Samer Hasan Hussein-Al-Ali, Suha Mujahed Abudoleh, Qais Ibrahim Abdallah Abualassal, Zead Abudayeh, Yousef Aldalahmah, Mohd Zobir Hussein
Silver nanoparticles (AgNPs) have shown potential applications in drug delivery. In this study, the AgNPs was prepared from silver nitrate in the presence of alginate as a capping agent. The ciprofloxacin (Cipro) was loaded on the surface of AgNPs to produce Cipro-AgNPs nanocomposite. The characteristics of the Cipro-AgNPs nanocomposite were studied by X-ray diffraction (XRD), UV–Vis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier-transform infra-red analysis (FT-IR) and zeta potential analyses. The XRD of AgNPs and Cipro-AgNPs nanocomposite data showed that both have a crystalline structure in nature. The FT-IR data indicate that the AgNPs have been wrapped by the alginate and loaded with the Cipro drug. The TEM image showed that the Cipro-AgNPs nanocomposites have an average size of 96 nm with a spherical shape. The SEM image for AgNPs and Cipro-AgNPs nanocomposites confirmed the needle-lumpy shape. The zeta potential for Cipro-AgNPs nanocomposites exhibited a positive charge with a value of 6.5 mV. The TGA for Cipro-AgNPs nanocomposites showed loss of 79.7% in total mass compared to 57.6% for AgNPs which is due to the Cipro loaded in the AgNPs. The release of Cipro from Cipro-AgNPs nanocomposites showed slow release properties which reached 98% release within 750 min, and followed the Hixson–Crowell kinetic model. In addition, the toxicity of AgNPs and Cipro-AgNPs nanocomposites was evaluated using normal (3T3) cell line. The present work suggests that Cipro-AgNPs are suitable for drug delivery.
{"title":"Preparation and characterisation of ciprofloxacin-loaded silver nanoparticles for drug delivery","authors":"Samer Hasan Hussein-Al-Ali, Suha Mujahed Abudoleh, Qais Ibrahim Abdallah Abualassal, Zead Abudayeh, Yousef Aldalahmah, Mohd Zobir Hussein","doi":"10.1049/nbt2.12081","DOIUrl":"10.1049/nbt2.12081","url":null,"abstract":"<p>Silver nanoparticles (AgNPs) have shown potential applications in drug delivery. In this study, the AgNPs was prepared from silver nitrate in the presence of alginate as a capping agent. The ciprofloxacin (Cipro) was loaded on the surface of AgNPs to produce Cipro-AgNPs nanocomposite. The characteristics of the Cipro-AgNPs nanocomposite were studied by X-ray diffraction (XRD), UV–Vis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier-transform infra-red analysis (FT-IR) and zeta potential analyses. The XRD of AgNPs and Cipro-AgNPs nanocomposite data showed that both have a crystalline structure in nature. The FT-IR data indicate that the AgNPs have been wrapped by the alginate and loaded with the Cipro drug. The TEM image showed that the Cipro-AgNPs nanocomposites have an average size of 96 nm with a spherical shape. The SEM image for AgNPs and Cipro-AgNPs nanocomposites confirmed the needle-lumpy shape. The zeta potential for Cipro-AgNPs nanocomposites exhibited a positive charge with a value of 6.5 mV. The TGA for Cipro-AgNPs nanocomposites showed loss of 79.7% in total mass compared to 57.6% for AgNPs which is due to the Cipro loaded in the AgNPs. The release of Cipro from Cipro-AgNPs nanocomposites showed slow release properties which reached 98% release within 750 min, and followed the Hixson–Crowell kinetic model. In addition, the toxicity of AgNPs and Cipro-AgNPs nanocomposites was evaluated using normal (3T3) cell line. The present work suggests that Cipro-AgNPs are suitable for drug delivery.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 3","pages":"92-101"},"PeriodicalIF":2.3,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c0/f5/NBT2-16-92.PMC9007151.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40326049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Firoozeh Abolhasani Zadeh, Saade Abdalkareem Jasim, Nigora E. Atakhanova, Hasan Sh. Majdi, Mohammed Abed Jawad, Mohammed Khudair Hasan, Fariba Borhani, Mehrdad Khatami
Mesoporous magnetic nanoparticles of haematite were synthesised using plant extracts according to bioethics principles. The structural, physical and chemical properties of mesoporous Fe2O3 nanoparticles synthesised with the green chemistry approach were evaluated by XRD, SEM, EDAX, BET, VSM and HRTEM analysis. Then, their toxicity against normal HUVECs and MCF7 cancer cells was evaluated by MTT assay for 48 h. These biogenic mesoporous magnetic nanoparticles have over 71% of doxorubicin loading efficiency, resulting in a 50% reduction of cancer cells at a 0.5 μg.ml−1 concentration. Therefore, it is suggested that mesoporous magnetic nanoparticles be used as a multifunctional agent in medicine (therapeutic-diagnostic). The produced mesoporous magnetic nanoparticles with its inherent structural properties such as polygonal structure (increasing surface area to particle volume) and porosity with large pore volume became a suitable substrate for loading the anti-cancer drug doxorubicin.
{"title":"Drug delivery and anticancer activity of biosynthesised mesoporous Fe2O3 nanoparticles","authors":"Firoozeh Abolhasani Zadeh, Saade Abdalkareem Jasim, Nigora E. Atakhanova, Hasan Sh. Majdi, Mohammed Abed Jawad, Mohammed Khudair Hasan, Fariba Borhani, Mehrdad Khatami","doi":"10.1049/nbt2.12080","DOIUrl":"10.1049/nbt2.12080","url":null,"abstract":"<p>Mesoporous magnetic nanoparticles of haematite were synthesised using plant extracts according to bioethics principles. The structural, physical and chemical properties of mesoporous Fe<sub>2</sub>O<sub>3</sub> nanoparticles synthesised with the green chemistry approach were evaluated by XRD, SEM, EDAX, BET, VSM and HRTEM analysis. Then, their toxicity against normal HUVECs and MCF7 cancer cells was evaluated by MTT assay for 48 h. These biogenic mesoporous magnetic nanoparticles have over 71% of doxorubicin loading efficiency, resulting in a 50% reduction of cancer cells at a 0.5 μg.ml<sup>−1</sup> concentration. Therefore, it is suggested that mesoporous magnetic nanoparticles be used as a multifunctional agent in medicine (therapeutic-diagnostic). The produced mesoporous magnetic nanoparticles with its inherent structural properties such as polygonal structure (increasing surface area to particle volume) and porosity with large pore volume became a suitable substrate for loading the anti-cancer drug doxorubicin.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 3","pages":"85-91"},"PeriodicalIF":2.3,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46806306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
After the outbreak of coronavirus disease 2019 (COVID-19) in December 2019 and the increasing number of SARS-CoV-2 infections all over the world, researchers are struggling to investigate effective therapeutic strategies for the treatment of this infection. Targeting viral small molecules that are involved in the process of infection is a promising strategy. Since many host factors are also used by SARS-CoV-2 during various stages of infection, down-regulating or silencing these factors can serve as an effective therapeutic tool. Several nucleic acid-based technologies including short interfering RNAs, antisense oligonucleotides, aptamers, DNAzymes, and ribozymes have been suggested for the control of SARS-CoV-2 as well as other respiratory viruses. The antisense technology also plays an indispensable role in the treatment of many other diseases including cancer, influenza, and acquired immunodeficiency syndrome. In this review, we summarised the potential applications of antisense technology for the treatment of coronaviruses and specifically COVID-19 infection.
{"title":"Antisense technology as a potential strategy for the treatment of coronaviruses infection: With focus on COVID-19","authors":"Seyedeh Hoda Alavizadeh, Maham Doagooyan, Fatemeh Zahedipour, Shima Yahoo Torghabe, Bahare Baharieh, Firooze Soleymani, Fatemeh Gheybi","doi":"10.1049/nbt2.12079","DOIUrl":"10.1049/nbt2.12079","url":null,"abstract":"<p>After the outbreak of coronavirus disease 2019 (COVID-19) in December 2019 and the increasing number of SARS-CoV-2 infections all over the world, researchers are struggling to investigate effective therapeutic strategies for the treatment of this infection. Targeting viral small molecules that are involved in the process of infection is a promising strategy. Since many host factors are also used by SARS-CoV-2 during various stages of infection, down-regulating or silencing these factors can serve as an effective therapeutic tool. Several nucleic acid-based technologies including short interfering RNAs, antisense oligonucleotides, aptamers, DNAzymes, and ribozymes have been suggested for the control of SARS-CoV-2 as well as other respiratory viruses. The antisense technology also plays an indispensable role in the treatment of many other diseases including cancer, influenza, and acquired immunodeficiency syndrome. In this review, we summarised the potential applications of antisense technology for the treatment of coronaviruses and specifically COVID-19 infection.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 3","pages":"67-77"},"PeriodicalIF":2.3,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43336955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A one-pot bottom-up synthesis method was used to synthesise multi-level leaf-like nano-silver (silver leaf) by simply mixing AgNO3, L-ascorbic acid, Sodium sodium citrate, and polyvinylpyrrolidone (PVP) in the ethanol-water mixed solvents. Scanning electron microscopy (SEM) characterisations show that the silver leaves have tertiary structures and their sizes are controllable. In addition, silver leaves exhibit excellent Raman enhancement effect (SERS) and chemical catalytic activities for phenolic molecules. Interestingly, the SERS and catalytic activities increase as the size of the silver leaves decrease within a certain range, but when the size is too small, both of these performances weaken. The nanometre size and interstitial structure have a common amplification effect and influence on these activities. The present work not only showed a new method for the synthesis of silver leaves but also could be generalised to find other metallic leaves that could be used as promising heterogeneous catalysts for various reactions. The production of such small-sized silver leaves will facilitate the analysis of phenolic pollutants through Raman enhancement and treat these pollutants through catalytic degradation.
{"title":"Synthesis of silver leaves and their potential application for analysis and degradation of phenolic pollutants","authors":"Jianan Sun, Xianhui Gao, Wei Wei","doi":"10.1049/nbt2.12077","DOIUrl":"10.1049/nbt2.12077","url":null,"abstract":"<p>A one-pot bottom-up synthesis method was used to synthesise multi-level leaf-like nano-silver (silver leaf) by simply mixing AgNO<sub>3</sub>, L-ascorbic acid, Sodium sodium citrate, and polyvinylpyrrolidone (PVP) in the ethanol-water mixed solvents. Scanning electron microscopy (SEM) characterisations show that the silver leaves have tertiary structures and their sizes are controllable. In addition, silver leaves exhibit excellent Raman enhancement effect (SERS) and chemical catalytic activities for phenolic molecules. Interestingly, the SERS and catalytic activities increase as the size of the silver leaves decrease within a certain range, but when the size is too small, both of these performances weaken. The nanometre size and interstitial structure have a common amplification effect and influence on these activities. The present work not only showed a new method for the synthesis of silver leaves but also could be generalised to find other metallic leaves that could be used as promising heterogeneous catalysts for various reactions. The production of such small-sized silver leaves will facilitate the analysis of phenolic pollutants through Raman enhancement and treat these pollutants through catalytic degradation.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 3","pages":"78-84"},"PeriodicalIF":2.3,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/bc/NBT2-16-78.PMC9007148.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39905357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renal fibrosis is the pathological outcome of most end-stage renal diseases, yet there are still limited therapeutic options for it. In recent years, bone marrow mesenchymal stem cell-derived exosomes (BM-MSCs) have received much attention. Here, we investigate the therapeutic effect of BM-MSCs on unilateral ureteral occlusion (UUO)-induced interstitial fibrosis in the kidney by modulating prostaglandin E2 receptor 2 (EP2). Renal pathological changes were evident in the UUO group compared to the control group, with significantly increased expression of α-smooth muscle actin (α-SMA), fibronectin, Ep2 and F4/80+CD86+ and F4/80+CD206+ cells in the UUO group (p< 0.05). Pathological changes were alleviated and F4/80+CD86+ and F480/+CD206+ cells were reduced after exosome or EP2 agonist intervention compared to the UUO group. These data were further confirmed in vitro. Compared to the lipopolysaccharide (LPS) group and the LPS + exosome + Ah6809 group, the lipopolysaccharide (LPS) + exosome group and the LPS + butaprost group showed a significant decrease in α-SMA expression, a decrease in the number of F4/80+CD86+ and F4/80+CD206+ cells, a decrease in interleukin (IL)-6 and an increase in IL-10 levels. Therefore, we conclude that BM-MSCs can reduce the polarization of M1 and M2 macrophages by activating EP2 receptors, thereby ameliorating renal fibrosis.
{"title":"Bone marrow mesenchymal stem cell-derived exosomes improve renal fibrosis by reducing the polarisation of M1 and M2 macrophages through the activation of EP2 receptors","authors":"Yuqing Lu, Lulu Yang, Xiao Chen, Jing Liu, Anqi Nie, Xiaolan Chen","doi":"10.1049/nbt2.12071","DOIUrl":"10.1049/nbt2.12071","url":null,"abstract":"<p>Renal fibrosis is the pathological outcome of most end-stage renal diseases, yet there are still limited therapeutic options for it. In recent years, bone marrow mesenchymal stem cell-derived exosomes (BM-MSCs) have received much attention. Here, we investigate the therapeutic effect of BM-MSCs on unilateral ureteral occlusion (UUO)-induced interstitial fibrosis in the kidney by modulating prostaglandin E2 receptor 2 (EP2). Renal pathological changes were evident in the UUO group compared to the control group, with significantly increased expression of α-smooth muscle actin (α-SMA), fibronectin, Ep2 and F4/80<sup>+</sup>CD86<sup>+</sup> and F4/80<sup>+</sup>CD206<sup>+</sup> cells in the UUO group (<i>p</i>< 0.05). Pathological changes were alleviated and F4/80<sup>+</sup>CD86<sup>+</sup> and F480/<sup>+</sup>CD206<sup>+</sup> cells were reduced after exosome or EP2 agonist intervention compared to the UUO group. These data were further confirmed in vitro. Compared to the lipopolysaccharide (LPS) group and the LPS + exosome + Ah6809 group, the lipopolysaccharide (LPS) + exosome group and the LPS + butaprost group showed a significant decrease in α-SMA expression, a decrease in the number of F4/80<sup>+</sup>CD86<sup>+</sup> and F4/80<sup>+</sup>CD206<sup>+</sup> cells, a decrease in interleukin (IL)-6 and an increase in IL-10 levels. Therefore, we conclude that BM-MSCs can reduce the polarization of M1 and M2 macrophages by activating EP2 receptors, thereby ameliorating renal fibrosis.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 1","pages":"14-24"},"PeriodicalIF":2.3,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39943580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rokhsareh Motallebi, Ali Moghimi, Hamidreza Shahbazi, Hakim Faraji
In this study, the superparamagnetic adsorbent as Fe@Mg-Al LDH was synthesised by different methods with two steps for the removal of heavy metal ions from water samples. An easy, practical, economical, and replicable method was introduced to remove water contaminants, including heavy ions from aquatic environments. Moreover, the structure of superparamagnetic adsorbent was investigated by various methods including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometer. For better separation, ethylenediaminetetraacetic acid ligand was used, forming a complex with antimony ions to create suitable conditions for the removal of these ions. Cadmium and antimony ions were studied by floatation in aqueous environments with this superparamagnetic adsorbent owing to effective factors such as pH, amount of superparamagnetic adsorbent, contact time, sample temperature, volume, and ligand concentration. The model of Freundlich, Langmuir, and Temkin isotherms was studied to qualitatively evaluate the adsorption of antimony ions by the superparamagnetic adsorbent. The value of loaded antimony metal ions with Fe@Mg-Al LDH was resulted at 160.15 mg/g. The standard deviation value in this procedure was found at 7.92%. The desorption volume of antimony metal ions by the adsorbent was found to be 25 ml. The thermodynamic parameters as well as the effect of interfering ions were investigated by graphite furnace atomic absorption spectrometry.
{"title":"Fabrication of superparamagnetic adsorbent based on layered double hydroxide as effective nanoadsorbent for removal of Sb (III) from water samples","authors":"Rokhsareh Motallebi, Ali Moghimi, Hamidreza Shahbazi, Hakim Faraji","doi":"10.1049/nbt2.12074","DOIUrl":"10.1049/nbt2.12074","url":null,"abstract":"<p>In this study, the superparamagnetic adsorbent as Fe@Mg-Al LDH was synthesised by different methods with two steps for the removal of heavy metal ions from water samples. An easy, practical, economical, and replicable method was introduced to remove water contaminants, including heavy ions from aquatic environments. Moreover, the structure of superparamagnetic adsorbent was investigated by various methods including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometer. For better separation, ethylenediaminetetraacetic acid ligand was used, forming a complex with antimony ions to create suitable conditions for the removal of these ions. Cadmium and antimony ions were studied by floatation in aqueous environments with this superparamagnetic adsorbent owing to effective factors such as pH, amount of superparamagnetic adsorbent, contact time, sample temperature, volume, and ligand concentration. The model of Freundlich, Langmuir, and Temkin isotherms was studied to qualitatively evaluate the adsorption of antimony ions by the superparamagnetic adsorbent. The value of loaded antimony metal ions with Fe@Mg-Al LDH was resulted at 160.15 mg/g. The standard deviation value in this procedure was found at 7.92%. The desorption volume of antimony metal ions by the adsorbent was found to be 25 ml. The thermodynamic parameters as well as the effect of interfering ions were investigated by graphite furnace atomic absorption spectrometry.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 2","pages":"33-48"},"PeriodicalIF":2.3,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/eb/55/NBT2-16-33.PMC8918918.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39684043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biosynthesis of metallic oxide nanoparticles is being used and preferred over physical and chemical methods of synthesis since it is simple, inexpensive, environmentally friendly, and green. The aim of this study was to synthesise ZnO and nickel doped ZnO nanoparticles using Euphorbia abyssinica bark extract for antimicrobial activity studies via agar disk diffusion method against some selected microbes. The synthesised nanoparticles were characterised using X-ray diffraction (XRD), ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The study results revealed that the biosynthesised nanoparticles had good crystalline nature, with crystal sizes in the range of nanoparticles and structures of hexagonal wurtzite. Both undoped ZnO and nickel doped ZnO nanoparticles demonstrated antibacterial and antifungal activity against four bacterial strains and two fungal genus. Generally, nickel doped ZnO NPs were found to possess more antimicrobial activities than undoped ZnO NPs. Specially, 4% and 5% nickel doped ZnO NPs showed significantly enhanced activity against Enterococcus faecalis, Staphylococcus aureus, Aspergillus and Fusarium.
{"title":"Biosynthesis, characterisation and antimicrobial activity of zinc oxide and nickel doped zinc oxide nanoparticles using Euphorbia abyssinica bark extract","authors":"Gezahegn Faye, Tola Jebessa, Tilahun Wubalem","doi":"10.1049/nbt2.12072","DOIUrl":"10.1049/nbt2.12072","url":null,"abstract":"<p>Biosynthesis of metallic oxide nanoparticles is being used and preferred over physical and chemical methods of synthesis since it is simple, inexpensive, environmentally friendly, and green. The aim of this study was to synthesise ZnO and nickel doped ZnO nanoparticles using <i>Euphorbia abyssinica</i> bark extract for antimicrobial activity studies via agar disk diffusion method against some selected microbes. The synthesised nanoparticles were characterised using X-ray diffraction (XRD), ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The study results revealed that the biosynthesised nanoparticles had good crystalline nature, with crystal sizes in the range of nanoparticles and structures of hexagonal wurtzite. Both undoped ZnO and nickel doped ZnO nanoparticles demonstrated antibacterial and antifungal activity against four bacterial strains and two fungal genus. Generally, nickel doped ZnO NPs were found to possess more antimicrobial activities than undoped ZnO NPs. Specially, 4% and 5% nickel doped ZnO NPs showed significantly enhanced activity against <i>Enterococcus faecalis, Staphylococcus aureus, Aspergillus</i> and <i>Fusarium</i>.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 1","pages":"25-32"},"PeriodicalIF":2.3,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39661171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammadhassan Gholami-Shabani, Fattah Sotoodehnejadnematalahi, Masoomeh Shams-Ghahfarokhi, Ali Eslamifar, Mehdi Razzaghi-Abyaneh
In the present study, metal and metal oxide nanoparticles were successfully synthesized using Aspergillus kambarensis. UV–Vis spectroscopy showed maximum absorbance of 417 nm for silver (AgNPs), 542 nm for gold (AuNPs), 582 nm for copper (CuNPs) and 367 nm for zinc oxide (ZnONPs) nanoparticles. Fourier transform infrared spectroscopy indicated the presence of various mycochemicals with diverse functional groups in the fungal cell-free filtrate. Transmission electron microscopy revealed mono and poly dispersed particles with an estimate size of 50 nm and different shapes for synthesized manufacture metallic nanoparticles (MNPs. Dynamic light scattering confirmed that MNPs were dispersed in the size range less than 50 nm. Zeta potential analysis showed values of −41.32 mV (AgNPs), −41.26 mV (AuNPs), −34.74 mV (CuNPs) and 33.72 mV (ZnONPs). X-ray diffraction analysis demonstrated crystalline nature for MNPs. All the synthesized MNPs except AuNPs showed strong antifungal and antibacterial activity in disc diffusion assay with growth inhibition zones of 13.1–44.2 mm as well as anticancer activity against HepG-2 cancer cell line with IC50 in the range of 62.01–77.03 µg/ml. Taken together, the results show that biologically active MNPs synthesized by A. kambarensis for the first time could be considered as promising antimicrobial and anticancer agents for biomedical applications.
{"title":"Physicochemical properties, anticancer and antimicrobial activities of metallic nanoparticles green synthesized by Aspergillus kambarensis","authors":"Mohammadhassan Gholami-Shabani, Fattah Sotoodehnejadnematalahi, Masoomeh Shams-Ghahfarokhi, Ali Eslamifar, Mehdi Razzaghi-Abyaneh","doi":"10.1049/nbt2.12070","DOIUrl":"10.1049/nbt2.12070","url":null,"abstract":"<p>In the present study, metal and metal oxide nanoparticles were successfully synthesized using <i>Aspergillus kambarensis</i>. UV–Vis spectroscopy showed maximum absorbance of 417 nm for silver (AgNPs), 542 nm for gold (AuNPs), 582 nm for copper (CuNPs) and 367 nm for zinc oxide (ZnONPs) nanoparticles. Fourier transform infrared spectroscopy indicated the presence of various mycochemicals with diverse functional groups in the fungal cell-free filtrate. Transmission electron microscopy revealed mono and poly dispersed particles with an estimate size of 50 nm and different shapes for synthesized manufacture metallic nanoparticles (MNPs. Dynamic light scattering confirmed that MNPs were dispersed in the size range less than 50 nm. Zeta potential analysis showed values of −41.32 mV (AgNPs), −41.26 mV (AuNPs), −34.74 mV (CuNPs) and 33.72 mV (ZnONPs). X-ray diffraction analysis demonstrated crystalline nature for MNPs. All the synthesized MNPs except AuNPs showed strong antifungal and antibacterial activity in disc diffusion assay with growth inhibition zones of 13.1–44.2 mm as well as anticancer activity against HepG-2 cancer cell line with IC<sub>50</sub> in the range of 62.01–77.03 µg/ml. Taken together, the results show that biologically active MNPs synthesized by <i>A. kambarensis</i> for the first time could be considered as promising antimicrobial and anticancer agents for biomedical applications.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 1","pages":"1-13"},"PeriodicalIF":2.3,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39918153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reza Mombeiny, Shima Tavakol, Mostafa Kazemi, Mehdi Mehdizadeh, Akbar Hasanzadeh, Mohammad Karimi Babaahmadi, Ali Abedi, Peyman Keyhanvar
Prescription of anti-inflammatory drugs may be considered as a promising strategy in chronic wound healing where the inflammatory disturbance has delayed the healing process. It seems that hydrocortisone 17-butyrate (HB17) would be promising in the form of a nano-formulation to enhance drug delivery efficacy. In the present study, transdermal delivery of nano-HB17 in combination with iontophoresis was investigated ex vivo. Ethosomal-HB17 was synthesised using lecithin, ethanol and cholesterol with a different ratio by hot method. The negative ethosomal-HB17 particle size was around 244 ± 4.3 nm with high stability of up to 30 days. Additionally, evaluated entrapment efficiency of HB17 in ethosomes by high performance liquid chromatography was 40.6 ± 2.21%. Moreover, the permeation speed and amount of H17B in complete-thickness rat skin in the presence and absence of iontophoresis showed that the penetration of free H17B and ethosomal-H17B formulations were zero and 7.98 μg/cm2 in 120 min, respectively. Whereas in the case of applying iontophoresis, permeation amount obtained was zero and 19.69 μg/cm2 in 30 min in free H17B and ethosomal-H17B formulations, respectively. It has been concluded that transdermal delivery of ethosomal-H17B is an effective strategy to enhance drug delivery and it will be improved when it is combined with iontophoresis.
{"title":"Anti-inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: An ex vivo study","authors":"Reza Mombeiny, Shima Tavakol, Mostafa Kazemi, Mehdi Mehdizadeh, Akbar Hasanzadeh, Mohammad Karimi Babaahmadi, Ali Abedi, Peyman Keyhanvar","doi":"10.1049/nbt2.12069","DOIUrl":"10.1049/nbt2.12069","url":null,"abstract":"<p>Prescription of anti-inflammatory drugs may be considered as a promising strategy in chronic wound healing where the inflammatory disturbance has delayed the healing process. It seems that hydrocortisone 17-butyrate (HB17) would be promising in the form of a nano-formulation to enhance drug delivery efficacy. In the present study, transdermal delivery of nano-HB17 in combination with iontophoresis was investigated ex vivo. Ethosomal-HB17 was synthesised using lecithin, ethanol and cholesterol with a different ratio by hot method. The negative ethosomal-HB17 particle size was around 244 ± 4.3 nm with high stability of up to 30 days. Additionally, evaluated entrapment efficiency of HB17 in ethosomes by high performance liquid chromatography was 40.6 ± 2.21%. Moreover, the permeation speed and amount of H17B in complete-thickness rat skin in the presence and absence of iontophoresis showed that the penetration of free H17B and ethosomal-H17B formulations were zero and 7.98 μg/cm<sup>2</sup> in 120 min, respectively. Whereas in the case of applying iontophoresis, permeation amount obtained was zero and 19.69 μg/cm<sup>2</sup> in 30 min in free H17B and ethosomal-H17B formulations, respectively. It has been concluded that transdermal delivery of ethosomal-H17B is an effective strategy to enhance drug delivery and it will be improved when it is combined with iontophoresis.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 9","pages":"710-718"},"PeriodicalIF":2.3,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39555013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, new molecularly imprinted polymer particles (MIP) were synthesised to extract Cu2+ ions from aqueous solutions using radical polymerisation. MIP was developed using the methacrylamide-ethylene glycol dimethacrylate (EGDMA) cross linking agent, methacrylamide monomer, and ACV initiator by the radical polymerisation method. A comparison of various cross linking agents in MIP production showed that the best cross linking agents are EGDMA and gallic acid. The template ions were removed by leaching with 0.100 M HCl. The polymer particles were characterised by FTIR spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The effect of different parameters such as cross linkers, pH, time, maximum adsorption capacity, and kinetic and isotherm adsorption were investigated. The best conditions were determined (pH = 8.0, t = 10 min, and qm = 262.53 mg g−1). The adsorption data were best fitted by Freundlich isotherm and pseudo second order kinetic models, as well. Due to its high adsorption capacity and multi-layer behaviour, this method is an easy, fast and safe way to extract cations. Removal of Cu2+ in certified tap water and rain water was demonstrated and the industrial wastewater sample (Charmshahr, Iran) with which the MIP was developed using Methacrylamide- Ethylene Glycol Dimethacrylate (EGDMA) was good enough for Cu2+ determination in matrices containing components with similar chemical property such as Co2+, Zn2+, Fe2.
在这项研究中,合成了新的分子印迹聚合物颗粒(MIP),利用自由基聚合从水溶液中提取Cu2+离子。以甲基丙烯酰胺-乙二醇二甲基丙烯酸酯(EGDMA)交联剂、甲基丙烯酰胺单体和ACV引发剂为原料,采用自由基聚合法制备了MIP。通过对不同交联剂在MIP生产中的比较,发现最佳的交联剂是EGDMA和没食子酸。用0.100 M HCl浸出去除模板离子。采用红外光谱(FTIR)、热重分析(TGA)和扫描电镜(SEM)对聚合物颗粒进行了表征。考察了交联剂、pH、时间、最大吸附量、吸附动力学和等温吸附等参数的影响。确定了最佳条件(pH = 8.0, t = 10 min, qm = 262.53 mg g−1)。Freundlich等温线和拟二级动力学模型对吸附数据拟合较好。该方法吸附量大,具有多层性,是一种简便、快速、安全的阳离子提取方法。用甲基丙烯酰胺-乙二醇二甲基丙烯酸酯(EGDMA)开发MIP的工业废水样品(伊朗Charmshahr)在含有化学性质相似的组分(如Co2+, Zn2+, Fe2)的基质中可以很好地测定Cu2+。
{"title":"A rapid and sensitive method for separation of Cu2+ ions from industrial wastewater sample and water samples with methacrylamide-ethylene glycol dimethacrylate: A new synthesis of molecularly imprinted polymer","authors":"Fariborz Azizinezhad, Ali Moghimi","doi":"10.1049/nbt2.12068","DOIUrl":"10.1049/nbt2.12068","url":null,"abstract":"<p>In this study, new molecularly imprinted polymer particles (MIP) were synthesised to extract Cu<sup>2+</sup> ions from aqueous solutions using radical polymerisation. MIP was developed using the methacrylamide-ethylene glycol dimethacrylate (EGDMA) cross linking agent, methacrylamide monomer, and ACV initiator by the radical polymerisation method. A comparison of various cross linking agents in MIP production showed that the best cross linking agents are EGDMA and gallic acid. The template ions were removed by leaching with 0.100 M HCl. The polymer particles were characterised by FTIR spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The effect of different parameters such as cross linkers, pH, time, maximum adsorption capacity, and kinetic and isotherm adsorption were investigated. The best conditions were determined (pH = 8.0, <i>t</i> = 10 min, and <i>q</i><sub><i>m</i></sub> = 262.53 mg g<sup>−1</sup>). The adsorption data were best fitted by Freundlich isotherm and pseudo second order kinetic models, as well. Due to its high adsorption capacity and multi-layer behaviour, this method is an easy, fast and safe way to extract cations. Removal of Cu<sup>2+</sup> in certified tap water and rain water was demonstrated and the industrial wastewater sample (Charmshahr, Iran) with which the MIP was developed using Methacrylamide- Ethylene Glycol Dimethacrylate (EGDMA) was good enough for Cu<sup>2+</sup> determination in matrices containing components with similar chemical property such as Co<sup>2+</sup>, Zn<sup>2+</sup>, Fe<sup>2</sup>.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 9","pages":"698-709"},"PeriodicalIF":2.3,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/ca/NBT2-15-698.PMC8806121.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39558181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}