$sim $ </tex-math></inline-formula>2.3 <inline-formula> <tex-math>$mu $ </tex-math></inline-formula>m. Variable area diode analysis reveals that the bulk current density dominates for device diameters exceeding <inline-formula> <tex-math>$64~mu $ </tex-math></inline-formula>m. At 300 K under −0.35 V bias, the dark current density is 1.75 mA/cm2, reducing to 4.9 nA/cm2 at 160 K under −0.25 V. The devices have a saturated room-temperature quantum efficiency of ~36% at <inline-formula> <tex-math>$2~mu $ </tex-math></inline-formula>m without an anti-reflective coating, corresponding to a 33% improvement over an earlier design. The RA product is <inline-formula> <tex-math>$408~Omega $ </tex-math></inline-formula>cm2 at −0.35 V bias, resulting in a shot-noise limited specific detectivity of <inline-formula> <tex-math>$2.28times 10 ^{mathrm {10}}mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$1.1times 10 ^{12} mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ </tex-math></inline-formula>at 300 K and 160 K, respectively.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"62 1","pages":"1-7"},"PeriodicalIF":2.1,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145957868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulse Compression in Ho:ZBLAN Photonic Crystal Fiber Using a NOLM Configuration for Ultrashort Mid-IR Generation 利用NOLM结构在Ho:ZBLAN光子晶体光纤中进行超短中红外脉冲压缩
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-28 DOI: 10.1109/JQE.2025.3638679
G. Sornambigai;A. Esther Lidiya;R. Vasantha Jayakantha Raja
We propose and design a holmium-doped ZBLAN (Ho:ZBLAN) tapered photonic crystal fiber (TPCF) for generating ultrashort mid-infrared (mid-IR) pulses at $2.86~mu $ m, utilizing a nonlinear optical loop mirror configuration (NOLM). The dispersion and nonlinear properties of the TPCF are engineered using a self-similar tapering technique, which gradually varies the core diameter and pitch along the fiber length. Initially, an undoped ZBLAN TPCF is investigated with this approach to enable the generation of low-pedestal, few-cycle ultrashort pulses at $2.86~mu $ m. The study then extends to analyze the propagation dynamics of higher-order solitons in the Ho:ZBLAN TPCF under various low input powers, ensuring operation below the fiber’s damage threshold. This analysis captures both the self-switching behavior of the NOLM and the self-similar pulse evolution within the fiber across different power levels. By optimizing the input pump power and fiber length, we demonstrate that a 5 ps pulse at $2.8~mu $ m can be compressed to 187 fs after propagating through 4.3 m of fiber, achieving a maximum compression factor of 26.7, a quality factor of 1.12, and a minimal pedestal energy of 0.63%.
我们提出并设计了一种掺钬ZBLAN (Ho:ZBLAN)锥形光子晶体光纤(TPCF),利用非线性光环镜结构(NOLM)产生2.86~mu $ m的超短中红外(middle - ir)脉冲。TPCF的色散和非线性特性采用自相似变细技术,该技术沿光纤长度逐渐改变芯径和节距。首先,利用该方法研究了未掺杂的ZBLAN TPCF,使其能够在$2.86~mu $ m的范围内产生低基次、少周期的超短脉冲。然后,研究扩展到分析了在各种低输入功率下高阶孤子在Ho:ZBLAN TPCF中的传播动力学,以确保其在光纤损伤阈值以下运行。该分析捕获了nnolm的自开关行为和光纤内不同功率电平的自相似脉冲演化。通过优化输入泵浦功率和光纤长度,我们证明了$2.8~mu $ m的5 ps脉冲在通过4.3 m的光纤传播后可以被压缩到187fs,实现了最大压缩因子26.7,质量因子1.12,最小基座能量0.63%。
{"title":"Pulse Compression in Ho:ZBLAN Photonic Crystal Fiber Using a NOLM Configuration for Ultrashort Mid-IR Generation","authors":"G. Sornambigai;A. Esther Lidiya;R. Vasantha Jayakantha Raja","doi":"10.1109/JQE.2025.3638679","DOIUrl":"https://doi.org/10.1109/JQE.2025.3638679","url":null,"abstract":"We propose and design a holmium-doped ZBLAN (Ho:ZBLAN) tapered photonic crystal fiber (TPCF) for generating ultrashort mid-infrared (mid-IR) pulses at <inline-formula> <tex-math>$2.86~mu $ </tex-math></inline-formula>m, utilizing a nonlinear optical loop mirror configuration (NOLM). The dispersion and nonlinear properties of the TPCF are engineered using a self-similar tapering technique, which gradually varies the core diameter and pitch along the fiber length. Initially, an undoped ZBLAN TPCF is investigated with this approach to enable the generation of low-pedestal, few-cycle ultrashort pulses at <inline-formula> <tex-math>$2.86~mu $ </tex-math></inline-formula>m. The study then extends to analyze the propagation dynamics of higher-order solitons in the Ho:ZBLAN TPCF under various low input powers, ensuring operation below the fiber’s damage threshold. This analysis captures both the self-switching behavior of the NOLM and the self-similar pulse evolution within the fiber across different power levels. By optimizing the input pump power and fiber length, we demonstrate that a 5 ps pulse at <inline-formula> <tex-math>$2.8~mu $ </tex-math></inline-formula>m can be compressed to 187 fs after propagating through 4.3 m of fiber, achieving a maximum compression factor of 26.7, a quality factor of 1.12, and a minimal pedestal energy of 0.63%.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"62 1","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145957873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vector Vortex Beam Emission Using Higher Order Transverse Modes in a Buried Heterostructure Laser 埋置异质结构激光器高阶横模矢量涡束发射
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-07 DOI: 10.1109/JQE.2025.3630564
Soumi Pal;Arpit Khandelwal;Nitin Bhatia
The 2D buried heterostructure (BH) laser with a symmetric transverse refractive index profile can generate radial and azimuthal polarized vector vortex beam (VVB) by exploiting the orthogonally polarized higher order transverse modes in pairs. We investigate the optimal structure and operating conditions for the stable generation of dual polarized modes under practical operating conditions, including gain saturation, spontaneous emission, carrier diffusion, and polarization sensitivity. As the corresponding BH laser supports higher order transverse modes, the dimensions of the active layers become larger than the diffusion length of the semiconductor. Thus, for the first time, we introduce the 2D diffusion model into the laser rate equation for higher order transverse modes. We show that the dynamic nature of the laser, due to nonlinear gain saturation and mode polarization, is suppressed by diffusion, resulting in more stable output under various operating conditions.
具有对称横向折射率剖面的二维埋置异质结构(BH)激光器利用正交极化高阶横向模对产生径向和方位偏振矢量涡旋光束(VVB)。我们研究了在实际工作条件下稳定产生双极化模式的最佳结构和工作条件,包括增益饱和、自发发射、载流子扩散和极化灵敏度。由于相应的BH激光器支持高阶横向模式,因此有源层的尺寸大于半导体的扩散长度。因此,我们首次将二维扩散模型引入到高阶横模的激光速率方程中。我们表明,由于非线性增益饱和和模式极化,激光的动态特性被扩散抑制,从而在各种工作条件下产生更稳定的输出。
{"title":"Vector Vortex Beam Emission Using Higher Order Transverse Modes in a Buried Heterostructure Laser","authors":"Soumi Pal;Arpit Khandelwal;Nitin Bhatia","doi":"10.1109/JQE.2025.3630564","DOIUrl":"https://doi.org/10.1109/JQE.2025.3630564","url":null,"abstract":"The 2D buried heterostructure (BH) laser with a symmetric transverse refractive index profile can generate radial and azimuthal polarized vector vortex beam (VVB) by exploiting the orthogonally polarized higher order transverse modes in pairs. We investigate the optimal structure and operating conditions for the stable generation of dual polarized modes under practical operating conditions, including gain saturation, spontaneous emission, carrier diffusion, and polarization sensitivity. As the corresponding BH laser supports higher order transverse modes, the dimensions of the active layers become larger than the diffusion length of the semiconductor. Thus, for the first time, we introduce the 2D diffusion model into the laser rate equation for higher order transverse modes. We show that the dynamic nature of the laser, due to nonlinear gain saturation and mode polarization, is suppressed by diffusion, resulting in more stable output under various operating conditions.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 6","pages":"1-11"},"PeriodicalIF":2.1,"publicationDate":"2025-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145560775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial JQE 60th Anniversary: The 2000’s JQE 60周年纪念:2000年代
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-04 DOI: 10.1109/JQE.2025.3609153
Alan E. Willner
{"title":"Guest Editorial JQE 60th Anniversary: The 2000’s","authors":"Alan E. Willner","doi":"10.1109/JQE.2025.3609153","DOIUrl":"https://doi.org/10.1109/JQE.2025.3609153","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 5","pages":"1-2"},"PeriodicalIF":2.1,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11224953","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145455882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes in Lossless Multimode Cavities 时间耦合模理论和无损多模腔中非正交模的存在
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-04 DOI: 10.1109/JQE.2025.3617185
{"title":"Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes in Lossless Multimode Cavities","authors":"","doi":"10.1109/JQE.2025.3617185","DOIUrl":"https://doi.org/10.1109/JQE.2025.3617185","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 5","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145455988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-State Time-of-Flight Range Camera 固态飞行时间范围相机
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-04 DOI: 10.1109/JQE.2025.3617257
{"title":"Solid-State Time-of-Flight Range Camera","authors":"","doi":"10.1109/JQE.2025.3617257","DOIUrl":"https://doi.org/10.1109/JQE.2025.3617257","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 5","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145455798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pointing Error Influence on Quantum Key Distribution 指向误差对量子密钥分发的影响
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-10-31 DOI: 10.1109/JQE.2025.3627887
Yalçın Ata;Kamran Kiasaleh
Recently, quantum key distribution (QKD) has emerged as a prominent solution to provide secure and reliable communication in atmosphere. This paper investigates the effect of pointing error on the performance of QKD communication systems. The analytical solution of error and sift probabilities, quantum bit error rate (QBER) and secret key rate (SKR) are obtained depending on pointing error effect that is modeled by Rayleigh and Hoyt distributions. Our findings show that the increased beam waist, hence the increased pointing error, degrades the performance of QKD communication systems remarkably. Also, the symmetric pointing error, where horizontal and vertical pointing errors are equal, yields worse performance for QKD systems as compared to the asymmetric pointing error case where vertical and horizontal pointing errors are different. The undeniable effect of pointing error on the performance of QKD system highlights the importance of precise beam alignment to minimize the adverse effects of pointing errors, thereby ensuring the secure and efficient operation of QKD systems in various deployment scenarios.
近年来,量子密钥分发(QKD)已成为提供安全可靠的大气通信的重要解决方案。研究了指向误差对QKD通信系统性能的影响。利用瑞利分布和霍伊特分布对指向误差效应进行建模,得到了误差和筛分概率、量子误码率和密钥率的解析解。我们的研究结果表明,波束腰的增加,导致指向误差的增加,显著降低了QKD通信系统的性能。此外,与不对称指向错误(垂直指向错误和垂直指向错误不同)相比,对称指向错误(水平指向错误和垂直指向错误相同)对QKD系统产生更差的性能。指向误差对QKD系统性能的影响不可否认,这凸显了精确的波束对准对于最大限度地减少指向误差的不利影响的重要性,从而确保QKD系统在各种部署场景下的安全高效运行。
{"title":"Pointing Error Influence on Quantum Key Distribution","authors":"Yalçın Ata;Kamran Kiasaleh","doi":"10.1109/JQE.2025.3627887","DOIUrl":"https://doi.org/10.1109/JQE.2025.3627887","url":null,"abstract":"Recently, quantum key distribution (QKD) has emerged as a prominent solution to provide secure and reliable communication in atmosphere. This paper investigates the effect of pointing error on the performance of QKD communication systems. The analytical solution of error and sift probabilities, quantum bit error rate (QBER) and secret key rate (SKR) are obtained depending on pointing error effect that is modeled by Rayleigh and Hoyt distributions. Our findings show that the increased beam waist, hence the increased pointing error, degrades the performance of QKD communication systems remarkably. Also, the symmetric pointing error, where horizontal and vertical pointing errors are equal, yields worse performance for QKD systems as compared to the asymmetric pointing error case where vertical and horizontal pointing errors are different. The undeniable effect of pointing error on the performance of QKD system highlights the importance of precise beam alignment to minimize the adverse effects of pointing errors, thereby ensuring the secure and efficient operation of QKD systems in various deployment scenarios.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 6","pages":"1-9"},"PeriodicalIF":2.1,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145510136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics Publication Information IEEE量子电子学杂志出版信息
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-10-30 DOI: 10.1109/JQE.2025.3618129
{"title":"IEEE Journal of Quantum Electronics Publication Information","authors":"","doi":"10.1109/JQE.2025.3618129","DOIUrl":"https://doi.org/10.1109/JQE.2025.3618129","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 5","pages":"C2-C2"},"PeriodicalIF":2.1,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11222768","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145405432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-10-30 DOI: 10.1109/JQE.2025.3618131
{"title":"Blank Page","authors":"","doi":"10.1109/JQE.2025.3618131","DOIUrl":"https://doi.org/10.1109/JQE.2025.3618131","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 5","pages":"C4-C4"},"PeriodicalIF":2.1,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11222769","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145405324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Quantum Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1