Epidermal growth factor (EGF) can be efficiently used in wound healing process; but the main obstacle of its clinical use is its susceptibility to proteolysis and maintaining its effective concentration in the site of action. In this study, chitosan nanoparticles containing EGF is formulated using a simple method to increase its stability in physiological pH as well as protect its biological activity and effectiveness in wound healing process. Nanoparticles with different ratios of chitosan/EGF were prepared and evaluated in vitro and in vivo. Obtained results showed nanoparticles with 2:1 ratio of chitosan/EGF were able to release 80% of encapsulated protein after 12 h. Cell proliferation study demonstrated that prepared nanoparticles could protect EGF functionality in physiological pH. In vivo results showed that nanoparticles with 2:1 ratio of chitosan/EGF could significantly accelerate the wound closure-rate, re-epithelialisation and collagen deposition. In conclusion, the designed nanoparticles in optimal ratio can be considered as a potential vehicle for EGF delivery to wounds with the aim of improving healing process.
With the development of single-cell RNA sequencing technology (scRNA-seq), we have the ability to study biological questions at the level of the individual cell transcriptome. Nowadays, many analysis tools, specifically suitable for single-cell RNA sequencing data, have been developed. In this review, the currently commonly used scRNA-seq protocols are discussed. The upstream processing flow pipeline of scRNA-seq data, including goals and popular tools for reads mapping and expression quantification, quality control, normalization, imputation, and batch effect removal is also introduced. Finally, methods to evaluate these tools in both cellular and genetic dimensions, clustering and differential expression analysis are presented.
Restoration of damaged bone and cartilage tissue with biomaterial scaffolds is an area of interest in orthopaedics. Chitosan is among the low-cost biomaterials used as scaffolds with considerable biocompability to almost every human tissue. Considerable osteoconductivity, porosity, and appropriate pore size distribution have made chitosan an appropriate scaffold for loading of stem cells and a good homing place for differentiation of stem cells to bone tissue. Moreover, the similarity of chitosan to glycosaminoglycans and its potential to be used as soft gels, which could be lasting more than 1 week in mobile chondral defects, has made chitosan a polymer of interest in repairing bone and cartilage defects. Different types of scaffolds using chitosan in combination with mesenchymal stem cells (MSCs) are discussed. MSCs are widely used in regenerative medicine because of their regenerative ability, and recent line evidence reviewed demonstrated that the combination of MSCs with a combination of chitosan with different materials, including collagen type 1, hyaluronic acid, Poly(L-lacticacid)/gelatin/β-tricalcium phosphate, gamma-poly[glutamic acid] polyelectrolyte/titanium alloy, modified Poly(L-Lactide-co-Epsilon-Caprolactone), calcium phosphate, β-glycerophosphate hydrogel/calcium phosphate cement (CPC), and CPC-Chitosan-RGD, can increase the efficacy of using MSCs, and chitosan-based stem cell delivery can be a promising method in restoration of damaged bone and cartilage tissue.
In this study, the nanoemulsions containing angelica essential oil (AEO) was used as a novel nano-carrier for enrichment of dairy dessert. Firstly, oil-in-water nanoemulsions were prepared by different levels of GE (1%, 5%, 10%, and 15%) as the dispersed phase, Tween 80 as surfactant with a constant surfactant to essential oil ratio (1:1), and distillated water as a continuous phase. Droplet size, free radical scavenging capacity, antimicrobial activity against gram-positive (Staphylococcus aureus (25923 ATCC)) and gram-negative (Escherichia coli H7 O157 (700728 ATCC)) were evaluated for produced nanoemulsions. The mean droplet size of nanoemulsion increased from 75 to 95 nm and antioxidant capacity also enhanced from 15.4% to 30.2% by increasing AEO level from 1% to 15%. Antimicrobial analysis by disk diffusion methods for nanoemulsions containing different levels of AEO cleared that nanoemulsions with high levels of AEO showed the stronger antimicrobial activity against both used bacteria and especially more activity against Staphylococcus aureus. The results of the total count and yeast and mould count show that the nanoemulsions with different levels of AEO have been effective on the number of microorganisms, particularly during storage. The incorporation of pure essential oil and nanoemulsions with different levels of AEO did not affect significantly the pH of different dessert samples however, they affected the dry matter and free radical scavenging capacity. Adding of nanoemulsions with different levels of AEO to the desserts had a considerable effect on the rheological properties including apparent viscosity, Gʹ, G", Tan δ and complex viscosity and all samples showed shear-thining behaviour. Results from organoleptic characteristics (taste, odour colour, mouthfeel and total acceptance) showed that enriched samples by nanoemulsions, particularly with higher level of AEO had higher sensorial scores. In general, samples containing free AEO (not encapsulated) had the lower scores in all organoleptic characteristics.