首页 > 最新文献

IEEE Journal of Quantum Electronics最新文献

英文 中文
IEEE Journal of Quantum Electronics publication information IEEE 量子电子学报》出版信息
IF 2.5 3区 工程技术 Q2 Engineering Pub Date : 2024-03-29 DOI: 10.1109/JQE.2024.3399890
{"title":"IEEE Journal of Quantum Electronics publication information","authors":"","doi":"10.1109/JQE.2024.3399890","DOIUrl":"https://doi.org/10.1109/JQE.2024.3399890","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541324","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.5 3区 工程技术 Q2 Engineering Pub Date : 2024-03-29 DOI: 10.1109/JQE.2024.3399864
{"title":"Blank Page","authors":"","doi":"10.1109/JQE.2024.3399864","DOIUrl":"https://doi.org/10.1109/JQE.2024.3399864","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541881","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unconventional Computing Based on Four Wave Mixing in Highly Nonlinear Waveguides 基于高非线性波导中四波混合的非常规计算
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-27 DOI: 10.1109/JQE.2024.3405826
Kostas Sozos;Stavros Deligiannidis;Charis Mesaritakis;Adonis Bogris
In this work we numerically analyze a photonic unconventional accelerator based on the four-wave mixing effect in highly nonlinear waveguides. The proposed scheme can act as a fully analogue system for nonlinear signal processing directly in the optical domain. By exploiting the rich Kerr-induced nonlinearities, multiple nonlinear transformations of an input signal can be generated and used for solving complex nonlinear tasks. We first evaluate the performance of our scheme in the Santa-Fe chaotic time-series prediction. The true power of this processor is revealed in the all-optical nonlinearity compensation in an optical communication scenario where we provide results superior to those offered by strong machine learning algorithms with reduced power consumption and computational complexity. Finally, we showcase how the FWM module can be used as a reconfigurable nonlinear activation module being capable of reproducing characteristic functions such as sigmoid or rectified linear unit.
在这项工作中,我们对基于高度非线性波导中的四波混合效应的光子非常规加速器进行了数值分析。所提出的方案可以直接在光域中充当非线性信号处理的全模拟系统。通过利用丰富的凯尔诱导非线性,可以生成输入信号的多种非线性变换,并用于解决复杂的非线性任务。我们首先评估了我们的方案在 Santa-Fe 混沌时间序列预测中的性能。在光通信场景中的全光非线性补偿中,我们揭示了这一处理器的真正威力,其结果优于强大的机器学习算法,同时降低了功耗和计算复杂度。最后,我们展示了如何将 FWM 模块用作可重新配置的非线性激活模块,使其能够再现特征函数,如 sigmoid 或整流线性单元。
{"title":"Unconventional Computing Based on Four Wave Mixing in Highly Nonlinear Waveguides","authors":"Kostas Sozos;Stavros Deligiannidis;Charis Mesaritakis;Adonis Bogris","doi":"10.1109/JQE.2024.3405826","DOIUrl":"10.1109/JQE.2024.3405826","url":null,"abstract":"In this work we numerically analyze a photonic unconventional accelerator based on the four-wave mixing effect in highly nonlinear waveguides. The proposed scheme can act as a fully analogue system for nonlinear signal processing directly in the optical domain. By exploiting the rich Kerr-induced nonlinearities, multiple nonlinear transformations of an input signal can be generated and used for solving complex nonlinear tasks. We first evaluate the performance of our scheme in the Santa-Fe chaotic time-series prediction. The true power of this processor is revealed in the all-optical nonlinearity compensation in an optical communication scenario where we provide results superior to those offered by strong machine learning algorithms with reduced power consumption and computational complexity. Finally, we showcase how the FWM module can be used as a reconfigurable nonlinear activation module being capable of reproducing characteristic functions such as sigmoid or rectified linear unit.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics publication information IEEE 量子电子学报》出版信息
IF 2.5 3区 工程技术 Q2 Engineering Pub Date : 2024-03-26 DOI: 10.1109/JQE.2024.3379791
{"title":"IEEE Journal of Quantum Electronics publication information","authors":"","doi":"10.1109/JQE.2024.3379791","DOIUrl":"https://doi.org/10.1109/JQE.2024.3379791","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480293","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140309981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.5 3区 工程技术 Q2 Engineering Pub Date : 2024-03-26 DOI: 10.1109/JQE.2024.3379797
{"title":"Blank Page","authors":"","doi":"10.1109/JQE.2024.3379797","DOIUrl":"https://doi.org/10.1109/JQE.2024.3379797","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480292","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics information for authors IEEE 期刊《量子电子学》为作者提供的信息
IF 2.5 3区 工程技术 Q2 Engineering Pub Date : 2024-03-26 DOI: 10.1109/JQE.2024.3379795
{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3379795","DOIUrl":"https://doi.org/10.1109/JQE.2024.3379795","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480291","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140309980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectrally Pure W-Band RF Carrier Generation with Packaged Silicon Photonics Circuit 利用封装硅光子电路生成光谱纯净的 W 波段射频载波
IF 2.5 3区 工程技术 Q2 Engineering Pub Date : 2024-03-21 DOI: 10.1109/jqe.2024.3380552
Claudio Porzi, Marco Chiesa, Alessandra Bigongiari, Aina Serrano Rodrigo, Marc Sorel, Luca Roselli, Antonio D’Errico, Antonella Bogoni, Antonio Malacarne
{"title":"Spectrally Pure W-Band RF Carrier Generation with Packaged Silicon Photonics Circuit","authors":"Claudio Porzi, Marco Chiesa, Alessandra Bigongiari, Aina Serrano Rodrigo, Marc Sorel, Luca Roselli, Antonio D’Errico, Antonella Bogoni, Antonio Malacarne","doi":"10.1109/jqe.2024.3380552","DOIUrl":"https://doi.org/10.1109/jqe.2024.3380552","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of InGaAs/InP Single Photon Avalanche Diodes With Multiplication Width in Sub-Micron 亚微米级倍增宽度的 InGaAs/InP 单光子雪崩二极管分析
IF 2.5 3区 工程技术 Q2 Engineering Pub Date : 2024-03-09 DOI: 10.1109/JQE.2024.3399176
Kai Qiao;Yu Chang;Zefang Xu;Fei Yin;Liyu Liu;Jieying Wang;Chang Su;Linmeng Xu;Mengyan Fang;Chunliang Liu;Jinshou Tian;Xing Wang
InGaAs/InP single-photon avalanche photodiodes (SPADs) is capable of detecting single-photon in the near-infrared spectrum for applications such as quantum communication, fluorescence lifetime imaging, and Light detection and ranging(LIDAR). The effect of multiplication layer width on the performance of SPADs in both linear and Geiger mode have been theoretically studied. Three-types of InGaAs/InP planer SPADs with different multiplication width are fabricated and evaluated. The results of this study suggest that modifying the width of the multiplication layer can regulate the breakdown voltage, punch-through voltage, and dark current of the device. It is found that the measured time jitter is decreasing with the reduction of the width of the multiplication region. These characteristics can be used to optimize the temporal resolution of SPADs device.
InGaAs/InP 单光子雪崩光电二极管(SPADs)能够探测近红外光谱中的单光子,可用于量子通信、荧光寿命成像和光探测与测距(LIDAR)等应用。我们从理论上研究了乘法层宽度对线性和盖革模式 SPAD 性能的影响。研究人员制作并评估了三种不同倍增层宽度的 InGaAs/InP 平面 SPAD。研究结果表明,改变倍增层的宽度可以调节器件的击穿电压、击穿电压和暗电流。研究还发现,随着倍增区域宽度的减小,测得的时间抖动也在减小。这些特性可用于优化 SPAD 器件的时间分辨率。
{"title":"Analysis of InGaAs/InP Single Photon Avalanche Diodes With Multiplication Width in Sub-Micron","authors":"Kai Qiao;Yu Chang;Zefang Xu;Fei Yin;Liyu Liu;Jieying Wang;Chang Su;Linmeng Xu;Mengyan Fang;Chunliang Liu;Jinshou Tian;Xing Wang","doi":"10.1109/JQE.2024.3399176","DOIUrl":"10.1109/JQE.2024.3399176","url":null,"abstract":"InGaAs/InP single-photon avalanche photodiodes (SPADs) is capable of detecting single-photon in the near-infrared spectrum for applications such as quantum communication, fluorescence lifetime imaging, and Light detection and ranging(LIDAR). The effect of multiplication layer width on the performance of SPADs in both linear and Geiger mode have been theoretically studied. Three-types of InGaAs/InP planer SPADs with different multiplication width are fabricated and evaluated. The results of this study suggest that modifying the width of the multiplication layer can regulate the breakdown voltage, punch-through voltage, and dark current of the device. It is found that the measured time jitter is decreasing with the reduction of the width of the multiplication region. These characteristics can be used to optimize the temporal resolution of SPADs device.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1 × 4 Integrated Microlenses High-Rate Photodetector Array for Optical Communication Transmission 用于光通信传输的 1×4 集成微透镜高速率光电探测器阵列
IF 2.5 3区 工程技术 Q2 Engineering Pub Date : 2024-03-08 DOI: 10.1109/JQE.2024.3374126
Xiaowei Yang;Weifang Yuan;Xiaofeng Duan;Xianjie Li;Kai Liu;Yongqing Huang
Toward the application of 400 G optical receiver chips in optical communication systems, this paper presents a $1times 4$ photodetector (PD) array with a monolithic integrated InP microlenses structure. The absorption layer of the PD array in question includes the non-depleted, partially depleted, and depleted regions. This third-order composite absorber layer accelerates the diffusion of electrons in the absorber layer and balances the transport times of holes and electrons. Therefore, the high-speed and high responsivity characteristics of the device can be realized. The integration of InP microlenses on the backside of the PD allows the effective photosensitive surface area to be increased and the incident light alignment deviation to be compensated. Tests yielded a 3-dB bandwidth of the PD array at 1310 nm greater than 40 GHz, with a peak responsivity of 0.64 A/W. The responsivity of two types of PDs was measured when incident at a distance of $10~mu text{m}$ away from the main optical axis. The responsivity of the integrated microlenses decreased to 67.05% of the maximum value. Compared to the device without integrated microlenses, the responsivity increased by 66.76%.
为了在光通信系统中应用 400 G 光接收器芯片,本文提出了一种具有单片集成 InP 微透镜结构的 1/times 4$ 光电探测器(PD)阵列。该 PD 阵列的吸收层包括非耗尽区、部分耗尽区和耗尽区。这种三阶复合吸收层可加速电子在吸收层中的扩散,并平衡空穴和电子的传输时间。因此,该器件的高速和高响应特性得以实现。在 PD 背面集成 InP 微透镜可以增加有效光敏表面积,并补偿入射光的对准偏差。测试结果表明,1310 纳米波长的光致发光器件阵列的 3 分贝带宽大于 40 GHz,峰值响应率为 0.64 A/W。在距离主光轴 10~mu text{m}$的距离入射时,测量了两种类型光致发光器件的响应率。集成微透镜的响应率下降到最大值的 67.05%。与没有集成微透镜的器件相比,响应率提高了 66.76%。
{"title":"1 × 4 Integrated Microlenses High-Rate Photodetector Array for Optical Communication Transmission","authors":"Xiaowei Yang;Weifang Yuan;Xiaofeng Duan;Xianjie Li;Kai Liu;Yongqing Huang","doi":"10.1109/JQE.2024.3374126","DOIUrl":"10.1109/JQE.2024.3374126","url":null,"abstract":"Toward the application of 400 G optical receiver chips in optical communication systems, this paper presents a \u0000<inline-formula> <tex-math>$1times 4$ </tex-math></inline-formula>\u0000 photodetector (PD) array with a monolithic integrated InP microlenses structure. The absorption layer of the PD array in question includes the non-depleted, partially depleted, and depleted regions. This third-order composite absorber layer accelerates the diffusion of electrons in the absorber layer and balances the transport times of holes and electrons. Therefore, the high-speed and high responsivity characteristics of the device can be realized. The integration of InP microlenses on the backside of the PD allows the effective photosensitive surface area to be increased and the incident light alignment deviation to be compensated. Tests yielded a 3-dB bandwidth of the PD array at 1310 nm greater than 40 GHz, with a peak responsivity of 0.64 A/W. The responsivity of two types of PDs was measured when incident at a distance of \u0000<inline-formula> <tex-math>$10~mu text{m}$ </tex-math></inline-formula>\u0000 away from the main optical axis. The responsivity of the integrated microlenses decreased to 67.05% of the maximum value. Compared to the device without integrated microlenses, the responsivity increased by 66.76%.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photovoltaic Modulating Retroreflectors for Low Power Consumption Free Space Optical Communication Systems 用于低功耗自由空间光通信系统的光电调制逆反射器
IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-07 DOI: 10.1109/JQE.2024.3374101
Benjamin C. Maglio;Crisanto Quintana;Yoann Thueux;Peter M. Smowton
An InGaAs-InAsP-GaInP asymmetric stepped quantum well structure is proposed for unbiased detection and subsequent modulation of an incident continuous wave optical signal for application in compact, retroreflective, free-space optical communication platforms. Such operation drastically reduces onboard power consumption in large-area, pixelated arrays by driving only optically activated pixels. A modelling routine involving calculations of band structure, fraction of light absorbed, and responsivity have been used to analyse structures exhibiting an asymmetric quantum confined Stark effect. The proposed structure, compared with devices following similar modeling approaches, is predicted to exhibit an unbiased responsivity of 0.004 A/W enabling single pixel detection prior to triggering modulation. The calculated photocurrent of $4~mu $ A offers adequate signal to noise against dark current when operated in a photovoltaic mode. Furthermore, the strong blueshift in the ground state transition energy calculated for the applied field results in extinction ratios in excess of 4dB for the modulated signal. These findings suggest performance enhancements at a fraction of current onboard power consumption in modulating retroreflectors for compact, free-space optical communication platforms.
本文提出了一种 InGaAs-InAsP-GaInP 非对称阶梯量子阱结构,用于入射连续波光信号的无偏检测和后续调制,可应用于紧凑型逆反射自由空间光通信平台。通过仅驱动光激活像素,这种操作大大降低了大面积像素阵列的板载功耗。通过对带状结构、光吸收比例和响应率的计算,我们利用建模程序对表现出非对称量子约束斯塔克效应的结构进行了分析。根据预测,与采用类似建模方法的器件相比,拟议的结构可显示出 0.004 A/W 的无偏响应率,从而在触发调制之前实现单像素检测。计算得出的光电流为 4~mu $ A,在光电模式下工作时,可提供足够的暗电流信噪比。此外,针对应用场计算出的基态转换能量的强蓝移导致调制信号的消光比超过 4dB。这些发现表明,在用于紧凑型自由空间光通信平台的调制反向反射器中,只需消耗目前板载功耗的一小部分就能提高性能。
{"title":"Photovoltaic Modulating Retroreflectors for Low Power Consumption Free Space Optical Communication Systems","authors":"Benjamin C. Maglio;Crisanto Quintana;Yoann Thueux;Peter M. Smowton","doi":"10.1109/JQE.2024.3374101","DOIUrl":"10.1109/JQE.2024.3374101","url":null,"abstract":"An InGaAs-InAsP-GaInP asymmetric stepped quantum well structure is proposed for unbiased detection and subsequent modulation of an incident continuous wave optical signal for application in compact, retroreflective, free-space optical communication platforms. Such operation drastically reduces onboard power consumption in large-area, pixelated arrays by driving only optically activated pixels. A modelling routine involving calculations of band structure, fraction of light absorbed, and responsivity have been used to analyse structures exhibiting an asymmetric quantum confined Stark effect. The proposed structure, compared with devices following similar modeling approaches, is predicted to exhibit an unbiased responsivity of 0.004 A/W enabling single pixel detection prior to triggering modulation. The calculated photocurrent of \u0000<inline-formula> <tex-math>$4~mu $ </tex-math></inline-formula>\u0000 A offers adequate signal to noise against dark current when operated in a photovoltaic mode. Furthermore, the strong blueshift in the ground state transition energy calculated for the applied field results in extinction ratios in excess of 4dB for the modulated signal. These findings suggest performance enhancements at a fraction of current onboard power consumption in modulating retroreflectors for compact, free-space optical communication platforms.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Quantum Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1