Pub Date : 2024-11-11DOI: 10.1109/MSPEC.2024.10749728
Lucas Laursen
JUST OUTSIDE LAUSANNE, SWITZERLAND, in a meeting room wallpapered with patent drawings, Ioannis Ierides faced a classic sales challenge: demonstrating his product's advantages within the short span of his customer's attention. Ierides is a business-development manager at Iprova, a company that sells ideas for invention with an element of artificial intelligence (AI). ¶ When Ierides gets someone to sign on the bottom line, Iprova begins sending their company proposals for patentable inventions in their area of interest. Any resulting patents will name humans as the inventors, but those humans will have benefited from Iprova'sAI tool. The software's primary purpose is to scan the literature in both the company's field and in far-off fields and then suggest new inventions made of old, previously disconnected ones. Iprova has found a niche tracking fast-changing industries and suggesting new inventions to large corporations such as Procter & Gamble, Deutsche Telekom, and Panasonic. The company has even patented its own AI-assisted invention method. ¶ In this instance, Ierides was trying to demonstrate to me, an inquisitive journalist, that Iprova's services can accelerate the age-old engineers' quest for new inventions. “You want something that can transcribe interviews? Something that can tell who's speaking?” he asked. While such transcription tools already exist, there is plenty of room for improvement, and better transcription seemed a fine example for his purposes.
{"title":"Artificial Intelligence: Can We Automate Fureka Moments?: That'S The Goal of This Swiss Company's Ai-Powered Invention Tech","authors":"Lucas Laursen","doi":"10.1109/MSPEC.2024.10749728","DOIUrl":"https://doi.org/10.1109/MSPEC.2024.10749728","url":null,"abstract":"JUST OUTSIDE LAUSANNE, SWITZERLAND, in a meeting room wallpapered with patent drawings, Ioannis Ierides faced a classic sales challenge: demonstrating his product's advantages within the short span of his customer's attention. Ierides is a business-development manager at Iprova, a company that sells ideas for invention with an element of artificial intelligence (AI). ¶ When Ierides gets someone to sign on the bottom line, Iprova begins sending their company proposals for patentable inventions in their area of interest. Any resulting patents will name humans as the inventors, but those humans will have benefited from Iprova'sAI tool. The software's primary purpose is to scan the literature in both the company's field and in far-off fields and then suggest new inventions made of old, previously disconnected ones. Iprova has found a niche tracking fast-changing industries and suggesting new inventions to large corporations such as Procter & Gamble, Deutsche Telekom, and Panasonic. The company has even patented its own AI-assisted invention method. ¶ In this instance, Ierides was trying to demonstrate to me, an inquisitive journalist, that Iprova's services can accelerate the age-old engineers' quest for new inventions. “You want something that can transcribe interviews? Something that can tell who's speaking?” he asked. While such transcription tools already exist, there is plenty of room for improvement, and better transcription seemed a fine example for his purposes.","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":"61 11","pages":"24-27"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1109/MSPEC.2024.10749727
Samuel K. Moore
THERE'S A CERTAIN SAMENESS to spaces meant for tech startups: flexible cubicle arrangements, glass-encased executive offices, whiteboard walls awaiting equations and ideas, basement laboratories for the noisier and more dangerous parts of the process. In some ways the home of Ideal Semiconductor on the campus of Lehigh University, in Bethlehem, Penn., is just like that. The most noticeable difference is a life-size statue of 18th-century inventor and electricity enthusiast Benjamin Franklin seated on the bench outside. ¶ Ideal cofounder and CEO Mark Granahan admits to having had a quiet moment or two with ole Benny Kite-and-Key, but it takes a lot more than inspiration from a founder of your home country to turn a clever idea into a valuable semiconductor company. Navigating from lightbulb moment to laboratory demo and finally to manufactured reality has always been the defining struggle of hardware startups. But Ideal's journey is particularly illustrative of the state of invention in the U.S. semiconductor industry today and, in particular, how the CHIPS and Science Act, a law the startup's founders personally and exhaustively advocated for, might change things for the better.
{"title":"Semiconductors: Will the U.S. CHIPS Act Speed the Lab-to-Fab Transition?: A Semiconductor Startup's Journey Shows How It Could Work","authors":"Samuel K. Moore","doi":"10.1109/MSPEC.2024.10749727","DOIUrl":"https://doi.org/10.1109/MSPEC.2024.10749727","url":null,"abstract":"THERE'S A CERTAIN SAMENESS to spaces meant for tech startups: flexible cubicle arrangements, glass-encased executive offices, whiteboard walls awaiting equations and ideas, basement laboratories for the noisier and more dangerous parts of the process. In some ways the home of Ideal Semiconductor on the campus of Lehigh University, in Bethlehem, Penn., is just like that. The most noticeable difference is a life-size statue of 18th-century inventor and electricity enthusiast Benjamin Franklin seated on the bench outside. ¶ Ideal cofounder and CEO Mark Granahan admits to having had a quiet moment or two with ole Benny Kite-and-Key, but it takes a lot more than inspiration from a founder of your home country to turn a clever idea into a valuable semiconductor company. Navigating from lightbulb moment to laboratory demo and finally to manufactured reality has always been the defining struggle of hardware startups. But Ideal's journey is particularly illustrative of the state of invention in the U.S. semiconductor industry today and, in particular, how the CHIPS and Science Act, a law the startup's founders personally and exhaustively advocated for, might change things for the better.","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":"61 11","pages":"52-57"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1109/MSPEC.2024.10748559
Ned Potter
WHEN NASA DECIDED in the 1970s that the Hubble Space Telescope should be serviceable in space, the engineering challenges must have seemed nearly insurmountable. How could a machine that complex and delicate be repaired by astronauts wearing 130-kilogram suits with thick gloves? ¶ In the end, spacewalkers not only fixed the telescope, they regularly remade it. ¶ That was possible because Hubble is toroidal-its major systems laid out in wedge-shaped equipment bays that astronauts could open from the outside. A series of maintenance workstations on Hubble's outer surface ensured astronauts could have ready access to crucial telescope parts. ¶ On five space-shuttle servicing missions between 1993 and 2009, 16 spacewalkers replaced every major component except the telescope's mirrors and outer skin. They increased its electrical supply by 20 percent. And they tripled its ability to concentrate and sense light, job No.1 of any telescope. ¶ The orbital observatory was built to last 15 years in space. But with updates, it has operated for more than 30-a history of reinvention to make any engineering team proud. “Twice the lifetime,” says astronaut Kathryn Sullivan, who flew on Hubble's 1990 launch mission. “Just try finding something else that has improved with age in space. I dare you.”
{"title":"Aerospace: Nasa Made the Hubble Telescope to Be Remade: Spacewalk Repairs and Upgrades Were Always Part of The Plan","authors":"Ned Potter","doi":"10.1109/MSPEC.2024.10748559","DOIUrl":"https://doi.org/10.1109/MSPEC.2024.10748559","url":null,"abstract":"WHEN NASA DECIDED in the 1970s that the Hubble Space Telescope should be serviceable in space, the engineering challenges must have seemed nearly insurmountable. How could a machine that complex and delicate be repaired by astronauts wearing 130-kilogram suits with thick gloves? ¶ In the end, spacewalkers not only fixed the telescope, they regularly remade it. ¶ That was possible because Hubble is toroidal-its major systems laid out in wedge-shaped equipment bays that astronauts could open from the outside. A series of maintenance workstations on Hubble's outer surface ensured astronauts could have ready access to crucial telescope parts. ¶ On five space-shuttle servicing missions between 1993 and 2009, 16 spacewalkers replaced every major component except the telescope's mirrors and outer skin. They increased its electrical supply by 20 percent. And they tripled its ability to concentrate and sense light, job No.1 of any telescope. ¶ The orbital observatory was built to last 15 years in space. But with updates, it has operated for more than 30-a history of reinvention to make any engineering team proud. “Twice the lifetime,” says astronaut Kathryn Sullivan, who flew on Hubble's 1990 launch mission. “Just try finding something else that has improved with age in space. I dare you.”","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":"61 11","pages":"50-51"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1109/MSPEC.2024.10749725
Dina Genkina
WALKING INTO Jun Ye's lab at the University of Colorado Boulder is a bit like walking into an electronic jungle. There are wires strung across the ceiling that hang down to the floor. Right in the middle of the room are four hefty steel tables with metal panels above them extending all the way to the ceiling. Slide one of the panels to the side and you'll see a dense mesh of vacuum chambers, mirrors, magnetic coils, and laser light bouncing around in precisely orchestrated patterns. ¶ This is one of the world's most precise and accurate clocks, and it's so accurate that you'd have to wait 40 billion years-or three times the age of the universe-for it to be off by one second. ¶ What's interesting about Ye's atomic clock, part of a joint endeavor between the University of Colorado Boulder and the National Institute of Standards and Technology (NIST), is that it is optical, not microwave like most atomic clocks. The ticking heart of the clock is the strontium atom, and it beats at a frequency of 429 terahertz, or 429 trillion ticks per second. It's the same frequency as light in the lower part of the red region of the visible spectrum, and that relatively high frequency is a pillar of the clock's incredible precision. Commonly available atomic clocks beat at frequencies in the gigahertz range, or about 10 billion ticks per second. Going from the microwave to the optical makes it possible for Ye's clock to be tens of thousands of times as precise.
{"title":"Quantum Tech: Squeezing an Optical Atomic Clock Into a Briefcase: A Mind-Set Shift Propelled the Leap from Basic Science to Invention","authors":"Dina Genkina","doi":"10.1109/MSPEC.2024.10749725","DOIUrl":"https://doi.org/10.1109/MSPEC.2024.10749725","url":null,"abstract":"WALKING INTO Jun Ye's lab at the University of Colorado Boulder is a bit like walking into an electronic jungle. There are wires strung across the ceiling that hang down to the floor. Right in the middle of the room are four hefty steel tables with metal panels above them extending all the way to the ceiling. Slide one of the panels to the side and you'll see a dense mesh of vacuum chambers, mirrors, magnetic coils, and laser light bouncing around in precisely orchestrated patterns. ¶ This is one of the world's most precise and accurate clocks, and it's so accurate that you'd have to wait 40 billion years-or three times the age of the universe-for it to be off by one second. ¶ What's interesting about Ye's atomic clock, part of a joint endeavor between the University of Colorado Boulder and the National Institute of Standards and Technology (NIST), is that it is optical, not microwave like most atomic clocks. The ticking heart of the clock is the strontium atom, and it beats at a frequency of 429 terahertz, or 429 trillion ticks per second. It's the same frequency as light in the lower part of the red region of the visible spectrum, and that relatively high frequency is a pillar of the clock's incredible precision. Commonly available atomic clocks beat at frequencies in the gigahertz range, or about 10 billion ticks per second. Going from the microwave to the optical makes it possible for Ye's clock to be tens of thousands of times as precise.","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":"61 11","pages":"44-70"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1109/MSPEC.2024.10749749
Erico Guizzo;Randi Klett
{"title":"Where's My Robot Butler?: Here's How We Could Finally Build Humanoid Robots That Do All Our Domestic Chores","authors":"Erico Guizzo;Randi Klett","doi":"10.1109/MSPEC.2024.10749749","DOIUrl":"https://doi.org/10.1109/MSPEC.2024.10749749","url":null,"abstract":"","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":"61 11","pages":"40-43"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1109/MSPEC.2024.10749716
Markus Mierse
On a star base far far away, a dashing hero presses a but-ton on a control panel and a schematic appears in midair. Deftly touching her fingers to the ethe-real display, the hero shuts down an energy shield and moves on with her secret mission. If you've watched any science fiction, you're probably familiar with this kind of scenario. But what you may not know is that while star bases and energy shields are still beyond us, floating displays are not.
{"title":"A Sci-Fi Aerial Display: This Touchscreen Floats in Midair","authors":"Markus Mierse","doi":"10.1109/MSPEC.2024.10749716","DOIUrl":"https://doi.org/10.1109/MSPEC.2024.10749716","url":null,"abstract":"On a star base far far away, a dashing hero presses a but-ton on a control panel and a schematic appears in midair. Deftly touching her fingers to the ethe-real display, the hero shuts down an energy shield and moves on with her secret mission. If you've watched any science fiction, you're probably familiar with this kind of scenario. But what you may not know is that while star bases and energy shields are still beyond us, floating displays are not.","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":"61 11","pages":"14-16"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1109/MSPEC.2024.10749726
Harry Goldstein
Just before this special issue on invention went to press, I got a message from IEEE senior member and patent attorney George Macdonald. Nearly two decades after I first reported on Corliss Orville “Cob” Burandt's struggle with the U.S. Patent and Trademark Office, the 77-year-old inventor's patent case was being revived.
{"title":"Reinventing a Patent Case: Cob Burandt is Still Down and Out in Ham Lake, But His Attorneys Have Just Begun to Fight-Again","authors":"Harry Goldstein","doi":"10.1109/MSPEC.2024.10749726","DOIUrl":"https://doi.org/10.1109/MSPEC.2024.10749726","url":null,"abstract":"Just before this special issue on invention went to press, I got a message from IEEE senior member and patent attorney George Macdonald. Nearly two decades after I first reported on Corliss Orville “Cob” Burandt's struggle with the U.S. Patent and Trademark Office, the 77-year-old inventor's patent case was being revived.","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":"61 11","pages":"2-2"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10749726","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}