首页 > 最新文献

IEEE Journal of Quantum Electronics最新文献

英文 中文
IEEE Journal of Quantum Electronics Information for Authors IEEE量子电子信息作者杂志
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-08 DOI: 10.1109/JQE.2025.3640498
{"title":"IEEE Journal of Quantum Electronics Information for Authors","authors":"","doi":"10.1109/JQE.2025.3640498","DOIUrl":"https://doi.org/10.1109/JQE.2025.3640498","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 6","pages":"C3-C3"},"PeriodicalIF":2.1,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11338825","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145929438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Exact Analytical Method for Arbitrary Matter-Waveform Generation in Optical Lattices 光学晶格中任意物质波形产生的精确解析方法
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-22 DOI: 10.1109/JQE.2025.3646966
Pradosh Basu;Sriganapathy Raghav;Utpal Roy
Generation and control of waveforms is a versatile tool for advanced technologies. Quantum arbitrary waveform generator is also in place by exploiting the quantum state of coherent light. Motivated by the high coherence and tunability of the trapped ultracold matter waves, which may offer a platform for arbitrary waveform generation with atoms, we present an exact analytical approach for designing the first atomic arbitrary waveform generator. Our method considers the dynamics of an one-dimensional Bose-Einstein condensate in a quantum simulation environment with a moving bichromatic optical lattice. Functional expressions and parameter regimes are derived for engineering some of the fundamental waveforms, including sinusoidal, sawtooth, triangular and square profiles. In addition, compound waveforms, such as step-sawtooth, triangular-square, slanted-square, and slanted-step-square are also constructed. A numerical stability analysis is explicated in support of the experimental feasibility of the reported atomic waveform generator.
波形的产生和控制是先进技术的通用工具。利用相干光的量子态,也实现了量子任意波形发生器。由于捕获的超冷物质波具有高相干性和可调性,为原子产生任意波形提供了平台,我们提出了一种精确解析方法来设计第一台原子任意波形发生器。我们的方法考虑了具有移动双色光学晶格的量子模拟环境中一维玻色-爱因斯坦凝聚体的动力学。函数表达式和参数制度,为工程一些基本波形,包括正弦,锯齿,三角形和方形轮廓。此外,还构造了阶梯锯齿波、三角方形波、倾斜方形波、倾斜阶梯方形波等复合波形。数值稳定性分析说明了所报道的原子波形发生器的实验可行性。
{"title":"An Exact Analytical Method for Arbitrary Matter-Waveform Generation in Optical Lattices","authors":"Pradosh Basu;Sriganapathy Raghav;Utpal Roy","doi":"10.1109/JQE.2025.3646966","DOIUrl":"https://doi.org/10.1109/JQE.2025.3646966","url":null,"abstract":"Generation and control of waveforms is a versatile tool for advanced technologies. Quantum arbitrary waveform generator is also in place by exploiting the quantum state of coherent light. Motivated by the high coherence and tunability of the trapped ultracold matter waves, which may offer a platform for arbitrary waveform generation with atoms, we present an exact analytical approach for designing the first atomic arbitrary waveform generator. Our method considers the dynamics of an one-dimensional Bose-Einstein condensate in a quantum simulation environment with a moving bichromatic optical lattice. Functional expressions and parameter regimes are derived for engineering some of the fundamental waveforms, including sinusoidal, sawtooth, triangular and square profiles. In addition, compound waveforms, such as step-sawtooth, triangular-square, slanted-square, and slanted-step-square are also constructed. A numerical stability analysis is explicated in support of the experimental feasibility of the reported atomic waveform generator.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"62 1","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145957872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Model and Experimental Validation of Visible Q-Switched Holmium-Doped Fiber Lasers 可见调q掺钬光纤激光器的数值模型与实验验证
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-18 DOI: 10.1109/JQE.2025.3645768
Yaolin Fei;Qiuyue Zou;Dailiang Zhong;Wei Shi;Yao Ma;Liujing Xu;Wensong Li
This study presents a Q-switched numerical model that incorporates time-dependent reflectivity and its application to a visible holmium-doped fluorozirconate glass (Ho:ZBLAN) fiber laser system pumped by a blue laser diode. We systematically investigate the influence of reflectivity-switching time, pump power, and fiber length on the resulting pulse characteristics. Under a 0.8 W pump power, a reflectivity switching time of 150 ns, a fiber length of 25 cm, and a repetition rate of 100 kHz, stable deep-red Q-switched pulses with a width of 122 ns were achieved. The simulation results exhibit close agreement with experimental measurements, validating the model’s accuracy for predicting pulse dynamics. These findings provide critical guidance for the design and optimization of visible Q-switched fiber lasers and offer insights applicable to Q-switched fiber lasers across other spectral regions.
本研究提出了一种包含时变反射率的调q数值模型,并将其应用于蓝色激光二极管泵浦的可见掺钬氟锆酸盐玻璃(Ho:ZBLAN)光纤激光系统。我们系统地研究了反射开关时间、泵浦功率和光纤长度对产生的脉冲特性的影响。当泵浦功率为0.8 W,反射率开关时间为150 ns,光纤长度为25 cm,重复频率为100 kHz时,可获得宽度为122 ns的深红色调q脉冲。仿真结果与实验结果吻合较好,验证了该模型预测脉冲动力学的准确性。这些发现为可见光调q光纤激光器的设计和优化提供了重要指导,并为其他光谱区域的调q光纤激光器提供了适用的见解。
{"title":"Numerical Model and Experimental Validation of Visible Q-Switched Holmium-Doped Fiber Lasers","authors":"Yaolin Fei;Qiuyue Zou;Dailiang Zhong;Wei Shi;Yao Ma;Liujing Xu;Wensong Li","doi":"10.1109/JQE.2025.3645768","DOIUrl":"https://doi.org/10.1109/JQE.2025.3645768","url":null,"abstract":"This study presents a Q-switched numerical model that incorporates time-dependent reflectivity and its application to a visible holmium-doped fluorozirconate glass (Ho:ZBLAN) fiber laser system pumped by a blue laser diode. We systematically investigate the influence of reflectivity-switching time, pump power, and fiber length on the resulting pulse characteristics. Under a 0.8 W pump power, a reflectivity switching time of 150 ns, a fiber length of 25 cm, and a repetition rate of 100 kHz, stable deep-red Q-switched pulses with a width of 122 ns were achieved. The simulation results exhibit close agreement with experimental measurements, validating the model’s accuracy for predicting pulse dynamics. These findings provide critical guidance for the design and optimization of visible Q-switched fiber lasers and offer insights applicable to Q-switched fiber lasers across other spectral regions.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"62 1","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145957870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Verilog-A Laser Model for Use in Electro-Optical Simulations 用于电光模拟的Verilog-A激光模型
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-15 DOI: 10.1109/JQE.2025.3644246
Jaden Ingleton;Omid Esmaeeli;Sudip Shekhar
Electro-optical simulation of integrated photonics and electronics can be carried out today in most electronic design automation (EDA) software. However, lasers are still modeled simply as a continuous wave ideal light source, preventing the measure of the impact of its non-idealities in various optical systems. In this work, we construct an equivalent circuit model of the laser rate equations, including phase and accounting for the correlated noise sources, and implement the model in Verilog-A. Internal laser parameters are extracted from measurement data of a Distributed Feedback (DFB) laser, and we find good agreement between the measurements and simulations of the model. Furthermore, we demonstrate our model by simulating a quadrature phase-shift-keying (QPSK) circuit. Our laser model enables simulations of simple electro-optic circuits that capture the dynamics and noise characteristics of semiconductor lasers.
集成光子学和电子学的光电仿真可以在今天大多数电子设计自动化(EDA)软件中进行。然而,激光仍然被简单地建模为连续波理想光源,阻止了在各种光学系统中测量其非理想性的影响。在这项工作中,我们构建了激光速率方程的等效电路模型,包括相位和考虑相关噪声源,并在Verilog-A中实现了该模型。从分布式反馈(DFB)激光器的测量数据中提取了激光器内部参数,结果与模型仿真结果吻合较好。此外,我们通过模拟正交相移键控(QPSK)电路来验证我们的模型。我们的激光模型可以模拟简单的电光电路,捕捉半导体激光器的动态和噪声特性。
{"title":"A Verilog-A Laser Model for Use in Electro-Optical Simulations","authors":"Jaden Ingleton;Omid Esmaeeli;Sudip Shekhar","doi":"10.1109/JQE.2025.3644246","DOIUrl":"https://doi.org/10.1109/JQE.2025.3644246","url":null,"abstract":"Electro-optical simulation of integrated photonics and electronics can be carried out today in most electronic design automation (EDA) software. However, lasers are still modeled simply as a continuous wave ideal light source, preventing the measure of the impact of its non-idealities in various optical systems. In this work, we construct an equivalent circuit model of the laser rate equations, including phase and accounting for the correlated noise sources, and implement the model in Verilog-A. Internal laser parameters are extracted from measurement data of a Distributed Feedback (DFB) laser, and we find good agreement between the measurements and simulations of the model. Furthermore, we demonstrate our model by simulating a quadrature phase-shift-keying (QPSK) circuit. Our laser model enables simulations of simple electro-optic circuits that capture the dynamics and noise characteristics of semiconductor lasers.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"62 1","pages":"1-12"},"PeriodicalIF":2.1,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145957871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended Short-Wavelength Infrared AlInAsSb nBn Photodetectors 扩展短波长红外AlInAsSb nBn光电探测器
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-11 DOI: 10.1109/JQE.2025.3636522
Kubra Circir;Ellie Y. Wang;J. Andrew McArthur;Daniel Herrera;Seth R. Bank;Joe C. Campbell
Al0.3InAsSb/Al0.7InAsSb digital alloy nBn extended short-wavelength infrared photodetectors are reported. These devices exhibit a room-temperature cut-off wavelength of $sim $ 2.3 $mu $ m. Variable area diode analysis reveals that the bulk current density dominates for device diameters exceeding $64~mu $ m. At 300 K under −0.35 V bias, the dark current density is 1.75 mA/cm2, reducing to 4.9 nA/cm2 at 160 K under −0.25 V. The devices have a saturated room-temperature quantum efficiency of ~36% at $2~mu $ m without an anti-reflective coating, corresponding to a 33% improvement over an earlier design. The RA product is $408~Omega $ cm2 at −0.35 V bias, resulting in a shot-noise limited specific detectivity of $2.28times 10 ^{mathrm {10}}mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ and $1.1times 10 ^{12} mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ at 300 K and 160 K, respectively.
报道了Al0.3InAsSb/Al0.7InAsSb数字合金nBn扩展短波红外探测器。这些器件的室温截止波长为$sim $ 2.3 $mu $ m。变面积二极管分析表明,当器件直径超过$64~mu $ m时,体电流密度占主导地位。在−0.35 V偏置下300 K时,暗电流密度为1.75 mA/cm2,在−0.25 V偏置下160 K时,暗电流密度降至4.9 nA/cm2。该器件的饱和室温量子效率为36% at $2~mu $ m without an anti-reflective coating, corresponding to a 33% improvement over an earlier design. The RA product is $408~Omega $ cm2 at −0.35 V bias, resulting in a shot-noise limited specific detectivity of $2.28times 10 ^{mathrm {10}}mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ and $1.1times 10 ^{12} mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ at 300 K and 160 K, respectively.
{"title":"Extended Short-Wavelength Infrared AlInAsSb nBn Photodetectors","authors":"Kubra Circir;Ellie Y. Wang;J. Andrew McArthur;Daniel Herrera;Seth R. Bank;Joe C. Campbell","doi":"10.1109/JQE.2025.3636522","DOIUrl":"https://doi.org/10.1109/JQE.2025.3636522","url":null,"abstract":"Al0.3InAsSb/Al0.7InAsSb digital alloy nBn extended short-wavelength infrared photodetectors are reported. These devices exhibit a room-temperature cut-off wavelength of <inline-formula> <tex-math>$sim $ </tex-math></inline-formula>2.3 <inline-formula> <tex-math>$mu $ </tex-math></inline-formula>m. Variable area diode analysis reveals that the bulk current density dominates for device diameters exceeding <inline-formula> <tex-math>$64~mu $ </tex-math></inline-formula>m. At 300 K under −0.35 V bias, the dark current density is 1.75 mA/cm2, reducing to 4.9 nA/cm2 at 160 K under −0.25 V. The devices have a saturated room-temperature quantum efficiency of ~36% at <inline-formula> <tex-math>$2~mu $ </tex-math></inline-formula>m without an anti-reflective coating, corresponding to a 33% improvement over an earlier design. The RA product is <inline-formula> <tex-math>$408~Omega $ </tex-math></inline-formula>cm2 at −0.35 V bias, resulting in a shot-noise limited specific detectivity of <inline-formula> <tex-math>$2.28times 10 ^{mathrm {10}}mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$1.1times 10 ^{12} mathrm {cm}sqrt {mathrm {Hz}} mathrm {/W}$ </tex-math></inline-formula>at 300 K and 160 K, respectively.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"62 1","pages":"1-7"},"PeriodicalIF":2.1,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145957868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulse Compression in Ho:ZBLAN Photonic Crystal Fiber Using a NOLM Configuration for Ultrashort Mid-IR Generation 利用NOLM结构在Ho:ZBLAN光子晶体光纤中进行超短中红外脉冲压缩
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-28 DOI: 10.1109/JQE.2025.3638679
G. Sornambigai;A. Esther Lidiya;R. Vasantha Jayakantha Raja
We propose and design a holmium-doped ZBLAN (Ho:ZBLAN) tapered photonic crystal fiber (TPCF) for generating ultrashort mid-infrared (mid-IR) pulses at $2.86~mu $ m, utilizing a nonlinear optical loop mirror configuration (NOLM). The dispersion and nonlinear properties of the TPCF are engineered using a self-similar tapering technique, which gradually varies the core diameter and pitch along the fiber length. Initially, an undoped ZBLAN TPCF is investigated with this approach to enable the generation of low-pedestal, few-cycle ultrashort pulses at $2.86~mu $ m. The study then extends to analyze the propagation dynamics of higher-order solitons in the Ho:ZBLAN TPCF under various low input powers, ensuring operation below the fiber’s damage threshold. This analysis captures both the self-switching behavior of the NOLM and the self-similar pulse evolution within the fiber across different power levels. By optimizing the input pump power and fiber length, we demonstrate that a 5 ps pulse at $2.8~mu $ m can be compressed to 187 fs after propagating through 4.3 m of fiber, achieving a maximum compression factor of 26.7, a quality factor of 1.12, and a minimal pedestal energy of 0.63%.
我们提出并设计了一种掺钬ZBLAN (Ho:ZBLAN)锥形光子晶体光纤(TPCF),利用非线性光环镜结构(NOLM)产生2.86~mu $ m的超短中红外(middle - ir)脉冲。TPCF的色散和非线性特性采用自相似变细技术,该技术沿光纤长度逐渐改变芯径和节距。首先,利用该方法研究了未掺杂的ZBLAN TPCF,使其能够在$2.86~mu $ m的范围内产生低基次、少周期的超短脉冲。然后,研究扩展到分析了在各种低输入功率下高阶孤子在Ho:ZBLAN TPCF中的传播动力学,以确保其在光纤损伤阈值以下运行。该分析捕获了nnolm的自开关行为和光纤内不同功率电平的自相似脉冲演化。通过优化输入泵浦功率和光纤长度,我们证明了$2.8~mu $ m的5 ps脉冲在通过4.3 m的光纤传播后可以被压缩到187fs,实现了最大压缩因子26.7,质量因子1.12,最小基座能量0.63%。
{"title":"Pulse Compression in Ho:ZBLAN Photonic Crystal Fiber Using a NOLM Configuration for Ultrashort Mid-IR Generation","authors":"G. Sornambigai;A. Esther Lidiya;R. Vasantha Jayakantha Raja","doi":"10.1109/JQE.2025.3638679","DOIUrl":"https://doi.org/10.1109/JQE.2025.3638679","url":null,"abstract":"We propose and design a holmium-doped ZBLAN (Ho:ZBLAN) tapered photonic crystal fiber (TPCF) for generating ultrashort mid-infrared (mid-IR) pulses at <inline-formula> <tex-math>$2.86~mu $ </tex-math></inline-formula>m, utilizing a nonlinear optical loop mirror configuration (NOLM). The dispersion and nonlinear properties of the TPCF are engineered using a self-similar tapering technique, which gradually varies the core diameter and pitch along the fiber length. Initially, an undoped ZBLAN TPCF is investigated with this approach to enable the generation of low-pedestal, few-cycle ultrashort pulses at <inline-formula> <tex-math>$2.86~mu $ </tex-math></inline-formula>m. The study then extends to analyze the propagation dynamics of higher-order solitons in the Ho:ZBLAN TPCF under various low input powers, ensuring operation below the fiber’s damage threshold. This analysis captures both the self-switching behavior of the NOLM and the self-similar pulse evolution within the fiber across different power levels. By optimizing the input pump power and fiber length, we demonstrate that a 5 ps pulse at <inline-formula> <tex-math>$2.8~mu $ </tex-math></inline-formula>m can be compressed to 187 fs after propagating through 4.3 m of fiber, achieving a maximum compression factor of 26.7, a quality factor of 1.12, and a minimal pedestal energy of 0.63%.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"62 1","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145957873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vector Vortex Beam Emission Using Higher Order Transverse Modes in a Buried Heterostructure Laser 埋置异质结构激光器高阶横模矢量涡束发射
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-07 DOI: 10.1109/JQE.2025.3630564
Soumi Pal;Arpit Khandelwal;Nitin Bhatia
The 2D buried heterostructure (BH) laser with a symmetric transverse refractive index profile can generate radial and azimuthal polarized vector vortex beam (VVB) by exploiting the orthogonally polarized higher order transverse modes in pairs. We investigate the optimal structure and operating conditions for the stable generation of dual polarized modes under practical operating conditions, including gain saturation, spontaneous emission, carrier diffusion, and polarization sensitivity. As the corresponding BH laser supports higher order transverse modes, the dimensions of the active layers become larger than the diffusion length of the semiconductor. Thus, for the first time, we introduce the 2D diffusion model into the laser rate equation for higher order transverse modes. We show that the dynamic nature of the laser, due to nonlinear gain saturation and mode polarization, is suppressed by diffusion, resulting in more stable output under various operating conditions.
具有对称横向折射率剖面的二维埋置异质结构(BH)激光器利用正交极化高阶横向模对产生径向和方位偏振矢量涡旋光束(VVB)。我们研究了在实际工作条件下稳定产生双极化模式的最佳结构和工作条件,包括增益饱和、自发发射、载流子扩散和极化灵敏度。由于相应的BH激光器支持高阶横向模式,因此有源层的尺寸大于半导体的扩散长度。因此,我们首次将二维扩散模型引入到高阶横模的激光速率方程中。我们表明,由于非线性增益饱和和模式极化,激光的动态特性被扩散抑制,从而在各种工作条件下产生更稳定的输出。
{"title":"Vector Vortex Beam Emission Using Higher Order Transverse Modes in a Buried Heterostructure Laser","authors":"Soumi Pal;Arpit Khandelwal;Nitin Bhatia","doi":"10.1109/JQE.2025.3630564","DOIUrl":"https://doi.org/10.1109/JQE.2025.3630564","url":null,"abstract":"The 2D buried heterostructure (BH) laser with a symmetric transverse refractive index profile can generate radial and azimuthal polarized vector vortex beam (VVB) by exploiting the orthogonally polarized higher order transverse modes in pairs. We investigate the optimal structure and operating conditions for the stable generation of dual polarized modes under practical operating conditions, including gain saturation, spontaneous emission, carrier diffusion, and polarization sensitivity. As the corresponding BH laser supports higher order transverse modes, the dimensions of the active layers become larger than the diffusion length of the semiconductor. Thus, for the first time, we introduce the 2D diffusion model into the laser rate equation for higher order transverse modes. We show that the dynamic nature of the laser, due to nonlinear gain saturation and mode polarization, is suppressed by diffusion, resulting in more stable output under various operating conditions.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 6","pages":"1-11"},"PeriodicalIF":2.1,"publicationDate":"2025-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145560775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial JQE 60th Anniversary: The 2000’s JQE 60周年纪念:2000年代
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-04 DOI: 10.1109/JQE.2025.3609153
Alan E. Willner
{"title":"Guest Editorial JQE 60th Anniversary: The 2000’s","authors":"Alan E. Willner","doi":"10.1109/JQE.2025.3609153","DOIUrl":"https://doi.org/10.1109/JQE.2025.3609153","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 5","pages":"1-2"},"PeriodicalIF":2.1,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11224953","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145455882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes in Lossless Multimode Cavities 时间耦合模理论和无损多模腔中非正交模的存在
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-04 DOI: 10.1109/JQE.2025.3617185
{"title":"Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes in Lossless Multimode Cavities","authors":"","doi":"10.1109/JQE.2025.3617185","DOIUrl":"https://doi.org/10.1109/JQE.2025.3617185","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 5","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145455988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-State Time-of-Flight Range Camera 固态飞行时间范围相机
IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-04 DOI: 10.1109/JQE.2025.3617257
{"title":"Solid-State Time-of-Flight Range Camera","authors":"","doi":"10.1109/JQE.2025.3617257","DOIUrl":"https://doi.org/10.1109/JQE.2025.3617257","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 5","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145455798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Quantum Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1