To assess and evaluate Chitosan-Metamizole nanoparticles for fracture healing and analgesic potential, nanoparticles were formulated using the ionotropic gelation method. The nanoparticles were evaluated for particle size, zeta potential, polydispersity index, loading efficiency, surface characteristics and drug release properties. The analgesic activity was determined in carrageenan-induced arthritic male Wister rats. Further fracture healing potency, mechanical testing, radiographic examination and bone histology of the femur were studied. The drug loading efficiency of 11.38%–17.45%, particle size of 140–220 nm, and zeta potential of 19.12–23.14 mV were observed with a spherical, smooth appearance. Nanoparticles showed sustained release behaviour over a longer period. Nearly 4-fold inhibition of oedema was observed in animals treated with nanoparticles with excellent fracture healing potential. The femurs treated with nanoparticles required greater force to fracture. Nanoparticles significantly improved the strength and healing process. Histopathological studies showed the potential of nanoparticles in the healing process. The study confirmed the potential of nanoparticles in fracture healing and enhancement of analgesic activity.
{"title":"Assessment and evaluation of Chitosan-Metamizole nanoparticles for the fracture healing and analgesic effect: Preclinical study in rat model","authors":"Li Yin, Liyong Yuan, Chunling Peng, Qionghua Wang","doi":"10.1049/nbt2.12131","DOIUrl":"10.1049/nbt2.12131","url":null,"abstract":"<p>To assess and evaluate Chitosan-Metamizole nanoparticles for fracture healing and analgesic potential, nanoparticles were formulated using the ionotropic gelation method. The nanoparticles were evaluated for particle size, zeta potential, polydispersity index, loading efficiency, surface characteristics and drug release properties. The analgesic activity was determined in carrageenan-induced arthritic male Wister rats. Further fracture healing potency, mechanical testing, radiographic examination and bone histology of the femur were studied. The drug loading efficiency of 11.38%–17.45%, particle size of 140–220 nm, and zeta potential of 19.12–23.14 mV were observed with a spherical, smooth appearance. Nanoparticles showed sustained release behaviour over a longer period. Nearly 4-fold inhibition of oedema was observed in animals treated with nanoparticles with excellent fracture healing potential. The femurs treated with nanoparticles required greater force to fracture. Nanoparticles significantly improved the strength and healing process. Histopathological studies showed the potential of nanoparticles in the healing process. The study confirmed the potential of nanoparticles in fracture healing and enhancement of analgesic activity.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"360-367"},"PeriodicalIF":2.3,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/ef/NBT2-17-360.PMC10288353.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9697427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahshad Mohamadkazem, Ali Neshastehriz, Seyed Mohammad Amini, Ali Moshiri, Atousa Janzadeh
Melanoma is a dangerous type of skin cancer sometimes treated with radiotherapy. However, it induces damage to the surrounding healthy tissue and possibly further away areas. Therefore, it is necessary to give a lower dose to the patient with targeted therapy. In this study, the radio-sensitising effect of gold-coated iron oxide nanoparticles on electron beam radiotherapy of a melanoma tumour with magnetic targeting in a mouse model was investigated. Gold-coated iron oxide nanoparticles were prepared in a steady procedure. The melanoma tumour model was induced in mice. Animals were divided into five groups: (1) normal; (2) melanoma; (3) gold-coated iron oxide nanoparticles alone; (4) electron beam radiotherapy; (5) electron beam radiotherapy plus gold-coated iron oxide nanoparticles. The magnet was placed on the tumour site for 2 h. The tumours were then exposed to 6 MeV electron beam radiotherapy for a dose of 8 Gy. Inductively coupled plasma optical emission spectrometry test, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay blood test were also performed. Gold-coated iron oxide nanoparticles with magnetic targeting before electron beam radiotherapy reduced the growth of the tumour compared to the control group. Blood tests did not show any significant toxicity. Deposition of nanoparticles was more in the tumour and spleen tissue and to a lesser extent in the liver, kidney, and lung tissues. The synergistic effect of nanoparticles administered by the intraperitoneal route and then concentrated into the tumour area by application of an external permanent magnet, before delivery of the electron beam radiotherapy improved the overall cancer treatment outcome and prevented metal distribution side effects.
{"title":"Radiosensitising effect of iron oxide-gold nanocomplex for electron beam therapy of melanoma in vivo by magnetic targeting","authors":"Mahshad Mohamadkazem, Ali Neshastehriz, Seyed Mohammad Amini, Ali Moshiri, Atousa Janzadeh","doi":"10.1049/nbt2.12129","DOIUrl":"10.1049/nbt2.12129","url":null,"abstract":"<p>Melanoma is a dangerous type of skin cancer sometimes treated with radiotherapy. However, it induces damage to the surrounding healthy tissue and possibly further away areas. Therefore, it is necessary to give a lower dose to the patient with targeted therapy. In this study, the radio-sensitising effect of gold-coated iron oxide nanoparticles on electron beam radiotherapy of a melanoma tumour with magnetic targeting in a mouse model was investigated. Gold-coated iron oxide nanoparticles were prepared in a steady procedure. The melanoma tumour model was induced in mice. Animals were divided into five groups: (1) normal; (2) melanoma; (3) gold-coated iron oxide nanoparticles alone; (4) electron beam radiotherapy; (5) electron beam radiotherapy plus gold-coated iron oxide nanoparticles. The magnet was placed on the tumour site for 2 h. The tumours were then exposed to 6 MeV electron beam radiotherapy for a dose of 8 Gy. Inductively coupled plasma optical emission spectrometry test, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay blood test were also performed. Gold-coated iron oxide nanoparticles with magnetic targeting before electron beam radiotherapy reduced the growth of the tumour compared to the control group. Blood tests did not show any significant toxicity. Deposition of nanoparticles was more in the tumour and spleen tissue and to a lesser extent in the liver, kidney, and lung tissues. The synergistic effect of nanoparticles administered by the intraperitoneal route and then concentrated into the tumour area by application of an external permanent magnet, before delivery of the electron beam radiotherapy improved the overall cancer treatment outcome and prevented metal distribution side effects.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 3","pages":"212-223"},"PeriodicalIF":2.3,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9488210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David B. MacManus, Majid Akbarzadeh Khorshidi, Mazdak Ghajari, Hamid M. Sedighi
<p>Micromechanics is the study of materials at the level of their constituents to describe the interactions of the microstructures and other micro-scale effects. Micromechanical approaches have wide applications in biology and medicine due to the nature of biological tissues and the size of micro-biomedical devices. Micromechanical experiments, continuum micromechanics, and computational multi-scale models of materials with an emphasis on the connections between material properties and mechanical responses at a micron length scale are significantly essential to design and manufacture the mechanical components of micro-biomedical devices and comprehend the behaviour of biological tissues. The micro-scale mechanics of biological tissues is a multidisciplinary and rapidly expanding area of research, which deals with the lower-scale effects on the mechanical behaviour of biological tissues, such as bone, brain, muscle, vasculature, skin, etc. In fact, there are different micro-scale deformations, interactions, and movements within these tissues (e.g. microstructural or bi-phasic properties) affecting the mechanical response of the materials. The micromechanical characteristics of a material are key to find how it interacts with its physical environment, which eventually modulates the functionality of the material. Such micro-biomechanical effects stem from the structural and architectural arrangements and the hierarchical nature of biological tissues. This Virtual Collection presents the latest and cutting-edge experimental, computational, and theoretical research on the mechanical properties/behaviours of biological tissues and therapeutics to take into account the micro-scale effects, such as microstructures deformations, micro-scale inhomogeneity, micro-damage, micro-porosity, etc., and the mechanics of cells and cell-substrate interactions.</p><p>In this Virtual Collection, we received six manuscripts, six of which underwent peer review. Of these six manuscripts, three have been accepted for publication in the Virtual Issue demonstrating a high quality and novel insights into Micromechanics in Biology and Medicine.</p><p>Rostami et al. characterised folic acid-functionalised PLA-PEG nanomicelles to deliver Letrozole for the effective treatment of cancer. In silico methods including docking approach, molecular dynamics simulation, and free energy calculations were used for the characterisation studies of PEG-FA and PLA-PEG nanocarriers in delivering Letrozole as an aromatase inhibitor in cancer cells. It was demonstrated the PLA-PEG-FA can be considered a versatile nanocarrier that can increase the effectiveness of aromatase inhibitors while reducing the side effects of the drug.</p><p>Alahdal et al. presented a ‘green’ approach to synthesise iron/gold Auroshell nanoparticles and tested with normal HUVEC cells and glioblastoma cancer cells. The Auroshell nanoparticles were found to have minimal toxicity within a safe range for normal cells. When t
微观力学是研究材料在其成分水平上描述微观结构和其他微观尺度效应的相互作用。由于生物组织的性质和微型生物医学装置的大小,微机械方法在生物学和医学中有着广泛的应用。微力学实验、连续微力学和材料的计算多尺度模型,强调材料特性和微米尺度上的机械响应之间的联系,对于设计和制造微生物医学设备的机械部件以及理解生物组织的行为至关重要。生物组织的微观力学是一个多学科和快速发展的研究领域,它涉及生物组织,如骨,脑,肌肉,脉管系统,皮肤等的机械行为的低尺度效应。事实上,在这些组织中存在不同的微观尺度变形、相互作用和运动(例如微观结构或双相特性),影响材料的机械响应。材料的微机械特性是发现它如何与物理环境相互作用的关键,而物理环境最终会调节材料的功能。这种微生物力学效应源于生物组织的结构和结构安排以及等级性质。这个虚拟集合展示了生物组织和治疗的力学特性/行为的最新和前沿的实验,计算和理论研究,考虑到微观尺度效应,如微观结构变形,微观尺度不均匀性,微损伤,微孔隙等,以及细胞和细胞-基质相互作用的力学。在这个虚拟馆藏中,我们收到了六份手稿,其中六份经过了同行评审。在这六篇手稿中,有三篇已经被接受在虚拟问题上发表,展示了对生物和医学微力学的高质量和新颖的见解。Rostami等人描述了叶酸功能化的PLA-PEG纳米胶束,用于递送来曲唑,以有效治疗癌症。采用对接方法、分子动力学模拟和自由能计算等方法,对PEG-FA和PLA-PEG纳米载体在癌细胞中递送来曲唑作为芳香酶抑制剂的特性进行了研究。结果表明,PLA-PEG-FA可以被认为是一种多功能纳米载体,可以增加芳香化酶抑制剂的有效性,同时减少药物的副作用。Alahdal等人提出了一种“绿色”方法来合成铁/金aurroshell纳米颗粒,并在正常HUVEC细胞和胶质母细胞瘤癌细胞中进行了测试。研究发现,在正常细胞的安全范围内,Auroshell纳米颗粒的毒性很小。当转移到肿瘤组织时,这些纳米颗粒表现出对恶性肿瘤的均匀加热(热疗治疗)。Alzahrani等人利用人巨细胞病毒ul83抗体功能化的MEMS微悬臂生物传感器检测不同浓度的人巨细胞病毒ul83抗原。结果表明,该抗原具有较高的选择性,能有效地检测到ul83抗原。这项技术显示了制造便携式、低成本的实时诊断生物传感器的潜力。在这个虚拟集合中发表的文章展示了微力学在生物学和医学中的重要性。微力学在研究生物现象和使用最先进的纳米技术进行有效治疗方面的重要性被清楚地证明,为这一令人兴奋的领域的进一步探索和研究打开了大门。David B. MacManus:概念化;项目管理;写作——原稿;写作-回顾&;编辑。Majid Akbarzadeh Khorshidi:概念化;项目管理;写作——原稿;写作-回顾&;编辑。Mazdak Ghajari:项目管理;写作——原稿;写作-回顾&;编辑。Hamid M. Sedighi:概念化;写作——原稿;写作-回顾&;编辑。
{"title":"Micromechanics in biology and medicine","authors":"David B. MacManus, Majid Akbarzadeh Khorshidi, Mazdak Ghajari, Hamid M. Sedighi","doi":"10.1049/nbt2.12130","DOIUrl":"10.1049/nbt2.12130","url":null,"abstract":"<p>Micromechanics is the study of materials at the level of their constituents to describe the interactions of the microstructures and other micro-scale effects. Micromechanical approaches have wide applications in biology and medicine due to the nature of biological tissues and the size of micro-biomedical devices. Micromechanical experiments, continuum micromechanics, and computational multi-scale models of materials with an emphasis on the connections between material properties and mechanical responses at a micron length scale are significantly essential to design and manufacture the mechanical components of micro-biomedical devices and comprehend the behaviour of biological tissues. The micro-scale mechanics of biological tissues is a multidisciplinary and rapidly expanding area of research, which deals with the lower-scale effects on the mechanical behaviour of biological tissues, such as bone, brain, muscle, vasculature, skin, etc. In fact, there are different micro-scale deformations, interactions, and movements within these tissues (e.g. microstructural or bi-phasic properties) affecting the mechanical response of the materials. The micromechanical characteristics of a material are key to find how it interacts with its physical environment, which eventually modulates the functionality of the material. Such micro-biomechanical effects stem from the structural and architectural arrangements and the hierarchical nature of biological tissues. This Virtual Collection presents the latest and cutting-edge experimental, computational, and theoretical research on the mechanical properties/behaviours of biological tissues and therapeutics to take into account the micro-scale effects, such as microstructures deformations, micro-scale inhomogeneity, micro-damage, micro-porosity, etc., and the mechanics of cells and cell-substrate interactions.</p><p>In this Virtual Collection, we received six manuscripts, six of which underwent peer review. Of these six manuscripts, three have been accepted for publication in the Virtual Issue demonstrating a high quality and novel insights into Micromechanics in Biology and Medicine.</p><p>Rostami et al. characterised folic acid-functionalised PLA-PEG nanomicelles to deliver Letrozole for the effective treatment of cancer. In silico methods including docking approach, molecular dynamics simulation, and free energy calculations were used for the characterisation studies of PEG-FA and PLA-PEG nanocarriers in delivering Letrozole as an aromatase inhibitor in cancer cells. It was demonstrated the PLA-PEG-FA can be considered a versatile nanocarrier that can increase the effectiveness of aromatase inhibitors while reducing the side effects of the drug.</p><p>Alahdal et al. presented a ‘green’ approach to synthesise iron/gold Auroshell nanoparticles and tested with normal HUVEC cells and glioblastoma cancer cells. The Auroshell nanoparticles were found to have minimal toxicity within a safe range for normal cells. When t","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 3","pages":"125-126"},"PeriodicalIF":2.3,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9b/f5/NBT2-17-125.PMC10190656.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9581032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Changhai Wang, Yuwen Jiao, Xinyu Zhang, Mingxue Guo, Qing Zhang, Wenjun Hu, Shuang Dong, Tangthianchaichana Jakkree, Yang Lu, Jinling Wang
As a first-line anticancer drug, paclitaxel has shortcomings, such as poor solubility and lack of tumour cell selectivity, which limit its further applications in clinical practice. Therefore, the authors aimed to utilise the characteristics of prodrug and nanotechnology to prepare a reactive oxygen species (ROS) and GSH dual-responsive targeted tumour prodrug nanoparticle Man-PEG-SS-PLGA/ProPTX to improve the clinical application status of paclitaxel limitation. The characterisation of Man-PEG-SS-PLGA/ProPTX was carried out through preparation. The cytotoxicity of nanoparticles on tumour cells and the effect on apoptosis of tumour cells were investigated by cytotoxicity assay and flow cytometry analysis. The ROS responsiveness of nanoparticles was investigated by detecting the ROS level of tumour cells. The tumour cell selectivity of the nanoparticles was further investigated by receptor affinity assay and cell uptake assay. The particle size of Man-PEG-SS-PLGA/ProPTX was (132.90 ± 1.81) nm, the dispersion coefficient Polymer dispersity index was 0.13 ± 0.03, and the Zeta potential was (−8.65 ± 0.50) mV. The encapsulation rate was 95.46 ± 2.31% and the drug load was 13.65 ± 2.31%. The nanoparticles could significantly inhibit the proliferation and promote apoptosis of MCF-7, HepG2, and MDA-MB-231 tumour cells. It has good ROS response characteristics and targeting. The targeted uptake mechanism is energy-dependent and endocytosis is mediated by non-clathrin, non-caveolin, lipid raft/caveolin, and cyclooxygenase (COX)/caveolin with a certain concentration dependence and time dependence. Man-PEG-SS-PLGA/ProPTX is a tumour microenvironment-responsive nanoparticle that can actively target tumour cells. It restricts the release of PTX in normal tissues, enhances its selectivity to tumour cells, and has significant antitumour activity, which is expected to solve the current limitations of PTX use.
{"title":"A paclitaxel prodrug nanoparticles with glutathion/reactive oxygen species dual-responsive and CD206 targeting to improve the anti-tumour effect","authors":"Changhai Wang, Yuwen Jiao, Xinyu Zhang, Mingxue Guo, Qing Zhang, Wenjun Hu, Shuang Dong, Tangthianchaichana Jakkree, Yang Lu, Jinling Wang","doi":"10.1049/nbt2.12119","DOIUrl":"10.1049/nbt2.12119","url":null,"abstract":"<p>As a first-line anticancer drug, paclitaxel has shortcomings, such as poor solubility and lack of tumour cell selectivity, which limit its further applications in clinical practice. Therefore, the authors aimed to utilise the characteristics of prodrug and nanotechnology to prepare a reactive oxygen species (ROS) and GSH dual-responsive targeted tumour prodrug nanoparticle Man-PEG-SS-PLGA/ProPTX to improve the clinical application status of paclitaxel limitation. The characterisation of Man-PEG-SS-PLGA/ProPTX was carried out through preparation. The cytotoxicity of nanoparticles on tumour cells and the effect on apoptosis of tumour cells were investigated by cytotoxicity assay and flow cytometry analysis. The ROS responsiveness of nanoparticles was investigated by detecting the ROS level of tumour cells. The tumour cell selectivity of the nanoparticles was further investigated by receptor affinity assay and cell uptake assay. The particle size of Man-PEG-SS-PLGA/ProPTX was (132.90 ± 1.81) nm, the dispersion coefficient Polymer dispersity index was 0.13 ± 0.03, and the Zeta potential was (−8.65 ± 0.50) mV. The encapsulation rate was 95.46 ± 2.31% and the drug load was 13.65 ± 2.31%. The nanoparticles could significantly inhibit the proliferation and promote apoptosis of MCF-7, HepG2, and MDA-MB-231 tumour cells. It has good ROS response characteristics and targeting. The targeted uptake mechanism is energy-dependent and endocytosis is mediated by non-clathrin, non-caveolin, lipid raft/caveolin, and cyclooxygenase (COX)/caveolin with a certain concentration dependence and time dependence. Man-PEG-SS-PLGA/ProPTX is a tumour microenvironment-responsive nanoparticle that can actively target tumour cells. It restricts the release of PTX in normal tissues, enhances its selectivity to tumour cells, and has significant antitumour activity, which is expected to solve the current limitations of PTX use.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"406-419"},"PeriodicalIF":2.3,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10267428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}