首页 > 最新文献

IEEE Transactions on Microwave Theory and Techniques最新文献

英文 中文
Glass Microwave Microfluidic Devices for Broadband Characterization of Diverse Fluids 用于多种流体宽带表征的玻璃微波微流控装置
IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-15 DOI: 10.1109/TMTT.2024.3491653
Jacob T. Pawlik;Tomasz Karpisz;Yasaman Kazemipour;Nicholas Derimow;Sarah R. Evans;Bryan T. Bosworth;James C. Booth;Nathan D. Orloff;Christian J. Long;Angela C. Stelson
We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 30 GHz with associated uncertainties. Conventional microwave microfluidic devices use polymer-based microfluidic layers for fluid delivery, but these polymers swell in organic solvents and are not suitable for many applications. Our device incorporates glass microfluidic channels with platinum coplanar waveguides (CPWs) to provide a solvent-resistant architecture for broadband dielectric spectroscopy. We utilize broadband scattering parameter measurements with a vector network analyzer (VNA) on a wafer probing station and multiline thru-reflect–line (mTRL) calibrations to extract the distributed circuit parameters of transmission lines and solve for fluid permittivity. In this work, we demonstrate the utility of the device by measuring the permittivity of four organic solvents difficult to measure otherwise: hexane, heptane, decane, and toluene.
我们展示了一个玻璃微波微流控装置,用于确定从100 MHz到30 GHz的各种液体化学品的介电常数和相关的不确定度。传统的微波微流控装置使用基于聚合物的微流控层进行流体输送,但这些聚合物在有机溶剂中膨胀,不适合许多应用。我们的装置结合了玻璃微流体通道和铂共面波导(cpw),为宽带介电光谱提供了耐溶剂的结构。我们利用在晶圆探测站的矢量网络分析仪(VNA)测量宽带散射参数和多线透反射线(mTRL)校准来提取传输线的分布电路参数并求解流体介电常数。在这项工作中,我们通过测量四种难以测量的有机溶剂的介电常数来证明该装置的实用性:己烷、庚烷、癸烷和甲苯。
{"title":"Glass Microwave Microfluidic Devices for Broadband Characterization of Diverse Fluids","authors":"Jacob T. Pawlik;Tomasz Karpisz;Yasaman Kazemipour;Nicholas Derimow;Sarah R. Evans;Bryan T. Bosworth;James C. Booth;Nathan D. Orloff;Christian J. Long;Angela C. Stelson","doi":"10.1109/TMTT.2024.3491653","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3491653","url":null,"abstract":"We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 30 GHz with associated uncertainties. Conventional microwave microfluidic devices use polymer-based microfluidic layers for fluid delivery, but these polymers swell in organic solvents and are not suitable for many applications. Our device incorporates glass microfluidic channels with platinum coplanar waveguides (CPWs) to provide a solvent-resistant architecture for broadband dielectric spectroscopy. We utilize broadband scattering parameter measurements with a vector network analyzer (VNA) on a wafer probing station and multiline thru-reflect–line (mTRL) calibrations to extract the distributed circuit parameters of transmission lines and solve for fluid permittivity. In this work, we demonstrate the utility of the device by measuring the permittivity of four organic solvents difficult to measure otherwise: hexane, heptane, decane, and toluene.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 1","pages":"258-265"},"PeriodicalIF":4.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connect. Support. Inspire. 连接。支持。激发灵感。
IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TMTT.2024.3489515
{"title":"Connect. Support. Inspire.","authors":"","doi":"10.1109/TMTT.2024.3489515","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3489515","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"72 11","pages":"6790-6790"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TMTT.2024.3488633
{"title":"Blank Page","authors":"","doi":"10.1109/TMTT.2024.3488633","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3488633","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"72 11","pages":"C4-C4"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Open Access Publishing IEEE 开放存取出版
IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TMTT.2024.3489513
{"title":"IEEE Open Access Publishing","authors":"","doi":"10.1109/TMTT.2024.3489513","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3489513","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"72 11","pages":"6792-6792"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Microwave Theory and Techniques Publication Information 电气和电子工程师学会《微波理论与技术》杂志出版信息
IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TMTT.2024.3488637
{"title":"IEEE Transactions on Microwave Theory and Techniques Publication Information","authors":"","doi":"10.1109/TMTT.2024.3488637","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3488637","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"72 11","pages":"C2-C2"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigorous Approach to Coupling Matrix Synthesis Problem With Arbitrary Topology 任意拓扑下耦合矩阵综合问题的严格方法
IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TMTT.2024.3481877
Seungjun Lee;Jongheun Lee;Juseop Lee
This work presents a mathematical procedure for solving coupling matrix synthesis problems with arbitrary topologies. A discussion on the properties of arbitrary response-preserving similarity transformations is provided. Based on this property, the proposed method rigorously addresses every possible coupling matrix complying with a desired target topology. This method applies to arbitrary target topologies, both redundant and non-redundant. In cases where there are an infinite number of solutions, this procedure yields a parameterized equation representing all such solutions.
本文提出了求解任意拓扑耦合矩阵综合问题的数学方法。讨论了任意保持响应的相似变换的性质。基于这一特性,所提出的方法严格地寻址符合期望目标拓扑的每个可能的耦合矩阵。该方法适用于任意目标拓扑,包括冗余拓扑和非冗余拓扑。在有无限个解的情况下,这个过程产生一个表示所有解的参数化方程。
{"title":"Rigorous Approach to Coupling Matrix Synthesis Problem With Arbitrary Topology","authors":"Seungjun Lee;Jongheun Lee;Juseop Lee","doi":"10.1109/TMTT.2024.3481877","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3481877","url":null,"abstract":"This work presents a mathematical procedure for solving coupling matrix synthesis problems with arbitrary topologies. A discussion on the properties of arbitrary response-preserving similarity transformations is provided. Based on this property, the proposed method rigorously addresses every possible coupling matrix complying with a desired target topology. This method applies to arbitrary target topologies, both redundant and non-redundant. In cases where there are an infinite number of solutions, this procedure yields a parameterized equation representing all such solutions.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 1","pages":"335-351"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of Complex Neutralization Gain-Boosting Technique With Low-Loss Power Combining for Efficient, Linear D-Band Power Amplifiers 高效线性d波段功率放大器的低损耗复合中和增益增强技术设计与分析
IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TMTT.2024.3486585
Mohamed Eleraky;Tzu-Yuan Huang;Yuqi Liu;Hua Wang
This article introduces a comprehensive design and optimization approach aimed at significantly improving the power gain of a given device to achieve the theoretical maximum stable power gain, denoted as $4U$ (with U representing Mason’s Unilateral power gain), across a wide bandwidth. To evaluate the wideband gain enhancement of the device, a device-level Gain-Bandwidth Product (GBW) metric is presented. The proposed technique leverages a high-order embedding network, specifically complex neutralization, applied to a differential power device pair. The detailed optimization process is presented alongside theoretical modeling. To address the limited output power at the D-band, a highly efficient power-combining network is co-designed with the output-matching network of the power amplifier (PA). To validate the proposed methodology, a D-band three-stage PA with two-way power combining was implemented using the GlobalFoundries 45-nm SOI process. The amplifier occupies a compact active area of $0.116~text {mm}^{2}$ . Small-signal measurements demonstrate a peak power gain of 21.7- and a 3-dB bandwidth (BW) of 15 GHz, covering the frequency range from 117 to 132 GHz. The enhanced power gain enables the PA drivers to operate efficiently and linearly in class-AB biasing mode at 127.5 GHz, delivering a saturated output power ( $P_{text {sat}}$ ) of 11.9 dBm, output power at 1 dB compression point ( $text {OP}_{1,text {dB}}$ ) of 11.85 dBm, and a peak power-added efficiency (PAE) of 15%. This allows the PA to achieve an average output power of 7.1 (5.9) dBm under 64-QAM (128-QAM) modulation with a data rate of 27 (16.8) Gb/s. The PA shows an average modulation efficiency of 6.9% (5.15%) with an rms error vector magnitude ( $text {EVM}_{text {rms}}$ ) better than −24.8 (−25.7) dB.
本文介绍了一种全面的设计和优化方法,旨在显着提高给定器件的功率增益,以实现理论最大稳定功率增益,表示为$4U$(其中U表示梅森的单边功率增益),在宽带宽范围内。为了评估器件的宽带增益增强,提出了器件级增益-带宽积(GBW)度量。提出的技术利用高阶嵌入网络,特别是复杂中和,应用于差分功率器件对。在理论建模的基础上详细介绍了优化过程。为解决d频段输出功率有限的问题,设计了一种高效的功率组合网络与功率放大器(PA)的输出匹配网络。为了验证所提出的方法,采用GlobalFoundries的45纳米SOI工艺实现了具有双向功率组合的d波段三级PA。该放大器的有效面积为$0.116~text {mm}^{2}$。小信号测量表明,峰值功率增益为21.7,3db带宽(BW)为15 GHz,覆盖频率范围为117至132 GHz。增强的功率增益使PA驱动器能够在127.5 GHz的ab类偏置模式下高效线性地工作,提供11.9 dBm的饱和输出功率($P_{text {sat}}$), 1db压缩点($text {OP}_{1,text {dB}}$)的输出功率为11.85 dBm,峰值功率附加效率(PAE)为15%。这使得PA在64-QAM (128-QAM)调制下的平均输出功率为7.1 (5.9)dBm,数据速率为27 (16.8)Gb/s。PA的平均调制效率为6.9% (5.15%),rms误差矢量幅度($text {EVM}_{text {rms}}$)优于−24.8(−25.7)dB。
{"title":"Design and Analysis of Complex Neutralization Gain-Boosting Technique With Low-Loss Power Combining for Efficient, Linear D-Band Power Amplifiers","authors":"Mohamed Eleraky;Tzu-Yuan Huang;Yuqi Liu;Hua Wang","doi":"10.1109/TMTT.2024.3486585","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3486585","url":null,"abstract":"This article introduces a comprehensive design and optimization approach aimed at significantly improving the power gain of a given device to achieve the theoretical maximum stable power gain, denoted as \u0000<inline-formula> <tex-math>$4U$ </tex-math></inline-formula>\u0000 (with U representing Mason’s Unilateral power gain), across a wide bandwidth. To evaluate the wideband gain enhancement of the device, a device-level Gain-Bandwidth Product (GBW) metric is presented. The proposed technique leverages a high-order embedding network, specifically complex neutralization, applied to a differential power device pair. The detailed optimization process is presented alongside theoretical modeling. To address the limited output power at the D-band, a highly efficient power-combining network is co-designed with the output-matching network of the power amplifier (PA). To validate the proposed methodology, a D-band three-stage PA with two-way power combining was implemented using the GlobalFoundries 45-nm SOI process. The amplifier occupies a compact active area of \u0000<inline-formula> <tex-math>$0.116~text {mm}^{2}$ </tex-math></inline-formula>\u0000. Small-signal measurements demonstrate a peak power gain of 21.7- and a 3-dB bandwidth (BW) of 15 GHz, covering the frequency range from 117 to 132 GHz. The enhanced power gain enables the PA drivers to operate efficiently and linearly in class-AB biasing mode at 127.5 GHz, delivering a saturated output power (\u0000<inline-formula> <tex-math>$P_{text {sat}}$ </tex-math></inline-formula>\u0000) of 11.9 dBm, output power at 1 dB compression point (\u0000<inline-formula> <tex-math>$text {OP}_{1,text {dB}}$ </tex-math></inline-formula>\u0000) of 11.85 dBm, and a peak power-added efficiency (PAE) of 15%. This allows the PA to achieve an average output power of 7.1 (5.9) dBm under 64-QAM (128-QAM) modulation with a data rate of 27 (16.8) Gb/s. The PA shows an average modulation efficiency of 6.9% (5.15%) with an rms error vector magnitude (\u0000<inline-formula> <tex-math>$text {EVM}_{text {rms}}$ </tex-math></inline-formula>\u0000) better than −24.8 (−25.7) dB.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 1","pages":"195-205"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing IEEE Collabratex 介绍 IEEE Collabratex
IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TMTT.2024.3489517
{"title":"Introducing IEEE Collabratex","authors":"","doi":"10.1109/TMTT.2024.3489517","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3489517","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"72 11","pages":"6791-6791"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Switchable Band RF/Analog Processing Single-Sideband Mixer for Distributed Array Phase Synchronization 用于分布式阵列相位同步的可切换频带射频/模拟处理单边带混频器
IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TMTT.2024.3487917
Hao Yan;Hanxiang Zhang;Powei Liu;Bayaner Arigong
In this article, a sideband switchable RF/analog processing single sideband (SSB) mixer is proposed to synchronize the phase in open-loop distributed array system. The proposed SSB mixer is composed of single balanced mixer, Wilkinson power divider, switches, transmission line delays, RF Hilbert transformer, and T-junction combiner. The design theory is developed for phase synchronization in distributed array based on the sequential switched sideband signal, and detail design approach is developed for the proposed RF/analog processing switchable SSB mixer. By switching the transmission line delays, different sidebands are controlled in the proposed SSB mixer. To verify the design concept, a prototype SSB mixer is designed and validated in simulation and experiment, and the results align well with design theory. Different from other SSB mixer, this is first time a RF/analog processing switchable band SSB mixer is proposed to show great potential for exploring novel wireless communication technique.
本文提出了一种边带可切换射频/模拟处理单边带混频器,用于开环分布式阵列系统的相位同步。提出的SSB混频器由单平衡混频器、威尔金森功率分配器、开关、传输线延迟、RF希尔伯特变压器和t型结组合器组成。提出了基于时序开关边带信号的分布式阵列相位同步设计理论,并给出了射频/模拟处理可切换SSB混频器的详细设计方法。通过切换传输线延迟,可以控制SSB混频器的不同侧带。为了验证设计理念,设计了原型混合器,并进行了仿真和实验验证,结果与设计理论吻合较好。与其他SSB混频器不同,这是第一次提出射频/模拟处理可切换频段SSB混频器,显示出探索新型无线通信技术的巨大潜力。
{"title":"A Switchable Band RF/Analog Processing Single-Sideband Mixer for Distributed Array Phase Synchronization","authors":"Hao Yan;Hanxiang Zhang;Powei Liu;Bayaner Arigong","doi":"10.1109/TMTT.2024.3487917","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3487917","url":null,"abstract":"In this article, a sideband switchable RF/analog processing single sideband (SSB) mixer is proposed to synchronize the phase in open-loop distributed array system. The proposed SSB mixer is composed of single balanced mixer, Wilkinson power divider, switches, transmission line delays, RF Hilbert transformer, and T-junction combiner. The design theory is developed for phase synchronization in distributed array based on the sequential switched sideband signal, and detail design approach is developed for the proposed RF/analog processing switchable SSB mixer. By switching the transmission line delays, different sidebands are controlled in the proposed SSB mixer. To verify the design concept, a prototype SSB mixer is designed and validated in simulation and experiment, and the results align well with design theory. Different from other SSB mixer, this is first time a RF/analog processing switchable band SSB mixer is proposed to show great potential for exploring novel wireless communication technique.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 1","pages":"277-285"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Microwave Theory and Techniques Information for Authors IEEE 《微波理论与技术》杂志 作者须知
IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TMTT.2024.3488635
{"title":"IEEE Transactions on Microwave Theory and Techniques Information for Authors","authors":"","doi":"10.1109/TMTT.2024.3488635","DOIUrl":"https://doi.org/10.1109/TMTT.2024.3488635","url":null,"abstract":"","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"72 11","pages":"C3-C3"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Microwave Theory and Techniques
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1