首页 > 最新文献

IEEE Transactions on NanoBioscience最新文献

英文 中文
Family of Mutually Uncorrelated Codes for DNA Storage Address Design 用于 DNA 存储地址设计的互不相关代码系列。
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-16 DOI: 10.1109/TNB.2025.3530470
Zhenlu Liu;Ben Cao;Qi Shao;Yanfen Zheng;Bin Wang;Shihua Zhou;Pan Zheng
Deoxyribonucleic acid (DNA) has become an ideal medium for long-term storage and retrieval due to its extremely high storage density and long-term stability. But access efficiency is an existing bottleneck in DNA storage, especially the lack of high-quality random access address sequences. Therefore, in this paper, we report a series of approaches based on k-weakly mutually uncorrelated (k-WMU) codes to design the address sequence to improve the access efficiency of DNA storage. To address the problem of DNA sequences that are poorly scalable at the base level, we propose a 0-m-ruling coding scheme combined with k-WMU codes that can make address sequences avoid generating secondary structure with stem lengths ranging from 3 to 9. Based on the decoupled structure, We further extend the k-WMU codes with error correction function while satisfying combinatorial biological constraints. In order to investigate the performance of the designed address sequences for real-world applications, we perform simulation experiments based on thermodynamic properties and error correction capability as well as compared the minimum free energy (MFE), melting temperature (TM), and average decoding success rate (ADSR) with previous work. The results show that designed address sequences have a high MFE value and ADSR and a substantial reduction in TM-variance while satisfying the combinatorial biological constraints. As the quality of address sequences improves, this will help to achieve accurate random access as well as enhance the robustness of the DNA storage system.
脱氧核糖核酸(DNA)具有极高的存储密度和长期稳定性,已成为长期存储和检索的理想介质。但存取效率是目前 DNA 存储的一个瓶颈,尤其是缺乏高质量的随机存取地址序列。因此,本文报告了一系列基于k-弱互不相关(k-WMU)码设计地址序列的方法,以提高DNA存储的访问效率。为了解决DNA序列在碱基水平上可扩展性差的问题,我们提出了一种0-m-ruling编码方案,结合k-WMU码,可以使地址序列避免产生茎长度在3到9之间的二级结构。在解耦结构的基础上,我们进一步扩展了具有纠错功能的 k-WMU 编码,同时满足了组合生物约束。为了研究设计的地址序列在实际应用中的性能,我们根据热力学特性和纠错能力进行了模拟实验,并将最小自由能(MFE)、熔化温度(TM)和平均解码成功率(ADSR)与之前的研究进行了比较。结果表明,所设计的地址序列具有较高的 MFE 值和 ADSR,并在满足组合生物约束的同时大幅降低了 TM 变异。随着地址序列质量的提高,这将有助于实现精确的随机存取,并增强 DNA 存储系统的鲁棒性。
{"title":"Family of Mutually Uncorrelated Codes for DNA Storage Address Design","authors":"Zhenlu Liu;Ben Cao;Qi Shao;Yanfen Zheng;Bin Wang;Shihua Zhou;Pan Zheng","doi":"10.1109/TNB.2025.3530470","DOIUrl":"10.1109/TNB.2025.3530470","url":null,"abstract":"Deoxyribonucleic acid (DNA) has become an ideal medium for long-term storage and retrieval due to its extremely high storage density and long-term stability. But access efficiency is an existing bottleneck in DNA storage, especially the lack of high-quality random access address sequences. Therefore, in this paper, we report a series of approaches based on k-weakly mutually uncorrelated (k-WMU) codes to design the address sequence to improve the access efficiency of DNA storage. To address the problem of DNA sequences that are poorly scalable at the base level, we propose a 0-m-ruling coding scheme combined with k-WMU codes that can make address sequences avoid generating secondary structure with stem lengths ranging from 3 to 9. Based on the decoupled structure, We further extend the k-WMU codes with error correction function while satisfying combinatorial biological constraints. In order to investigate the performance of the designed address sequences for real-world applications, we perform simulation experiments based on thermodynamic properties and error correction capability as well as compared the minimum free energy (MFE), melting temperature (TM), and average decoding success rate (ADSR) with previous work. The results show that designed address sequences have a high MFE value and ADSR and a substantial reduction in TM-variance while satisfying the combinatorial biological constraints. As the quality of address sequences improves, this will help to achieve accurate random access as well as enhance the robustness of the DNA storage system.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 3","pages":"295-304"},"PeriodicalIF":3.7,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Network With Attention Mechanism for Abnormality Detection and Localization in Diffusive Molecular Communication 用于扩散式分子通讯中异常检测和定位的具有注意力机制的神经网络
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-09 DOI: 10.1109/TNB.2025.3527520
Zhen Cheng;Zhichao Zhang;Heng Liu;Dongliang Jing;Weihua Gong;Kaikai Chi
Diffusive molecular communication (DMC) is an emerging paradigm in nanotechnology, which provides biocompatibility and nanoscale communication for many promising applications, such as targeted drug delivery, environmental monitoring, etc. However, detecting and localizing abnormalities in most of these applications is challenging, such as identifying tumor cells within the body or detecting pollution in air or water. In this paper, we introduce a method for detecting and localizing abnormalities in three dimensional DMC system with multiple sensors, receivers and one fusion center by adopting Transformer-based model with attention mechanism. We make full use of the attention mechanism to capture the inter-symbol interference (ISI) to improve the accuracy of detection and localization. In addition, we simplify the model structure to significantly reduce the complexity of this model. Furthermore, two strategies that different types of molecules (DMT) and same type of molecules (SMT) are released by sensors are considered. The training dataset and testing dataset are generated under these two strategies. Simulation results show that the information about the abnormality detection and localization can be obtained at the same time based on the Transformer-based model under DMT and SMT. Especially, our model outperforms the Informer-based model, deep neural networks (DNN)-based model and log-likelihood ratio (LLR) method.
扩散分子通信(DMC)是纳米技术中的一种新兴模式,它具有生物兼容性和纳米级通信功能,可用于靶向药物输送、环境监测等许多前景广阔的应用领域。然而,在大多数这些应用中,检测和定位异常是一项挑战,例如识别体内的肿瘤细胞或检测空气或水中的污染。在本文中,我们介绍了一种在具有多个传感器、接收器和一个融合中心的三维 DMC 系统中检测和定位异常的方法,该方法采用了基于变压器的模型和注意力机制。我们充分利用注意力机制来捕捉符号间干扰(ISI),以提高检测和定位的准确性。此外,我们还简化了模型结构,大大降低了模型的复杂度。此外,我们还考虑了传感器释放不同类型分子(DMT)和相同类型分子(SMT)的两种策略。在这两种策略下生成训练数据集和测试数据集。仿真结果表明,在 DMT 和 SMT 条件下,基于 Transformer 的模型可以同时获取异常检测和定位信息。特别是,我们的模型优于基于 Informer 的模型、基于深度神经网络(DNN)的模型和对数似然比(LLR)方法。
{"title":"Neural Network With Attention Mechanism for Abnormality Detection and Localization in Diffusive Molecular Communication","authors":"Zhen Cheng;Zhichao Zhang;Heng Liu;Dongliang Jing;Weihua Gong;Kaikai Chi","doi":"10.1109/TNB.2025.3527520","DOIUrl":"10.1109/TNB.2025.3527520","url":null,"abstract":"Diffusive molecular communication (DMC) is an emerging paradigm in nanotechnology, which provides biocompatibility and nanoscale communication for many promising applications, such as targeted drug delivery, environmental monitoring, etc. However, detecting and localizing abnormalities in most of these applications is challenging, such as identifying tumor cells within the body or detecting pollution in air or water. In this paper, we introduce a method for detecting and localizing abnormalities in three dimensional DMC system with multiple sensors, receivers and one fusion center by adopting Transformer-based model with attention mechanism. We make full use of the attention mechanism to capture the inter-symbol interference (ISI) to improve the accuracy of detection and localization. In addition, we simplify the model structure to significantly reduce the complexity of this model. Furthermore, two strategies that different types of molecules (DMT) and same type of molecules (SMT) are released by sensors are considered. The training dataset and testing dataset are generated under these two strategies. Simulation results show that the information about the abnormality detection and localization can be obtained at the same time based on the Transformer-based model under DMT and SMT. Especially, our model outperforms the Informer-based model, deep neural networks (DNN)-based model and log-likelihood ratio (LLR) method.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"257-267"},"PeriodicalIF":3.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycling Eggshell Waste Into Calcium Oxide Nanoparticles: A Sustainable Approach for Nanomaterial Synthesis and Potential Applications 将蛋壳废料回收成氧化钙纳米颗粒:一种可持续的纳米材料合成方法及其潜在应用。
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-08 DOI: 10.1109/TNB.2025.3526975
Oindrila Banik;Bansod Sneha Bharat;Anju R. Babu;Prasoon Kumar;Santosh Kumar;Earu Banoth
Eggshell (ES) wastes have been ranked as the $15^{text {th}}$ food industry pollution due to the ever-increasing regular consumption of primary dietary products, eggs. Management and treatment of tons of discarded eggshells produced daily on a global scale are realized to be a predicament, and an immediate solution must be advocated to address the pollution. This sets a tone for the recyclability of this biowaste in a myriad of fields, like nanotechnology, biomedical, and environmental pollution control. Calcium carbonate in the shells makes it a safe precursor for producing calcium oxide as a nanomaterial by the top-down approach – calcination. This paper highlights a facile way to procure waste eggshell-derived metal oxide nanoparticles with reproducibility and recyclability. Calcium Oxide Nanoparticles (CaO NPs) obtained at two different calcination temperatures for optimization and this was characterized by SEM, FTIR, XRD, DLS, and Zeta Potential analyzer. CaONPs are less-studied metal oxide nanoparticles but hold promising applications in different fields. Hence, there is a scope for further investigation on the non-toxic, non-hazardous CaO NPs obtained facilely – an effort to minimize and regulate food wastes.
蛋壳(ES)废物已被列为食品工业的第 15 大污染,原因是人们经常食用的主要膳食产品--鸡蛋的消费量不断增加。全球范围内每天产生的数吨废弃蛋壳的管理和处理已成为一个难题,必须立即提倡解决这一污染问题。这为这种生物垃圾在纳米技术、生物医学和环境污染控制等众多领域的可回收性奠定了基调。贝壳中的碳酸钙使其成为一种安全的前体,可通过自上而下的方法--煅烧--生产纳米材料氧化钙。本文重点介绍了一种从废弃蛋壳中提取金属氧化物纳米粒子的简便方法,该方法具有可重复性和可回收性。在两种不同的煅烧温度下获得的氧化钙纳米颗粒(CaO NPs)进行了优化,并通过扫描电镜、傅立叶变换红外光谱、X射线衍射、DLS和Zeta电位分析仪对其进行了表征。CaONPs 是一种研究较少的金属氧化物纳米粒子,但在不同领域的应用前景广阔。因此,我们有必要进一步研究轻松获得的无毒、无害的 CaO NPs,从而最大限度地减少和规范食品废物。
{"title":"Recycling Eggshell Waste Into Calcium Oxide Nanoparticles: A Sustainable Approach for Nanomaterial Synthesis and Potential Applications","authors":"Oindrila Banik;Bansod Sneha Bharat;Anju R. Babu;Prasoon Kumar;Santosh Kumar;Earu Banoth","doi":"10.1109/TNB.2025.3526975","DOIUrl":"10.1109/TNB.2025.3526975","url":null,"abstract":"Eggshell (ES) wastes have been ranked as the <inline-formula> <tex-math>$15^{text {th}}$ </tex-math></inline-formula> food industry pollution due to the ever-increasing regular consumption of primary dietary products, eggs. Management and treatment of tons of discarded eggshells produced daily on a global scale are realized to be a predicament, and an immediate solution must be advocated to address the pollution. This sets a tone for the recyclability of this biowaste in a myriad of fields, like nanotechnology, biomedical, and environmental pollution control. Calcium carbonate in the shells makes it a safe precursor for producing calcium oxide as a nanomaterial by the top-down approach – calcination. This paper highlights a facile way to procure waste eggshell-derived metal oxide nanoparticles with reproducibility and recyclability. Calcium Oxide Nanoparticles (CaO NPs) obtained at two different calcination temperatures for optimization and this was characterized by SEM, FTIR, XRD, DLS, and Zeta Potential analyzer. CaONPs are less-studied metal oxide nanoparticles but hold promising applications in different fields. Hence, there is a scope for further investigation on the non-toxic, non-hazardous CaO NPs obtained facilely – an effort to minimize and regulate food wastes.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"249-256"},"PeriodicalIF":3.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on NanoBioscience Information for Authors IEEE纳米生物科学信息汇刊
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-02 DOI: 10.1109/TNB.2024.3514239
{"title":"IEEE Transactions on NanoBioscience Information for Authors","authors":"","doi":"10.1109/TNB.2024.3514239","DOIUrl":"https://doi.org/10.1109/TNB.2024.3514239","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 1","pages":"C3-C3"},"PeriodicalIF":3.7,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on NanoBioscience Publication Information IEEE纳米生物科学学报
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-02 DOI: 10.1109/TNB.2024.3514235
{"title":"IEEE Transactions on NanoBioscience Publication Information","authors":"","doi":"10.1109/TNB.2024.3514235","DOIUrl":"https://doi.org/10.1109/TNB.2024.3514235","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 1","pages":"C2-C2"},"PeriodicalIF":3.7,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820150","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZebraVas: A Non-Invasive Microvision System for Vascular Recognition and Blood Flow Monitoring of Zebrafish Larvae ZebraVas:一种用于斑马鱼幼体血管识别和血流监测的无创微视觉系统。
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-23 DOI: 10.1109/TNB.2024.3520137
Zhongyi Guo;Nana Ai;Wei Ge;Qingsong Xu
Zebrafish have emerged as a powerful model organism in cardiovascular disease research. Accurately identifying zebrafish blood vessels and evaluating blood flow velocity without injury has a wide range of biological applications. This paper presents the design and development of a non-invasive microvision system for vascular recognition and blood flow monitoring of zebrafish larvae. For the first time, a visual algorithm based on color thresholding and discrete Fourier transform filtering is proposed to determine the position of zebrafish dorsal cardinal vein vessels. Next, the blood flow velocity is determined based on the change rate of pixel values near the centroid point of the blood vessel recognition results. Then, an independent software system is developed based on the producer-consumer underlying framework. A user-friendly interface is specifically designed for biomedical workers, and a complete prototype system is built in combination with hardware devices. In addition, relevant experiments were conducted, and the results indicated that the system can effectively recognize the position of vessels and monitor blood flow velocity in zebrafish larvae under different anesthesia concentrations and developmental days. The heart rate information obtained based on blood flow velocity is consistent with the heart beating frequency. Moreover, the system has also been successfully applied to blood flow velocity monitoring under fluorescence conditions. In future work, this system will be applied in drug screening research for cardiovascular-related diseases of zebrafish larvae.
斑马鱼已经成为心血管疾病研究的一个强有力的模式生物。准确识别斑马鱼血管并在不损伤的情况下评估血流速度具有广泛的生物学应用。本文介绍了一种用于斑马鱼幼体血管识别和血流监测的无创微视觉系统的设计与开发。首次提出了一种基于颜色阈值和离散傅里叶变换滤波的视觉算法来确定斑马鱼背主静脉血管的位置。接下来,根据血管识别结果质心点附近像素值的变化率确定血流速度。然后,基于生产者-消费者底层框架,开发了一个独立的软件系统。专门为生物医学工作者设计了用户友好界面,并结合硬件设备构建了完整的原型系统。此外,还进行了相关实验,结果表明该系统可以有效识别不同麻醉浓度和发育天数下斑马鱼幼体的血管位置和血流速度。根据血流速度得到的心率信息与心脏跳动频率一致。此外,该系统还成功应用于荧光条件下的血流速度监测。在今后的工作中,该系统将应用于斑马鱼幼体心血管相关疾病的药物筛选研究。
{"title":"ZebraVas: A Non-Invasive Microvision System for Vascular Recognition and Blood Flow Monitoring of Zebrafish Larvae","authors":"Zhongyi Guo;Nana Ai;Wei Ge;Qingsong Xu","doi":"10.1109/TNB.2024.3520137","DOIUrl":"10.1109/TNB.2024.3520137","url":null,"abstract":"Zebrafish have emerged as a powerful model organism in cardiovascular disease research. Accurately identifying zebrafish blood vessels and evaluating blood flow velocity without injury has a wide range of biological applications. This paper presents the design and development of a non-invasive microvision system for vascular recognition and blood flow monitoring of zebrafish larvae. For the first time, a visual algorithm based on color thresholding and discrete Fourier transform filtering is proposed to determine the position of zebrafish dorsal cardinal vein vessels. Next, the blood flow velocity is determined based on the change rate of pixel values near the centroid point of the blood vessel recognition results. Then, an independent software system is developed based on the producer-consumer underlying framework. A user-friendly interface is specifically designed for biomedical workers, and a complete prototype system is built in combination with hardware devices. In addition, relevant experiments were conducted, and the results indicated that the system can effectively recognize the position of vessels and monitor blood flow velocity in zebrafish larvae under different anesthesia concentrations and developmental days. The heart rate information obtained based on blood flow velocity is consistent with the heart beating frequency. Moreover, the system has also been successfully applied to blood flow velocity monitoring under fluorescence conditions. In future work, this system will be applied in drug screening research for cardiovascular-related diseases of zebrafish larvae.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"225-233"},"PeriodicalIF":3.7,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microtubule Deformation Modulates Intracellular Transport by Kinesin Differently Than Dynein 微管变形通过运动蛋白调节细胞内运输与动力蛋白不同。
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-27 DOI: 10.1109/TNB.2024.3507021
Syeda Rubaiya Nasrin;Tanjina Afrin;Arif Md. Rashedul Kabir;Daisuke Inoue;Takefumi Yamashita;Makoto Oura;Johtaro Yamamoto;Masataka Kinjo;Kazuki Sada;Akira Kakugo
Mechanical stress on cells is transmitted through many biological processes, for example, cell shape control, tissue patterning, and axonal homeostasis. Microtubules, a cytoskeletal component, presumably play a significant role in the mechanoregulation of cellular processes. We investigate motor protein-driven transport of quantum dots along mechanically deformed microtubules. We found that microtubule deformation significantly slowed kinesin-driven transport, whereas we previously reported dynein-driven transport was rather robust. Such dualistic modulation of transportation dynamics of the motor proteins by microtubule deformation can be attributed to the altered affinity of the motor proteins for buckled microtubules. Our results may form the basis for understanding microtubules’ role in regulating cellular processes in a mechanically adverse environment through its detection ability and response to mechanical stress.
细胞上的机械应力通过许多生物过程传递,例如细胞形状控制、组织模式和轴突稳态。微管是细胞骨架的组成部分,可能在细胞过程的机械调节中起着重要作用。我们研究了运动蛋白驱动量子点沿机械变形微管的运输。我们发现微管变形显著减缓了动力蛋白驱动的运输,而我们之前报道的动力蛋白驱动的运输是相当稳健的。微管变形对运动蛋白运输动力学的双重调节可归因于运动蛋白对屈曲微管的亲和力改变。我们的研究结果可以通过微管的检测能力和对机械应力的响应,为理解微管在机械不利环境中调节细胞过程中的作用奠定基础。
{"title":"Microtubule Deformation Modulates Intracellular Transport by Kinesin Differently Than Dynein","authors":"Syeda Rubaiya Nasrin;Tanjina Afrin;Arif Md. Rashedul Kabir;Daisuke Inoue;Takefumi Yamashita;Makoto Oura;Johtaro Yamamoto;Masataka Kinjo;Kazuki Sada;Akira Kakugo","doi":"10.1109/TNB.2024.3507021","DOIUrl":"10.1109/TNB.2024.3507021","url":null,"abstract":"Mechanical stress on cells is transmitted through many biological processes, for example, cell shape control, tissue patterning, and axonal homeostasis. Microtubules, a cytoskeletal component, presumably play a significant role in the mechanoregulation of cellular processes. We investigate motor protein-driven transport of quantum dots along mechanically deformed microtubules. We found that microtubule deformation significantly slowed kinesin-driven transport, whereas we previously reported dynein-driven transport was rather robust. Such dualistic modulation of transportation dynamics of the motor proteins by microtubule deformation can be attributed to the altered affinity of the motor proteins for buckled microtubules. Our results may form the basis for understanding microtubules’ role in regulating cellular processes in a mechanically adverse environment through its detection ability and response to mechanical stress.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"218-224"},"PeriodicalIF":3.7,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Physical Layer Security in Molecular Communication Networks 研究分子通信网络的物理层安全性。
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-22 DOI: 10.1109/TNB.2024.3504540
Fatemeh Sadat Saeidi;Naghmeh Sadat Moayedian
In molecular communication networks, understanding the security level allows us to assess the quality of information transmitted accurately. The presence of unintended nodes in these networks is one of the factors compromising the security of information. This paper considers the simultaneous presence of a jammer and an eavesdropper as unintended nodes. This existence of unintended nodes prompts us to explore methods for assessing the security of a proposed system. Physical layer approaches can be regarded as one of the most efficient methods for assessing security in molecular communication networks. In this paper, we have utilized these approaches instead of the conventional cryptographic methods. At this layer, we have used several metrics to evaluate the security of our system; secrecy capacity (SC), the average probability of error (APOE), and comprehensive secure distance (CSD). By using SC, we also employed other approaches to improve security, such as changing the time interval, jamming molecules, and varying the distance between the transmitter and the receiver. As the last step, Monte Carlo simulation is used to verify the results obtained through analytical analysis.
在分子通信网络中,了解安全级别使我们能够准确地评估传输信息的质量。这些网络中意外节点的存在是危及信息安全的因素之一。本文将干扰者和窃听者同时存在视为非预期节点。这种非预期节点的存在促使我们探索评估所提议系统安全性的方法。物理层方法是评估分子通信网络安全性最有效的方法之一。在本文中,我们利用这些方法来代替传统的加密方法。在这一层,我们使用了几个指标来评估系统的安全性;保密能力(SC)、平均错误概率(APOE)和综合安全距离(CSD)。通过使用SC,我们还采用了其他方法来提高安全性,例如改变时间间隔,干扰分子,以及改变发射器和接收器之间的距离。最后一步,采用蒙特卡罗仿真对解析分析得到的结果进行验证。
{"title":"Investigating Physical Layer Security in Molecular Communication Networks","authors":"Fatemeh Sadat Saeidi;Naghmeh Sadat Moayedian","doi":"10.1109/TNB.2024.3504540","DOIUrl":"10.1109/TNB.2024.3504540","url":null,"abstract":"In molecular communication networks, understanding the security level allows us to assess the quality of information transmitted accurately. The presence of unintended nodes in these networks is one of the factors compromising the security of information. This paper considers the simultaneous presence of a jammer and an eavesdropper as unintended nodes. This existence of unintended nodes prompts us to explore methods for assessing the security of a proposed system. Physical layer approaches can be regarded as one of the most efficient methods for assessing security in molecular communication networks. In this paper, we have utilized these approaches instead of the conventional cryptographic methods. At this layer, we have used several metrics to evaluate the security of our system; secrecy capacity (SC), the average probability of error (APOE), and comprehensive secure distance (CSD). By using SC, we also employed other approaches to improve security, such as changing the time interval, jamming molecules, and varying the distance between the transmitter and the receiver. As the last step, Monte Carlo simulation is used to verify the results obtained through analytical analysis.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"208-217"},"PeriodicalIF":3.7,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviors of Adherent Mammalian Cells 基于电纺氧化锡纳米纤维薄膜的传感设备,用于监测粘附的哺乳动物细胞的功能行为。
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-04 DOI: 10.1109/TNB.2024.3489353
Uvanesh Kasiviswanathan;Chandan Kumar;Ajay Kumar Sahi;Amit Kumar;Satyabrata Jit;Neeraj Sharma;Sanjeev Kumar Mahto
This study presents a biosensor utilizing electrospun SnO2 nanofiber films for real-time monitoring of C2C12 cells. The biosensor demonstrates sensitivity towards cellular behaviors, including adhesion, proliferation, and detachment. Alterations in semi-circle and dielectric properties are validated through Nyquist plot and an EEC model, highlighting the biosensor’s potential for analyzing cellular dynamics.
本研究介绍了一种利用电纺 SnO2 纳米纤维薄膜实时监测 C2C12 细胞的生物传感器。该生物传感器对细胞行为(包括粘附、增殖和脱落)十分敏感。通过奈奎斯特图和 EEC 模型验证了半圆和介电特性的变化,突出了生物传感器分析细胞动态的潜力。
{"title":"Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviors of Adherent Mammalian Cells","authors":"Uvanesh Kasiviswanathan;Chandan Kumar;Ajay Kumar Sahi;Amit Kumar;Satyabrata Jit;Neeraj Sharma;Sanjeev Kumar Mahto","doi":"10.1109/TNB.2024.3489353","DOIUrl":"10.1109/TNB.2024.3489353","url":null,"abstract":"This study presents a biosensor utilizing electrospun SnO2 nanofiber films for real-time monitoring of C2C12 cells. The biosensor demonstrates sensitivity towards cellular behaviors, including adhesion, proliferation, and detachment. Alterations in semi-circle and dielectric properties are validated through Nyquist plot and an EEC model, highlighting the biosensor’s potential for analyzing cellular dynamics.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 1","pages":"120-126"},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Galaxy” Encoding: Toward High Storage Density and Low Cost "银河 "编码:实现高存储密度和低成本。
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-28 DOI: 10.1109/TNB.2024.3481504
Xuncai Zhang;Yunfei Lu
DNA is considered one of the most attractive storage media because of its excellent reliability and durability. Early encoding schemes lacked flexibility and scalability. To address these limitations, we propose a combination of static mapping and dynamic encoding, named “Galaxy” encoding. This scheme uses both the “dual-rule interleaving” algorithm and the “twelve-element Huffman rotational encoding” algorithm. We tested it with “Shakespeare Sonnets” and other files, achieving an encoding information density of approximately 2.563 bits/nt. Additionally, the inclusion of Reed–Solomon error-correcting codes can correct nearly 5% of the errors. Our simulations show that it supports various file types (.gz, .tar, .exe, etc.). We also analyzed the cost and fault tolerance of “Galaxy” encoding, demonstrating its high coding efficiency and ability to fully recover original information while effectively reducing the costs of DNA synthesis and sequencing.
DNA 因其出色的可靠性和耐用性而被认为是最具吸引力的存储介质之一。早期的编码方案缺乏灵活性和可扩展性。为了解决这些局限性,我们提出了一种静态映射和动态编码相结合的方案,命名为 "银河 "编码。该方案同时使用了 "双规则交错 "算法和 "十二元素哈夫曼旋转编码 "算法。我们用 "莎士比亚十四行诗 "和其他文件对其进行了测试,编码信息密度约为 2.563 bits/nt。此外,加入里德-所罗门纠错码可纠正近 5%的错误。我们的模拟显示,它支持各种文件类型(.gz、.tar、.exe 等)。我们还分析了 "银河 "编码的成本和容错性,证明其编码效率高,能够完全恢复原始信息,同时有效降低 DNA 合成和测序的成本。
{"title":"“Galaxy” Encoding: Toward High Storage Density and Low Cost","authors":"Xuncai Zhang;Yunfei Lu","doi":"10.1109/TNB.2024.3481504","DOIUrl":"10.1109/TNB.2024.3481504","url":null,"abstract":"DNA is considered one of the most attractive storage media because of its excellent reliability and durability. Early encoding schemes lacked flexibility and scalability. To address these limitations, we propose a combination of static mapping and dynamic encoding, named “Galaxy” encoding. This scheme uses both the “dual-rule interleaving” algorithm and the “twelve-element Huffman rotational encoding” algorithm. We tested it with “Shakespeare Sonnets” and other files, achieving an encoding information density of approximately 2.563 bits/nt. Additionally, the inclusion of Reed–Solomon error-correcting codes can correct nearly 5% of the errors. Our simulations show that it supports various file types (.gz, .tar, .exe, etc.). We also analyzed the cost and fault tolerance of “Galaxy” encoding, demonstrating its high coding efficiency and ability to fully recover original information while effectively reducing the costs of DNA synthesis and sequencing.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"200-207"},"PeriodicalIF":3.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on NanoBioscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1