Pub Date : 2021-08-01Epub Date: 2021-03-30DOI: 10.1049/nbt2.12043
Gabriel M Hilario, Fernando B Sulczewski, Raquel Liszbinski, Larissa D Mello, Gustavo Hagen, Tiago Fazolo, Jayme Neto, Eliane Dallegrave, Pedro Romão, Tanira Aguirre, Luiz C Rodrigues Junior
Herpes simplex virus (HSV) 1 and 2 are viruses that infect individuals worldwide and for which there is no cure or vaccine available. The protective response against herpes is mostly mediated by CD8 T lymphocytes that respond to the immunodominant SSIEFARL epitope. However, there are some obstacles concerning the use of free SSIEFARL for vaccine or immunotherapy. The aim of this study was to evaluate the feasibility of nanoencapsulation of SSIEFARL and its immunostimulatory properties. Nano/SSIEFARL was produced by interfacial polymerization in methylmetacrylate, and the physico-chemical properties, morphology and immunobiological parameters were evaluated. To evaluate the ex vivo capacity of Nano/SSIEFARL, we used splenocytes from HSV-1-infected mice to enhance the frequency of SSIEFARL-specific CD8 T lymphocytes. The results indicate that Nano/SSIEFARL has a spherical shape, an average diameter of 352 ± 22 nm, the PDI was 0.361 ± 0.009 and is negatively charged (-26.30 ± 35). The stability at 4°C was 28 days. Also, Nano/SSIEFARL is not toxic for cells at low concentrations in vitro and it is taken up by JAWS II dendritic cells. No histopathological changes were observed in kidneys, liver and lymph nodes of animals treated with Nano/SSIEFARL. Nan/SSIEFARL increased the production of IL-1β, TNF-α and IL-12 by the dendritic cells. Finally, Nano/SSIEFARL expanded the frequency of SSIEFARL-specific CD8+T lymphocytes at the same rate as free SSIEFARL. In conclusion all data together indicate that SSIEFARL is suitable for nanoencapsulation, and the system produced presents some immunoadjuvant properties that can be used to improve the immune response against herpes.
{"title":"Development and immunobiological evaluation of nanoparticles containing an immunodominant epitope of herpes simplex virus.","authors":"Gabriel M Hilario, Fernando B Sulczewski, Raquel Liszbinski, Larissa D Mello, Gustavo Hagen, Tiago Fazolo, Jayme Neto, Eliane Dallegrave, Pedro Romão, Tanira Aguirre, Luiz C Rodrigues Junior","doi":"10.1049/nbt2.12043","DOIUrl":"10.1049/nbt2.12043","url":null,"abstract":"<p><p>Herpes simplex virus (HSV) 1 and 2 are viruses that infect individuals worldwide and for which there is no cure or vaccine available. The protective response against herpes is mostly mediated by CD8 T lymphocytes that respond to the immunodominant SSIEFARL epitope. However, there are some obstacles concerning the use of free SSIEFARL for vaccine or immunotherapy. The aim of this study was to evaluate the feasibility of nanoencapsulation of SSIEFARL and its immunostimulatory properties. Nano/SSIEFARL was produced by interfacial polymerization in methylmetacrylate, and the physico-chemical properties, morphology and immunobiological parameters were evaluated. To evaluate the ex vivo capacity of Nano/SSIEFARL, we used splenocytes from HSV-1-infected mice to enhance the frequency of SSIEFARL-specific CD8 T lymphocytes. The results indicate that Nano/SSIEFARL has a spherical shape, an average diameter of 352 ± 22 nm, the PDI was 0.361 ± 0.009 and is negatively charged (-26.30 ± 35). The stability at 4°C was 28 days. Also, Nano/SSIEFARL is not toxic for cells at low concentrations in vitro and it is taken up by JAWS II dendritic cells. No histopathological changes were observed in kidneys, liver and lymph nodes of animals treated with Nano/SSIEFARL. Nan/SSIEFARL increased the production of IL-1β, TNF-α and IL-12 by the dendritic cells. Finally, Nano/SSIEFARL expanded the frequency of SSIEFARL-specific CD8+T lymphocytes at the same rate as free SSIEFARL. In conclusion all data together indicate that SSIEFARL is suitable for nanoencapsulation, and the system produced presents some immunoadjuvant properties that can be used to improve the immune response against herpes.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 6","pages":"532-544"},"PeriodicalIF":2.3,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39558180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01Epub Date: 2021-02-02DOI: 10.1049/nbt2.12015
Daniella Fehér, Andrea Ferencz, Györgyi Szabó, Krisztina Juhos, Domokos Csukás, Constantinos Voniatis, Lilla Reininger, Kristóf Molnár, Angéla Jedlovszky-Hajdú, György Wéber
Hernia is a defect of the abdominal wall. Treatment is principally surgical mesh implantation. Non-degradable surgical meshes produce numerous complications and side-effects such as inflammatory response, mesh migration and chronic pain. In contrast, the biodegradable, poly (vinyl alcohol) (PVA) based polymers have excellent chemical, mechanical and biological properties and after their degradation no chronic pain can be expected. The toxicology of PVA solution and fibers was investigated with Human dermal fibroblast- Adult cell line. Implantation tests were observed on long-term contact (rat) and large animal (swine) models. To measure the adhesion formation, Diamond and Vandendael score were used. Macroscopical and histological responses were graded from the samples. In vitro examination showed that PVA solution and fibers are biocompatible for the cells. According to the implantation tests, all samples were integrated into the surrounding tissue, and there was no foreign body reaction. The average number of adhesions was found on the non-absorbable suture line. The biocompatibility of the PVA nanofiber mesh was demonstrated. It has a non-adhesive, non-toxic and good quality structure which has the potential to be an alternative solution for the part of the hernia mesh.
{"title":"Early and late effects of absorbable poly(vinyl alcohol) hernia mesh to tissue reconstruction.","authors":"Daniella Fehér, Andrea Ferencz, Györgyi Szabó, Krisztina Juhos, Domokos Csukás, Constantinos Voniatis, Lilla Reininger, Kristóf Molnár, Angéla Jedlovszky-Hajdú, György Wéber","doi":"10.1049/nbt2.12015","DOIUrl":"https://doi.org/10.1049/nbt2.12015","url":null,"abstract":"<p><p>Hernia is a defect of the abdominal wall. Treatment is principally surgical mesh implantation. Non-degradable surgical meshes produce numerous complications and side-effects such as inflammatory response, mesh migration and chronic pain. In contrast, the biodegradable, poly (vinyl alcohol) (PVA) based polymers have excellent chemical, mechanical and biological properties and after their degradation no chronic pain can be expected. The toxicology of PVA solution and fibers was investigated with Human dermal fibroblast- Adult cell line. Implantation tests were observed on long-term contact (rat) and large animal (swine) models. To measure the adhesion formation, Diamond and Vandendael score were used. Macroscopical and histological responses were graded from the samples. In vitro examination showed that PVA solution and fibers are biocompatible for the cells. According to the implantation tests, all samples were integrated into the surrounding tissue, and there was no foreign body reaction. The average number of adhesions was found on the non-absorbable suture line. The biocompatibility of the PVA nanofiber mesh was demonstrated. It has a non-adhesive, non-toxic and good quality structure which has the potential to be an alternative solution for the part of the hernia mesh.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 6","pages":"565-574"},"PeriodicalIF":2.3,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39569322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01Epub Date: 2021-03-22DOI: 10.1049/nbt2.12038
Nathalia Müller, Mateus Eugenio, Luciana F Romão, Jorge Marcondes de Souza, Soniza V Alves-Leon, Loraine Campanati, Celso Sant'Anna
Glioblastoma is the most life-threatening tumour of the central nervous system. Temozolomide (TMZ) is the first-choice oral drug for the treatment of glioblastoma, although it shows low efficacy. Silver nanoparticles (AgNPs) have been shown to exhibit biocidal activity in a variety of microorganisms, including some pathogenic microorganisms. Herein, the antiproliferative effect of AgCl-NPs on glioblastoma cell lines (GBM02 and GBM11) and on astrocytes was evaluated through automated quantitative image-based analysis (HCA) of the cells. The cells were treated with 0.1-5.0 μg/ml AgCl-NPs or with 9.7-48.5 μg/ml TMZ. Cells that received combined treatment were also analysed. At a maximum tested concentration of AgCl-NPs, GBM02 and GBM11, the growth decreased by 93% and 40%, respectively, following 72 h of treatment. TMZ treatment decreased the proliferation of GBM02 and GBM11 cells by 58% and 34%, respectively. Combinations of AgCl-NPs and TMZ showed intermediate antiproliferative effects; the lowest concentrations caused an inhibition similar to that obtained with TMZ, and the highest concentrations caused inhibition similar to that obtained with AgCl-NPs alone. No significant changes in astrocyte proliferation were observed. The authors' findings showed that HCA is a fast and reliable approach that can be used to evaluate the antiproliferative effect of the nanoparticles at the single-cell level and that AgCl-NPs are promising agents for glioblastoma treatment.
{"title":"Assessing the antiproliferative effect of biogenic silver chloride nanoparticles on glioblastoma cell lines by quantitative image-based analysis.","authors":"Nathalia Müller, Mateus Eugenio, Luciana F Romão, Jorge Marcondes de Souza, Soniza V Alves-Leon, Loraine Campanati, Celso Sant'Anna","doi":"10.1049/nbt2.12038","DOIUrl":"https://doi.org/10.1049/nbt2.12038","url":null,"abstract":"<p><p>Glioblastoma is the most life-threatening tumour of the central nervous system. Temozolomide (TMZ) is the first-choice oral drug for the treatment of glioblastoma, although it shows low efficacy. Silver nanoparticles (AgNPs) have been shown to exhibit biocidal activity in a variety of microorganisms, including some pathogenic microorganisms. Herein, the antiproliferative effect of AgCl-NPs on glioblastoma cell lines (GBM02 and GBM11) and on astrocytes was evaluated through automated quantitative image-based analysis (HCA) of the cells. The cells were treated with 0.1-5.0 μg/ml AgCl-NPs or with 9.7-48.5 μg/ml TMZ. Cells that received combined treatment were also analysed. At a maximum tested concentration of AgCl-NPs, GBM02 and GBM11, the growth decreased by 93% and 40%, respectively, following 72 h of treatment. TMZ treatment decreased the proliferation of GBM02 and GBM11 cells by 58% and 34%, respectively. Combinations of AgCl-NPs and TMZ showed intermediate antiproliferative effects; the lowest concentrations caused an inhibition similar to that obtained with TMZ, and the highest concentrations caused inhibition similar to that obtained with AgCl-NPs alone. No significant changes in astrocyte proliferation were observed. The authors' findings showed that HCA is a fast and reliable approach that can be used to evaluate the antiproliferative effect of the nanoparticles at the single-cell level and that AgCl-NPs are promising agents for glioblastoma treatment.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 6","pages":"558-564"},"PeriodicalIF":2.3,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39558178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01Epub Date: 2021-03-22DOI: 10.1049/nbt2.12037
Michelle Dsouza, Sakthi Swarrup Jayabalan
This article analyses the effect of the size reduced Silver (Ag) loaded hydrogel by (a) lyophilisation (S1) (b) ball milling (S2) techniques and its effect on anti-bacterial activity. The g loaded hydrogel, S1 and S2 shows an increase in swelling with an increase in pH. The swelling is more for Ag loaded hydrogel in low pH. For pH above 7, the swelling ratio of Ag loaded hydrogel and S1 are almost the same while S2 shows very less swelling. The anti-bacterial studies reveal that S1 and Ag loaded hydrogel reacted well in S. aureus (Staphylococcus aureus) but no zone formation was seen in S2 .whereas no zone was formed in S1 and S2 for E-coli (Escherichia coli). As the next step, the anti-bacterial activity of Ag loaded hydrogel with the addition of curcumin (CS1-size reduced by lyophilisation, CS2-size reduced by ball milling) and turmeric (TS1-size reduced by lyophilisation, TS2-size reduced by ball milling) were investigated. In case of E.coli, a zonal formation of 1.2 cm for TS1 and 1.1 cm for TS2 and 1 cm for CS1 and 0.2 cm for CS2 was observed. For S.aureus, 1.1 and 1 cm were seen for TS1 and CS1. TS2 and CS2 did not show any zone formation. These studies clearly show that size reduction by lyophilisation (S1, TS1 and CS1) is more efficient in all the cases when compared to the ball milling technique (S2, TS2 and CS2). Comparing TS1 with S1 and CS1, TS1 has highly efficient/effective anti-bacterial properties than S1 and CS1. Therefore, lyophilised hydrogel incorporating turmeric and silver (TS1) is an excellent choice compared to using curcumin for wound dressing applications.
本文分析了(a)冻干(S1) (b)球磨(S2)技术对负载银(Ag)的水凝胶尺寸减小的影响及其对抗菌活性的影响。g负载水凝胶S1和S2的溶胀率随pH的增加而增加,低pH时Ag负载水凝胶溶胀率更大,pH大于7时Ag负载水凝胶与S1溶胀率基本相同,S2溶胀率很小。结果表明,载银水凝胶S1和载银水凝胶对金黄色葡萄球菌(金黄色葡萄球菌)反应良好,而S2对大肠杆菌(大肠杆菌)没有形成带,S1和S2对大肠杆菌没有形成带。下一步,研究了添加姜黄素(cs1 -尺寸经冻干还原,cs2 -尺寸经球磨还原)和姜黄(ts1 -尺寸经冻干还原,ts2 -尺寸经球磨还原)的Ag负载水凝胶的抗菌活性。在大肠杆菌中,TS1为1.2 cm, TS2为1.1 cm, CS1为1 cm, CS2为0.2 cm。金黄色葡萄球菌TS1和CS1分别为1.1 cm和1 cm。TS2和CS2未显示出任何带形成。这些研究清楚地表明,与球磨技术(S2, TS2和CS2)相比,冻干(S1, TS1和CS1)在所有情况下都更有效。TS1与S1和CS1比较,TS1比S1和CS1具有高效的抗菌性能。因此,与使用姜黄素进行伤口敷料应用相比,含有姜黄和银(TS1)的冻干水凝胶是一个很好的选择。
{"title":"Analysis of the size reduction of AgNPs loaded hydrogel and its effect on the anti-bacterial activity.","authors":"Michelle Dsouza, Sakthi Swarrup Jayabalan","doi":"10.1049/nbt2.12037","DOIUrl":"https://doi.org/10.1049/nbt2.12037","url":null,"abstract":"<p><p>This article analyses the effect of the size reduced Silver (Ag) loaded hydrogel by (a) lyophilisation (S1) (b) ball milling (S2) techniques and its effect on anti-bacterial activity. The g loaded hydrogel, S1 and S2 shows an increase in swelling with an increase in pH. The swelling is more for Ag loaded hydrogel in low pH. For pH above 7, the swelling ratio of Ag loaded hydrogel and S1 are almost the same while S2 shows very less swelling. The anti-bacterial studies reveal that S1 and Ag loaded hydrogel reacted well in S. aureus (Staphylococcus aureus) but no zone formation was seen in S2 .whereas no zone was formed in S1 and S2 for E-coli (Escherichia coli). As the next step, the anti-bacterial activity of Ag loaded hydrogel with the addition of curcumin (CS1-size reduced by lyophilisation, CS2-size reduced by ball milling) and turmeric (TS1-size reduced by lyophilisation, TS2-size reduced by ball milling) were investigated. In case of E.coli, a zonal formation of 1.2 cm for TS1 and 1.1 cm for TS2 and 1 cm for CS1 and 0.2 cm for CS2 was observed. For S.aureus, 1.1 and 1 cm were seen for TS1 and CS1. TS2 and CS2 did not show any zone formation. These studies clearly show that size reduction by lyophilisation (S1, TS1 and CS1) is more efficient in all the cases when compared to the ball milling technique (S2, TS2 and CS2). Comparing TS1 with S1 and CS1, TS1 has highly efficient/effective anti-bacterial properties than S1 and CS1. Therefore, lyophilised hydrogel incorporating turmeric and silver (TS1) is an excellent choice compared to using curcumin for wound dressing applications.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 6","pages":"545-557"},"PeriodicalIF":2.3,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39569321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neutral nanoparticles (NPs) of copper (Cu), iron (Fe) and zinc (Zn) are widely used in agriculture. Polymer seed coating with different metal NPs may supply important nutrients during plant growth and consequently enhances yields. In this research, three kinds of metal NPs were conducted to optimize the optimal concentration through seed coating for improving plant growth and productivity of tomato. Seeds of Venice tomato cultivars were coated by polymer-based mixture with different concentrations of Cu, Fe and Zn NPs, respectively. At harvest, seed germination, internode length, average weight of single fruit, yield and fruit shape index were measured. When compared with control, the internode length increased by 7.3% and 6.8% with low concentration of Fe NPs and Zn NPs, respectively. The average weight per fruit improved over control by 10.2% and 7.5% with low concentration of Cu NPs and Fe NPs, respectively. The yield with low concentration of Cu NPs and Fe NPs increased the yield by 10.7% and 6.5% compared with control. These results indicated that polymer seed coating with low concentration of metal NPs may promote the uptake of some nutrient and thus improve the productivity of tomato.
{"title":"Influence of seed coating with copper, iron and zinc nanoparticles on growth and yield of tomato","authors":"Xiaoqiang Zhao, Yu Chen, Huasheng Li, Jinying Lu","doi":"10.1049/nbt2.12064","DOIUrl":"10.1049/nbt2.12064","url":null,"abstract":"<p>Neutral nanoparticles (NPs) of copper (Cu), iron (Fe) and zinc (Zn) are widely used in agriculture. Polymer seed coating with different metal NPs may supply important nutrients during plant growth and consequently enhances yields. In this research, three kinds of metal NPs were conducted to optimize the optimal concentration through seed coating for improving plant growth and productivity of tomato. Seeds of Venice tomato cultivars were coated by polymer-based mixture with different concentrations of Cu, Fe and Zn NPs, respectively. At harvest, seed germination, internode length, average weight of single fruit, yield and fruit shape index were measured. When compared with control, the internode length increased by 7.3% and 6.8% with low concentration of Fe NPs and Zn NPs, respectively. The average weight per fruit improved over control by 10.2% and 7.5% with low concentration of Cu NPs and Fe NPs, respectively. The yield with low concentration of Cu NPs and Fe NPs increased the yield by 10.7% and 6.5% compared with control. These results indicated that polymer seed coating with low concentration of metal NPs may promote the uptake of some nutrient and thus improve the productivity of tomato.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 8","pages":"674-679"},"PeriodicalIF":2.3,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c6/60/NBT2-15-674.PMC8675844.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39555385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongxing Miao, Yujie Wang, Shengjie Li, Min Zhang, Meng Xu
The drug nanoparticles free of additional carriers hold great promise in drug delivery and are suitable for the therapy of cancers. Herein, we developed a one-pot method to prepare chlorin e6 (Ce6) nano-precipitations (Ce6 NPs) for effective photodynamic therapy of colorectal cancer. The drug loading of Ce6 NPs was around 81% and showed acceptable stability, high biocompatibility as well as effective reactive oxygen species (ROS) generation capability. As a result, the Ce6 NPs can produce significantly elevated ROS upon laser irradiations and achieved better anticancer benefits than free Ce6.
{"title":"One-pot synthesis chlorin e6 nano-precipitation for colorectal cancer treatment Ce6 NPs for colorectal cancer treatment","authors":"Zhongxing Miao, Yujie Wang, Shengjie Li, Min Zhang, Meng Xu","doi":"10.1049/nbt2.12065","DOIUrl":"10.1049/nbt2.12065","url":null,"abstract":"<p>The drug nanoparticles free of additional carriers hold great promise in drug delivery and are suitable for the therapy of cancers. Herein, we developed a one-pot method to prepare chlorin e6 (Ce6) nano-precipitations (Ce6 NPs) for effective photodynamic therapy of colorectal cancer. The drug loading of Ce6 NPs was around 81% and showed acceptable stability, high biocompatibility as well as effective reactive oxygen species (ROS) generation capability. As a result, the Ce6 NPs can produce significantly elevated ROS upon laser irradiations and achieved better anticancer benefits than free Ce6.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 8","pages":"680-685"},"PeriodicalIF":2.3,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/d1/NBT2-15-680.PMC8675780.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39555383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intelligent inorganic nanoparticles were designed and produced for use in imaging and annihilating tumour cells by radio-frequency (RF) hyperthermia. Nanoparticles synthesised to provide RF hyperthermia must have magnetite properties. For this purpose, magnetite nanoparticles were first synthesised by the coprecipitation method (10–15 NM). These superparamagnetic nanoparticles were then covered with gold ions without losing their magnetic properties. In this step, gold ions are reduced around the magnetite nanoparticles. Surface modification of the gold-coated magnetic nanoparticles was performed in the next step. A self-assembled monolayer was created using cysteamine (2-aminoethanethiol) molecules, which have two different end groups (SH and NH2). These molecules react with the gold surface by SH groups. The NH2 groups give a positive charge to the nanoparticles. After that, a monoclonal antibody (Monoclonal Anti-N-CAM Clone NCAM-OB11) was immobilised by the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide method. Then, the antenna RF system (144.00015 MHz) was created for RF hyperthermia. The antibody-nanoparticle binding rate and cytotoxicity tests were followed by in vitro and in vivo experiments. As the main result, antibody-bound gold-coated magnetic nanoparticles were successfully connected to tumour cells. After RF hyperthermia, the tumour size decreased owing to apoptosis and necrosis of tumour cells.
智能无机纳米颗粒的设计和生产用于成像和消灭肿瘤细胞的射频(RF)热疗。用于射频热疗的纳米颗粒必须具有磁铁矿性质。为此,首先采用共沉淀法(10-15 NM)合成了磁铁矿纳米颗粒。这些超顺磁性纳米颗粒被金离子覆盖而不失去磁性。在这一步中,金离子在磁铁矿纳米颗粒周围被还原。下一步,对包金磁性纳米颗粒进行表面改性。利用具有两个不同端基(SH和NH2)的半胱胺(2-氨基乙烷硫醇)分子创建了自组装单层。这些分子通过SH基团与金表面发生反应。NH2基团给纳米粒子带正电荷。然后,用1-乙基-3-(3-二甲氨基丙基)碳二亚胺/ n -羟基琥珀酰亚胺法固定单克隆抗体(monoclonal Anti-N-CAM Clone NCAM-OB11)。然后,创建天线射频系统(144.00015 MHz),用于射频热疗。体外和体内实验分别进行了抗体-纳米颗粒结合率和细胞毒性试验。作为主要成果,抗体结合的镀金磁性纳米颗粒成功地连接到肿瘤细胞上。射频热疗后,由于肿瘤细胞的凋亡和坏死,肿瘤大小减小。
{"title":"Treatment of tumour tissue with radio-frequency hyperthermia (using antibody-carrying nanoparticles)","authors":"Reza Didarian, Ibrahim Vargel","doi":"10.1049/nbt2.12061","DOIUrl":"10.1049/nbt2.12061","url":null,"abstract":"<p>Intelligent inorganic nanoparticles were designed and produced for use in imaging and annihilating tumour cells by radio-frequency (RF) hyperthermia. Nanoparticles synthesised to provide RF hyperthermia must have magnetite properties. For this purpose, magnetite nanoparticles were first synthesised by the coprecipitation method (10–15 NM). These superparamagnetic nanoparticles were then covered with gold ions without losing their magnetic properties. In this step, gold ions are reduced around the magnetite nanoparticles. Surface modification of the gold-coated magnetic nanoparticles was performed in the next step. A self-assembled monolayer was created using cysteamine (2-aminoethanethiol) molecules, which have two different end groups (SH and NH<sub>2</sub>). These molecules react with the gold surface by SH groups. The NH<sub>2</sub> groups give a positive charge to the nanoparticles. After that, a monoclonal antibody (Monoclonal Anti-N-CAM Clone NCAM-OB11) was immobilised by the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide method. Then, the antenna RF system (144.00015 MHz) was created for RF hyperthermia. The antibody-nanoparticle binding rate and cytotoxicity tests were followed by in vitro and in vivo experiments. As the main result, antibody-bound gold-coated magnetic nanoparticles were successfully connected to tumour cells. After RF hyperthermia, the tumour size decreased owing to apoptosis and necrosis of tumour cells.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 8","pages":"639-653"},"PeriodicalIF":2.3,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39555381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zinc sulphide (ZnS) nanoparticles were synthesized by the coprecipitation method. The ZnS nanoparticle surface was polymerized with allyl glycidyl ether (AGE), and 3-aminophenol was then deposited as a ligand on nanosorbent. The modified nanosorbent was investigated with Fourier transform infrared spectroscopy and thermogravimetric analysis. The particle size of the modified nanosorbent was studied with scanning electron microscopy. Some characteristic factors of the adsorption process such as pH and time were investigated for famotidine using the modified nanosorbent. The equilibrium adsorption study of famotidine by 3-aminophenol-grafted AGE/ZnS was analysed by adsorption isotherms of the Langmuir, Freundlich, and Temkin models. The famotidine-releasing process was investigated in simulated biological fluids (intestinal fluid at pH of 7.4 and gastric fluid at pH of 1.2) and demonstrated 65% and 73% famotidine release during periods of 30 h (pH = 7.4) and 60 min (pH = 1.2), respectively. These results reveal the optimal performance of 3-aminophenol-grafted AGE/ZnS for sustained drug delivery.
采用共沉淀法合成了硫化锌纳米颗粒。将纳米ZnS表面与烯丙基缩水甘油酯醚(AGE)聚合,并将3-氨基苯酚作为配体沉积在纳米吸附剂上。采用傅里叶变换红外光谱和热重分析对改性纳米吸附剂进行了研究。用扫描电镜研究了改性纳米吸附剂的粒径。考察了pH、时间等对法莫替丁吸附过程的影响。采用Langmuir、Freundlich和Temkin吸附等温线模型分析了3-氨基酚接枝的AGE/ZnS对法莫替丁的平衡吸附。研究了法莫替丁在模拟生物液(pH为7.4的肠液和pH为1.2的胃液)中的释放过程,结果表明,在30 h (pH = 7.4)和60 min (pH = 1.2)的释放时间内,法莫替丁的释放量分别为65%和73%。这些结果表明,3-氨基酚接枝的AGE/ZnS具有持续给药的最佳性能。
{"title":"Design of 3-aminophenol-grafted polymer-modified zinc sulphide nanoparticles as drug delivery system","authors":"Milad Abniki, Zahra Azizi, Homayon Ahmad Panahi","doi":"10.1049/nbt2.12063","DOIUrl":"10.1049/nbt2.12063","url":null,"abstract":"<p>Zinc sulphide (ZnS) nanoparticles were synthesized by the coprecipitation method. The ZnS nanoparticle surface was polymerized with allyl glycidyl ether (AGE), and 3-aminophenol was then deposited as a ligand on nanosorbent. The modified nanosorbent was investigated with Fourier transform infrared spectroscopy and thermogravimetric analysis. The particle size of the modified nanosorbent was studied with scanning electron microscopy. Some characteristic factors of the adsorption process such as pH and time were investigated for famotidine using the modified nanosorbent. The equilibrium adsorption study of famotidine by 3-aminophenol-grafted AGE/ZnS was analysed by adsorption isotherms of the Langmuir, Freundlich, and Temkin models. The famotidine-releasing process was investigated in simulated biological fluids (intestinal fluid at pH of 7.4 and gastric fluid at pH of 1.2) and demonstrated 65% and 73% famotidine release during periods of 30 h (pH = 7.4) and 60 min (pH = 1.2), respectively. These results reveal the optimal performance of 3-aminophenol-grafted AGE/ZnS for sustained drug delivery.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 8","pages":"664-673"},"PeriodicalIF":2.3,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39555384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esmaeel Mohammadi Pargoo, Mohammad Reza Aghasadeghi, Kazem Parivar, Mehri Nikbin, Pooneh Rahimi, Mehdi Shafiee Ardestani
Infection with human immunodeficiency virus (HIV)-1 causes immunological disorders and death worldwide which needs to be further assisted by novel anti-retroviral drug delivery systems. Consequently, finding newer anti-retroviral pharmaceuticals by using biocompatible, biodegradable nanomaterials comprising a nanoparticle as core and a therapeutic agent is of high global interest. In this experiment, a second generation of a negatively charged nano-biopolymer linear globular G2 dendrimer was carefully conjugated and loaded with well-known anti-HIV drugs lamivudine and efavirenz, respectively. They were characterised by a variety of analytical methods such as Zetasizer, Fourier-transform infrared spectroscopy, elemental analysis and liquid chromatography-mass spectroscopy. Additionally, conjugated lamivudine and loaded efazirenz with globular PEGylated G2 dendrimer were tested on an HEK293 T cell infected by single-cycle replicable HIV-1 virion and evaluated using XTT test and HIV-1 P24 protein load. The results showed that lamivudine-conjugated G2 significantly decreased retroviral activity without any cell toxicity. This effect was more or less observed by efavirenz-loaded G2. These nano-constructs are strongly suggested for further in vivo anti-HIV assays.
{"title":"Lamivudine-conjugated and efavirenz-loaded G2 dendrimers: Novel anti-retroviral nano drug delivery systems","authors":"Esmaeel Mohammadi Pargoo, Mohammad Reza Aghasadeghi, Kazem Parivar, Mehri Nikbin, Pooneh Rahimi, Mehdi Shafiee Ardestani","doi":"10.1049/nbt2.12060","DOIUrl":"10.1049/nbt2.12060","url":null,"abstract":"<p>Infection with human immunodeficiency virus (HIV)-1 causes immunological disorders and death worldwide which needs to be further assisted by novel anti-retroviral drug delivery systems. Consequently, finding newer anti-retroviral pharmaceuticals by using biocompatible, biodegradable nanomaterials comprising a nanoparticle as core and a therapeutic agent is of high global interest. In this experiment, a second generation of a negatively charged nano-biopolymer linear globular G2 dendrimer was carefully conjugated and loaded with well-known anti-HIV drugs lamivudine and efavirenz, respectively. They were characterised by a variety of analytical methods such as Zetasizer, Fourier-transform infrared spectroscopy, elemental analysis and liquid chromatography-mass spectroscopy. Additionally, conjugated lamivudine and loaded efazirenz with globular PEGylated G2 dendrimer were tested on an HEK293 T cell infected by single-cycle replicable HIV-1 virion and evaluated using XTT test and HIV-1 P24 protein load. The results showed that lamivudine-conjugated G2 significantly decreased retroviral activity without any cell toxicity. This effect was more or less observed by efavirenz-loaded G2. These nano-constructs are strongly suggested for further in vivo anti-HIV assays.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 7","pages":"627-637"},"PeriodicalIF":2.3,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/86/ad/NBT2-15-627.PMC8675833.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39555521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The main emphasis herein is on the eco-friendly synthesis and assessment of the antimicrobial potential of silver nanoparticles (AgNPs) and a cytotoxicity study. Silver nanoparticles were synthesised by an extracellular method using bacterial supernatant. Biosynthesised silver nanoparticles were characterised by UV-vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised silver nanoparticles exhibited a characteristic peak at 420 nm. TEM analysis depicted the spherical shape and approximately 20 nm size of nanoparticles. Silver nanoparticles carry a charge of −33.75 mV, which confirms their stability. Biogenic polyvinyl pyrrolidone-coated AgNPs exhibited significant antimicrobial effects against all opportunistic pathogens (Gram-positive and Gram-negative bacteria, and fungi). Silver nanoparticles equally affect the growth of both Gram-positive and Gram-negative bacteria, with a maximum inhibition zone observed at 22 mm and a minimum at 13 mm against Pseudomonas aeruginosa and Fusarium graminearum, respectively. The minimum inhibitory concentration (MIC) of AgNPs against P. aeruginosa and Staphylococcus aureus was recorded at between 15 and 20 μg/ml. Synthesised nanoparticles exhibited a significant synergistic effect in combination with conventional antibiotics. Cytotoxicity estimates using C2C12 skeletal muscle cell line via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase assay were directly related to the concentration of AgNPs and length of exposure. On the basis of the MTT test, the IC50 of AgNPs for the C2C12 cell line was approximately 5.45 μg/ml concentration after 4 h exposure.
{"title":"Antimicrobial potential and in vitro cytotoxicity study of polyvinyl pyrollidone-stabilised silver nanoparticles synthesised from Lysinibacillus boronitolerans","authors":"Divya Bhatia, Ashwani Mittal, Deepak Kumar Malik","doi":"10.1049/nbt2.12054","DOIUrl":"10.1049/nbt2.12054","url":null,"abstract":"<p>The main emphasis herein is on the eco-friendly synthesis and assessment of the antimicrobial potential of silver nanoparticles (AgNPs) and a cytotoxicity study. Silver nanoparticles were synthesised by an extracellular method using bacterial supernatant. Biosynthesised silver nanoparticles were characterised by UV-vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised silver nanoparticles exhibited a characteristic peak at 420 nm. TEM analysis depicted the spherical shape and approximately 20 nm size of nanoparticles. Silver nanoparticles carry a charge of −33.75 mV, which confirms their stability. Biogenic polyvinyl pyrrolidone-coated AgNPs exhibited significant antimicrobial effects against all opportunistic pathogens (Gram-positive and Gram-negative bacteria, and fungi). Silver nanoparticles equally affect the growth of both Gram-positive and Gram-negative bacteria, with a maximum inhibition zone observed at 22 mm and a minimum at 13 mm against <i>Pseudomonas aeruginosa</i> and <i>Fusarium graminearum</i>, respectively. The minimum inhibitory concentration (MIC) of AgNPs against <i>P. aeruginosa</i> and <i>Staphylococcus aureus</i> was recorded at between 15 and 20 μg/ml. Synthesised nanoparticles exhibited a significant synergistic effect in combination with conventional antibiotics. Cytotoxicity estimates using C2C12 skeletal muscle cell line via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase assay were directly related to the concentration of AgNPs and length of exposure. On the basis of the MTT test, the IC50 of AgNPs for the C2C12 cell line was approximately 5.45 μg/ml concentration after 4 h exposure.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 4","pages":"427-440"},"PeriodicalIF":2.3,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/85/37/NBT2-15-427.PMC8675779.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39557953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}