Shahin Aghamiri, Ali Jafarpour, Mohsen Shoja: ‘Effects of silver nanoparticles coated with anti-HER2 on irradiation efficiency of SKBR3 breast cancer cells’, IET Nanobiotechnology, 2019, 13, (8), pp. 808-815. (https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-nbt.2018.5258).
The above article, published online on 19 August 2019 in Wiley Online Library (ietresearch.onlinelibrary.wiley.com), has been retracted by agreement between the journal Editor in Chief Ronald Pethig, the Institution of Engineering and Technology, and John Wiley and Sons Ltd. The retraction has been agreed because none of the listed authors - Mohsen Shoja, Ali Jafarpour and Shahin Aghamiri - fulfil the journal's criteria for authorship for the research published in the article. The article was submitted for publication by Mohsen Shoja without the consent of the legitimate authors or attribution to the legitimate authors.
陈晓明,陈晓明,陈晓明,等。抗her2纳米银包被对SKBR3乳腺癌细胞辐照效率的影响[j] .中国生物医学工程学报,2019,(8),pp. 808-815。(https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-nbt.2018.5258).The)上述文章于2019年8月19日在线发表在Wiley在线图书馆(ietresearch.onlinelibrary.wiley.com)上,经期刊主编Ronald Pethig、工程技术学会和John Wiley and Sons Ltd.协议撤回。之所以同意撤稿,是因为名单上的作者——Mohsen Shoja、Ali Jafarpour和Shahin Aghamiri——没有一个人符合该杂志对这篇文章发表的研究的作者资格标准。这篇文章是由Mohsen Shoja在未经合法作者同意或署名的情况下提交发表的。
{"title":"Retraction","authors":"","doi":"10.1049/nbt2.12087","DOIUrl":"https://doi.org/10.1049/nbt2.12087","url":null,"abstract":"<p>Shahin Aghamiri, Ali Jafarpour, Mohsen Shoja: ‘Effects of silver nanoparticles coated with anti-HER2 on irradiation efficiency of SKBR3 breast cancer cells’, IET Nanobiotechnology, 2019, 13, (8), pp. 808-815. (https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-nbt.2018.5258).</p><p>The above article, published online on 19 August 2019 in Wiley Online Library (ietresearch.onlinelibrary.wiley.com), has been retracted by agreement between the journal Editor in Chief Ronald Pethig, the Institution of Engineering and Technology, and John Wiley and Sons Ltd. The retraction has been agreed because none of the listed authors - Mohsen Shoja, Ali Jafarpour and Shahin Aghamiri - fulfil the journal's criteria for authorship for the research published in the article. The article was submitted for publication by Mohsen Shoja without the consent of the legitimate authors or attribution to the legitimate authors.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 6","pages":"238"},"PeriodicalIF":2.3,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137809962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A nanocomposite of graphene oxide and gold nanourchins has been used here to modify the surface of a screen-printed carbon electrode to enhance the sensitivity of the electrochemical DNA detection system. A specific single-stranded DNA probe was designed based on the target DNA sequence and was thiolated to be self-assembled on the surface of the gold nanourchins placed on the modified electrode. Doxorubicin was used as an electrochemical label to detect the DNA hybridisation using differential pulse voltammetry (DPV). The assembling process was confirmed using scanning electron microscopy (SEM) imaging, cyclic voltammetry (CV), and the EIS method. The high sensitivity of the proposed system led to a low detection limit of 0.16 fM and a wide linear range from 0.5 to 950.0 fM. The specificity of the DNA hybridisation and the signalling molecule (haematoxylin) caused very high selectivity towards the target DNA than other non-specific sequences.
{"title":"Nanocomposite of electrochemically reduced graphene oxide and gold nanourchins for electrochemical DNA detection","authors":"Mostafa Azimzadeh, Zahra Aghili, Behrooz Jannat, Saeid Jafari, Saeed Rafizadeh Tafti, Navid Nasirizadeh","doi":"10.1049/nbt2.12086","DOIUrl":"10.1049/nbt2.12086","url":null,"abstract":"<p>A nanocomposite of graphene oxide and gold nanourchins has been used here to modify the surface of a screen-printed carbon electrode to enhance the sensitivity of the electrochemical DNA detection system. A specific single-stranded DNA probe was designed based on the target DNA sequence and was thiolated to be self-assembled on the surface of the gold nanourchins placed on the modified electrode. Doxorubicin was used as an electrochemical label to detect the DNA hybridisation using differential pulse voltammetry (DPV). The assembling process was confirmed using scanning electron microscopy (SEM) imaging, cyclic voltammetry (CV), and the EIS method. The high sensitivity of the proposed system led to a low detection limit of 0.16 fM and a wide linear range from 0.5 to 950.0 fM. The specificity of the DNA hybridisation and the signalling molecule (haematoxylin) caused very high selectivity towards the target DNA than other non-specific sequences.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 5","pages":"190-198"},"PeriodicalIF":2.3,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12086","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48571859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haajira Beevi Habeeb Rahuman, Ranjithkumar Dhandapani, Santhoshini Narayanan, Velmurugan Palanivel, R. Paramasivam, Ramalakshmi Subbarayalu, Sathiamoorthi Thangavelu, S. Muthupandian
Abstract The alarming effect of antibiotic resistance prompted the search for alternative medicine to resolve the microbial resistance conflict. Over the last two decades, scientists have become increasingly interested in metallic nanoparticles to discover their new dimensions. Green nano synthesis is a rapidly expanding field of interest in nanotechnology due to its feasibility, low toxicity, eco‐friendly nature, and long‐term viability. Some plants have long been used in medicine because they contain a variety of bioactive compounds. Silver has long been known for its antibacterial properties. Silver nanoparticles have taken a special place among other metal nanoparticles. Silver nanotechnology has a big impact on medical applications like bio‐coating, novel antimicrobial agents, and drug delivery systems. This review aims to provide a comprehensive understanding of the pharmaceutical qualities of medicinal plants, as well as a convenient guideline for plant‐based silver nanoparticles and their antimicrobial activity.
{"title":"Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications","authors":"Haajira Beevi Habeeb Rahuman, Ranjithkumar Dhandapani, Santhoshini Narayanan, Velmurugan Palanivel, R. Paramasivam, Ramalakshmi Subbarayalu, Sathiamoorthi Thangavelu, S. Muthupandian","doi":"10.1049/nbt2.12078","DOIUrl":"https://doi.org/10.1049/nbt2.12078","url":null,"abstract":"Abstract The alarming effect of antibiotic resistance prompted the search for alternative medicine to resolve the microbial resistance conflict. Over the last two decades, scientists have become increasingly interested in metallic nanoparticles to discover their new dimensions. Green nano synthesis is a rapidly expanding field of interest in nanotechnology due to its feasibility, low toxicity, eco‐friendly nature, and long‐term viability. Some plants have long been used in medicine because they contain a variety of bioactive compounds. Silver has long been known for its antibacterial properties. Silver nanoparticles have taken a special place among other metal nanoparticles. Silver nanotechnology has a big impact on medical applications like bio‐coating, novel antimicrobial agents, and drug delivery systems. This review aims to provide a comprehensive understanding of the pharmaceutical qualities of medicinal plants, as well as a convenient guideline for plant‐based silver nanoparticles and their antimicrobial activity.","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 1","pages":"115 - 144"},"PeriodicalIF":2.3,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48770701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rabia Javed, Noor ul Ain, Ayesha Gul, Muhammad Arslan Ahmad, Weihong Guo, Qiang Ao, Shen Tian
Titanium dioxide (TiO2) nanoparticles (NPs) are one of the topmost widely used metallic oxide nanoparticles. Whether present in naked form or doped with metals or polymers, TiO2 NPs perform immensely important functions. However, the alteration in size and shape by doping results in improving the physical, chemical, and biological behaviour of TiO2 NPs. Hence, the differential effects of various TiO2 nanostructures including nanoflakes, nanoflowers, and nanotubes in various domains of biotechnology have been elucidated by researchers. Recently, the exponential growth of research activities regarding TiO2 NPs has been observed owing to their chemical stability, low toxicity, and multifaceted properties. Because of their enormous abundance, plants, humans, and environment are inevitably exposed to TiO2 NPs. These NPs play a significant role in improving agricultural attributes, removing environmental pollution, and upgrading the domain of nanomedicine. Therefore, the currently ongoing studies about the employment of TiO2 NPs in enhancement of different aspects of agriculture, environment, and medicine have been extensively discussed in this review.
{"title":"Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review","authors":"Rabia Javed, Noor ul Ain, Ayesha Gul, Muhammad Arslan Ahmad, Weihong Guo, Qiang Ao, Shen Tian","doi":"10.1049/nbt2.12085","DOIUrl":"10.1049/nbt2.12085","url":null,"abstract":"<p>Titanium dioxide (TiO<sub>2</sub>) nanoparticles (NPs) are one of the topmost widely used metallic oxide nanoparticles. Whether present in naked form or doped with metals or polymers, TiO<sub>2</sub> NPs perform immensely important functions. However, the alteration in size and shape by doping results in improving the physical, chemical, and biological behaviour of TiO<sub>2</sub> NPs. Hence, the differential effects of various TiO<sub>2</sub> nanostructures including nanoflakes, nanoflowers, and nanotubes in various domains of biotechnology have been elucidated by researchers. Recently, the exponential growth of research activities regarding TiO<sub>2</sub> NPs has been observed owing to their chemical stability, low toxicity, and multifaceted properties. Because of their enormous abundance, plants, humans, and environment are inevitably exposed to TiO<sub>2</sub> NPs. These NPs play a significant role in improving agricultural attributes, removing environmental pollution, and upgrading the domain of nanomedicine. Therefore, the currently ongoing studies about the employment of TiO<sub>2</sub> NPs in enhancement of different aspects of agriculture, environment, and medicine have been extensively discussed in this review.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 5","pages":"171-189"},"PeriodicalIF":2.3,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45130538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hesamoddin Jannatamani, A. Motamedzadegan, M. Farsi, H. Yousefi
Abstract In this study, rheological properties of the Wood Cellulose NanoFibers (WCNF), Bacterial Cellulose NanoFibers (BCNF), and Chitin NanoFibers (ChNF) as well as physical properties of films prepared from each nano‐hydrogel were investigated. Each nano‐hydrogel was prepared in 2 concentrations of 0.5 and 1 wt% for rheological study. Rheological properties were measured using a rotational rheometer. The flow behaviour data were fitted with rheological models. Apparent viscosity was higher in higher concentrations of nano‐hydrogels. Herschel‐Bulkley model was the best model for flow behaviour data fitting. BCNF nano‐hydrogels had the highest hysteresis loop while WCNF nano‐hydrogels had the best structure recovery and lowest hysteresis loop. At LVE (Linear Viscoelastic Region), G′ (storage modulus) and G″ (loss modulus) had a constant value, but as strain increased their values decreased. Storage modulus was found to be greater than loss modulus in all samples during frequency sweep test. BCNF nano‐hydrogel showed the lowest frequency dependency. Chitin nanofilms had the highest elongation and stress value.
{"title":"Rheological properties of wood/bacterial cellulose and chitin nano‐hydrogels as a function of concentration and their nano‐films properties","authors":"Hesamoddin Jannatamani, A. Motamedzadegan, M. Farsi, H. Yousefi","doi":"10.1049/nbt2.12083","DOIUrl":"https://doi.org/10.1049/nbt2.12083","url":null,"abstract":"Abstract In this study, rheological properties of the Wood Cellulose NanoFibers (WCNF), Bacterial Cellulose NanoFibers (BCNF), and Chitin NanoFibers (ChNF) as well as physical properties of films prepared from each nano‐hydrogel were investigated. Each nano‐hydrogel was prepared in 2 concentrations of 0.5 and 1 wt% for rheological study. Rheological properties were measured using a rotational rheometer. The flow behaviour data were fitted with rheological models. Apparent viscosity was higher in higher concentrations of nano‐hydrogels. Herschel‐Bulkley model was the best model for flow behaviour data fitting. BCNF nano‐hydrogels had the highest hysteresis loop while WCNF nano‐hydrogels had the best structure recovery and lowest hysteresis loop. At LVE (Linear Viscoelastic Region), G′ (storage modulus) and G″ (loss modulus) had a constant value, but as strain increased their values decreased. Storage modulus was found to be greater than loss modulus in all samples during frequency sweep test. BCNF nano‐hydrogel showed the lowest frequency dependency. Chitin nanofilms had the highest elongation and stress value.","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 1","pages":"158 - 169"},"PeriodicalIF":2.3,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49143140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01Epub Date: 2022-01-08DOI: 10.1049/nbt2.12076
Abdullah N Alodhayb
Polystyrene is a very popular polymer utilised in the manufacture of various consumer products. This polymer is very cheap; however, after its usage, the slowness of its photodegradation leads to environmental pollution. In this report, the author presents a technique to systematically measure the rate of photodegradation of a thin polystyrene film. The said film was made to coat a quartz crystal microbalance (QCM) sensor. In order to detect polymer degradation and the reduction in the molecular weight, the resonance frequency of the sensor was monitored for 24 h. Results revealed that QCM sensor irradiation with ultraviolet light with a wavelength of 365 nm and optical power of 1.5 mW caused a quite significant change in the polymer structure.
{"title":"Measurement of polystyrene photodegradation rate using a quartz crystal microbalance.","authors":"Abdullah N Alodhayb","doi":"10.1049/nbt2.12076","DOIUrl":"https://doi.org/10.1049/nbt2.12076","url":null,"abstract":"<p><p>Polystyrene is a very popular polymer utilised in the manufacture of various consumer products. This polymer is very cheap; however, after its usage, the slowness of its photodegradation leads to environmental pollution. In this report, the author presents a technique to systematically measure the rate of photodegradation of a thin polystyrene film. The said film was made to coat a quartz crystal microbalance (QCM) sensor. In order to detect polymer degradation and the reduction in the molecular weight, the resonance frequency of the sensor was monitored for 24 h. Results revealed that QCM sensor irradiation with ultraviolet light with a wavelength of 365 nm and optical power of 1.5 mW caused a quite significant change in the polymer structure.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 2","pages":"61-65"},"PeriodicalIF":2.3,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39884867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01Epub Date: 2022-01-11DOI: 10.1049/nbt2.12075
Rita Ghose, A K M Asaduzzaman, Imtiaj Hasan, Syed Rashel Kabir
In the present study, Ag/AgCl-NPs were biosynthesised using Hypnea musciformis seaweed extract; NPs synthesis was confirmed by a change of colour and observation of a razor-sharp peak at 424 nm by UV-visible spectroscopy. Synthesised nanoparticles were characterised by transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray powder diffraction and Fourier transform infrared spectroscopy. Bacterial cell growth inhibition proves that the Ag/AgCl-NPs have strong antibacterial activity and cell morphological alteration was observed in treated bacterial cells using propidium iodide (PI). Ag/AgCl-NPs inhibited Ehrlich ascites carcinoma (EAC) cells, colorectal cancer (HCT-116) and breast cancer (MCF-7) cell line in vitro with the IC50 values of 40.45, 24.08 and 36.95 μg/ml, respectively. Initiation of apoptosis in HCT-116 and MCF-7 cells was confirmed using PI, FITC-annexin V and Hoechst 33342 dye. No reaction oxygen species generation was observed in both treated and untreated cell lines. A significant increase of ATG-5 gene expression indicates the possibility of autophagy cell death besides apoptosis in MCF-7 cells. The initiation of apoptosis in EAC cells was confirmed by observing caspase-3 protein expression. Ag/AgCl-NPs inhibited 22.83% and 51% of the EAC cell growth in vivo in mice when administered 1.5 and 3.0 mg/kg/day (i.p.), respectively, for 5 consequent days.
{"title":"Hypnea musciformis-mediated Ag/AgCl-NPs inhibit pathogenic bacteria, HCT-116 and MCF-7 cells' growth in vitro and Ehrlich ascites carcinoma cells in vivo in mice.","authors":"Rita Ghose, A K M Asaduzzaman, Imtiaj Hasan, Syed Rashel Kabir","doi":"10.1049/nbt2.12075","DOIUrl":"https://doi.org/10.1049/nbt2.12075","url":null,"abstract":"<p><p>In the present study, Ag/AgCl-NPs were biosynthesised using Hypnea musciformis seaweed extract; NPs synthesis was confirmed by a change of colour and observation of a razor-sharp peak at 424 nm by UV-visible spectroscopy. Synthesised nanoparticles were characterised by transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray powder diffraction and Fourier transform infrared spectroscopy. Bacterial cell growth inhibition proves that the Ag/AgCl-NPs have strong antibacterial activity and cell morphological alteration was observed in treated bacterial cells using propidium iodide (PI). Ag/AgCl-NPs inhibited Ehrlich ascites carcinoma (EAC) cells, colorectal cancer (HCT-116) and breast cancer (MCF-7) cell line in vitro with the IC<sub>50</sub> values of 40.45, 24.08 and 36.95 μg/ml, respectively. Initiation of apoptosis in HCT-116 and MCF-7 cells was confirmed using PI, FITC-annexin V and Hoechst 33342 dye. No reaction oxygen species generation was observed in both treated and untreated cell lines. A significant increase of ATG-5 gene expression indicates the possibility of autophagy cell death besides apoptosis in MCF-7 cells. The initiation of apoptosis in EAC cells was confirmed by observing caspase-3 protein expression. Ag/AgCl-NPs inhibited 22.83% and 51% of the EAC cell growth in vivo in mice when administered 1.5 and 3.0 mg/kg/day (i.p.), respectively, for 5 consequent days.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 2","pages":"49-60"},"PeriodicalIF":2.3,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e7/30/NBT2-16-49.PMC8918923.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39810527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samer Hasan Hussein-Al-Ali, Suha Mujahed Abudoleh, Qais Ibrahim Abdallah Abualassal, Zead Abudayeh, Yousef Aldalahmah, Mohd Zobir Hussein
Silver nanoparticles (AgNPs) have shown potential applications in drug delivery. In this study, the AgNPs was prepared from silver nitrate in the presence of alginate as a capping agent. The ciprofloxacin (Cipro) was loaded on the surface of AgNPs to produce Cipro-AgNPs nanocomposite. The characteristics of the Cipro-AgNPs nanocomposite were studied by X-ray diffraction (XRD), UV–Vis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier-transform infra-red analysis (FT-IR) and zeta potential analyses. The XRD of AgNPs and Cipro-AgNPs nanocomposite data showed that both have a crystalline structure in nature. The FT-IR data indicate that the AgNPs have been wrapped by the alginate and loaded with the Cipro drug. The TEM image showed that the Cipro-AgNPs nanocomposites have an average size of 96 nm with a spherical shape. The SEM image for AgNPs and Cipro-AgNPs nanocomposites confirmed the needle-lumpy shape. The zeta potential for Cipro-AgNPs nanocomposites exhibited a positive charge with a value of 6.5 mV. The TGA for Cipro-AgNPs nanocomposites showed loss of 79.7% in total mass compared to 57.6% for AgNPs which is due to the Cipro loaded in the AgNPs. The release of Cipro from Cipro-AgNPs nanocomposites showed slow release properties which reached 98% release within 750 min, and followed the Hixson–Crowell kinetic model. In addition, the toxicity of AgNPs and Cipro-AgNPs nanocomposites was evaluated using normal (3T3) cell line. The present work suggests that Cipro-AgNPs are suitable for drug delivery.
{"title":"Preparation and characterisation of ciprofloxacin-loaded silver nanoparticles for drug delivery","authors":"Samer Hasan Hussein-Al-Ali, Suha Mujahed Abudoleh, Qais Ibrahim Abdallah Abualassal, Zead Abudayeh, Yousef Aldalahmah, Mohd Zobir Hussein","doi":"10.1049/nbt2.12081","DOIUrl":"10.1049/nbt2.12081","url":null,"abstract":"<p>Silver nanoparticles (AgNPs) have shown potential applications in drug delivery. In this study, the AgNPs was prepared from silver nitrate in the presence of alginate as a capping agent. The ciprofloxacin (Cipro) was loaded on the surface of AgNPs to produce Cipro-AgNPs nanocomposite. The characteristics of the Cipro-AgNPs nanocomposite were studied by X-ray diffraction (XRD), UV–Vis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier-transform infra-red analysis (FT-IR) and zeta potential analyses. The XRD of AgNPs and Cipro-AgNPs nanocomposite data showed that both have a crystalline structure in nature. The FT-IR data indicate that the AgNPs have been wrapped by the alginate and loaded with the Cipro drug. The TEM image showed that the Cipro-AgNPs nanocomposites have an average size of 96 nm with a spherical shape. The SEM image for AgNPs and Cipro-AgNPs nanocomposites confirmed the needle-lumpy shape. The zeta potential for Cipro-AgNPs nanocomposites exhibited a positive charge with a value of 6.5 mV. The TGA for Cipro-AgNPs nanocomposites showed loss of 79.7% in total mass compared to 57.6% for AgNPs which is due to the Cipro loaded in the AgNPs. The release of Cipro from Cipro-AgNPs nanocomposites showed slow release properties which reached 98% release within 750 min, and followed the Hixson–Crowell kinetic model. In addition, the toxicity of AgNPs and Cipro-AgNPs nanocomposites was evaluated using normal (3T3) cell line. The present work suggests that Cipro-AgNPs are suitable for drug delivery.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 3","pages":"92-101"},"PeriodicalIF":2.3,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c0/f5/NBT2-16-92.PMC9007151.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40326049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Firoozeh Abolhasani Zadeh, Saade Abdalkareem Jasim, Nigora E. Atakhanova, Hasan Sh. Majdi, Mohammed Abed Jawad, Mohammed Khudair Hasan, Fariba Borhani, Mehrdad Khatami
Mesoporous magnetic nanoparticles of haematite were synthesised using plant extracts according to bioethics principles. The structural, physical and chemical properties of mesoporous Fe2O3 nanoparticles synthesised with the green chemistry approach were evaluated by XRD, SEM, EDAX, BET, VSM and HRTEM analysis. Then, their toxicity against normal HUVECs and MCF7 cancer cells was evaluated by MTT assay for 48 h. These biogenic mesoporous magnetic nanoparticles have over 71% of doxorubicin loading efficiency, resulting in a 50% reduction of cancer cells at a 0.5 μg.ml−1 concentration. Therefore, it is suggested that mesoporous magnetic nanoparticles be used as a multifunctional agent in medicine (therapeutic-diagnostic). The produced mesoporous magnetic nanoparticles with its inherent structural properties such as polygonal structure (increasing surface area to particle volume) and porosity with large pore volume became a suitable substrate for loading the anti-cancer drug doxorubicin.
{"title":"Drug delivery and anticancer activity of biosynthesised mesoporous Fe2O3 nanoparticles","authors":"Firoozeh Abolhasani Zadeh, Saade Abdalkareem Jasim, Nigora E. Atakhanova, Hasan Sh. Majdi, Mohammed Abed Jawad, Mohammed Khudair Hasan, Fariba Borhani, Mehrdad Khatami","doi":"10.1049/nbt2.12080","DOIUrl":"10.1049/nbt2.12080","url":null,"abstract":"<p>Mesoporous magnetic nanoparticles of haematite were synthesised using plant extracts according to bioethics principles. The structural, physical and chemical properties of mesoporous Fe<sub>2</sub>O<sub>3</sub> nanoparticles synthesised with the green chemistry approach were evaluated by XRD, SEM, EDAX, BET, VSM and HRTEM analysis. Then, their toxicity against normal HUVECs and MCF7 cancer cells was evaluated by MTT assay for 48 h. These biogenic mesoporous magnetic nanoparticles have over 71% of doxorubicin loading efficiency, resulting in a 50% reduction of cancer cells at a 0.5 μg.ml<sup>−1</sup> concentration. Therefore, it is suggested that mesoporous magnetic nanoparticles be used as a multifunctional agent in medicine (therapeutic-diagnostic). The produced mesoporous magnetic nanoparticles with its inherent structural properties such as polygonal structure (increasing surface area to particle volume) and porosity with large pore volume became a suitable substrate for loading the anti-cancer drug doxorubicin.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 3","pages":"85-91"},"PeriodicalIF":2.3,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46806306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
After the outbreak of coronavirus disease 2019 (COVID-19) in December 2019 and the increasing number of SARS-CoV-2 infections all over the world, researchers are struggling to investigate effective therapeutic strategies for the treatment of this infection. Targeting viral small molecules that are involved in the process of infection is a promising strategy. Since many host factors are also used by SARS-CoV-2 during various stages of infection, down-regulating or silencing these factors can serve as an effective therapeutic tool. Several nucleic acid-based technologies including short interfering RNAs, antisense oligonucleotides, aptamers, DNAzymes, and ribozymes have been suggested for the control of SARS-CoV-2 as well as other respiratory viruses. The antisense technology also plays an indispensable role in the treatment of many other diseases including cancer, influenza, and acquired immunodeficiency syndrome. In this review, we summarised the potential applications of antisense technology for the treatment of coronaviruses and specifically COVID-19 infection.
{"title":"Antisense technology as a potential strategy for the treatment of coronaviruses infection: With focus on COVID-19","authors":"Seyedeh Hoda Alavizadeh, Maham Doagooyan, Fatemeh Zahedipour, Shima Yahoo Torghabe, Bahare Baharieh, Firooze Soleymani, Fatemeh Gheybi","doi":"10.1049/nbt2.12079","DOIUrl":"10.1049/nbt2.12079","url":null,"abstract":"<p>After the outbreak of coronavirus disease 2019 (COVID-19) in December 2019 and the increasing number of SARS-CoV-2 infections all over the world, researchers are struggling to investigate effective therapeutic strategies for the treatment of this infection. Targeting viral small molecules that are involved in the process of infection is a promising strategy. Since many host factors are also used by SARS-CoV-2 during various stages of infection, down-regulating or silencing these factors can serve as an effective therapeutic tool. Several nucleic acid-based technologies including short interfering RNAs, antisense oligonucleotides, aptamers, DNAzymes, and ribozymes have been suggested for the control of SARS-CoV-2 as well as other respiratory viruses. The antisense technology also plays an indispensable role in the treatment of many other diseases including cancer, influenza, and acquired immunodeficiency syndrome. In this review, we summarised the potential applications of antisense technology for the treatment of coronaviruses and specifically COVID-19 infection.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 3","pages":"67-77"},"PeriodicalIF":2.3,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43336955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}