Hypoxic pulmonary hypertension (HPH) is a life-threatening disease that occurs due to a lack of oxygen in the lungs, leading to an increase in pulmonary vascular resistance, right ventricular failure, and ultimately death. HPH is a multifactorial disorder that involves multiple molecular pathways, making it a challenge for clinicians to identify effective therapies. Pulmonary artery smooth muscle cells (PASMCs) play a crucial role in HPH pathogenesis by proliferating, resisting apoptosis, and promoting vascular remodelling. Curcumin, a natural polyphenolic compound, has shown potential as a therapeutic agent for HPH by reducing pulmonary vascular resistance, inhibiting vascular remodelling, and promoting apoptosis of PASMCs. Regulation of PASMCs could significantly inhibits HPH. However, curcumin has the disadvantages of poor solubility and low bioavailability, and its derivative WZ35 has better biosafety. Here, Cu-based metal organic frameworks (MOFCu) was fabricated to encapsulate the curcumin analogue WZ35 (MOFCu@WZ35) for the inhibition of PASMCs proliferation. The authors found that the MOFCu@WZ35 could promote the death of PASMCs. Furthermore, the authors believed that this drug delivery system will effectively alleviate the HPH.
{"title":"Inhibition of pulmonary artery smooth muscle cells via the delivery of curcuminoid WZ35 by Cu-based metal organic frameworks","authors":"Zhidan Hua, Mingming Han, Lanlan Song, Yongle Yan, Honglang Chen, Jilong Wang, Chao Li, Yanfan Chen, Hanhan Yan, Mayun Chen","doi":"10.1049/nbt2.12138","DOIUrl":"10.1049/nbt2.12138","url":null,"abstract":"<p>Hypoxic pulmonary hypertension (HPH) is a life-threatening disease that occurs due to a lack of oxygen in the lungs, leading to an increase in pulmonary vascular resistance, right ventricular failure, and ultimately death. HPH is a multifactorial disorder that involves multiple molecular pathways, making it a challenge for clinicians to identify effective therapies. Pulmonary artery smooth muscle cells (PASMCs) play a crucial role in HPH pathogenesis by proliferating, resisting apoptosis, and promoting vascular remodelling. Curcumin, a natural polyphenolic compound, has shown potential as a therapeutic agent for HPH by reducing pulmonary vascular resistance, inhibiting vascular remodelling, and promoting apoptosis of PASMCs. Regulation of PASMCs could significantly inhibits HPH. However, curcumin has the disadvantages of poor solubility and low bioavailability, and its derivative WZ35 has better biosafety. Here, Cu-based metal organic frameworks (MOF<sub>Cu</sub>) was fabricated to encapsulate the curcumin analogue WZ35 (MOF<sub>Cu</sub>@WZ35) for the inhibition of PASMCs proliferation. The authors found that the MOF<sub>Cu</sub>@WZ35 could promote the death of PASMCs. Furthermore, the authors believed that this drug delivery system will effectively alleviate the HPH.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"420-424"},"PeriodicalIF":2.3,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9892051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present research aims to encapsulate lawsone in polylactic-co-glycolic acid (PLGA) nanoparticles modified with folic acid (FA) and chitosan (CS) to study its anticancer effects against Panc-1 cells. The nanoparticles were analysed in means of shape/size and zeta potential index using scanning electron microscope and dynamic light scattering. High-performance liquid chromatography was applied to evaluate the lawsone entrapment efficacy. The authors performed acridine orange/propidium iodide staining and flow cytometry to monitor apoptosis induction and cell cycle arrest. The expressions of apoptosis-related genes (BAX and BCL-2) were assessed by real time PCR. Nanoparticle antioxidative and antibacterial activities were examined by DPPH/ABTS scavenging assay, disk diffusion method, and minimum inhibitory concentration and minimum bactericidal concentration evaluation. The NPs were 229.65 nm, the encapsulation efficiency was 81%. The concentration of lawsone that exerts 50% cell growth inhibition (IC50) against Panc-1 cells was calculated 118.4 μL. Apoptosis induction was evidenced by the increased number of orange cells and increased proportion of cells in G1-Sub phase respectively. Moreover, lawsone-loaded nanoparticle upregulated BAX gene expression, while downregulated BCL2expression, suggesting the activation of apoptotic pathway. The observed cytotoxic/apoptotic properties suggest that Lawson-loaded PLGA-FA-CS-NPs hold a great potential in pancreatic cancer treatment.
{"title":"Lawsone encapsulated polylactic-co-glycolic acid nanoparticles modified with chitosan-folic acid successfully inhibited cell growth and triggered apoptosis in Panc-1 cancer cells","authors":"Helia Ghafaripour, Masoud Homayouni Tabrizi, Ehsan Karimi, Niloofar Barati Naeeni","doi":"10.1049/nbt2.12139","DOIUrl":"10.1049/nbt2.12139","url":null,"abstract":"<p>The present research aims to encapsulate lawsone in polylactic-co-glycolic acid (PLGA) nanoparticles modified with folic acid (FA) and chitosan (CS) to study its anticancer effects against Panc-1 cells. The nanoparticles were analysed in means of shape/size and zeta potential index using scanning electron microscope and dynamic light scattering. High-performance liquid chromatography was applied to evaluate the lawsone entrapment efficacy. The authors performed acridine orange/propidium iodide staining and flow cytometry to monitor apoptosis induction and cell cycle arrest. The expressions of apoptosis-related genes (BAX and BCL-2) were assessed by real time PCR. Nanoparticle antioxidative and antibacterial activities were examined by DPPH/ABTS scavenging assay, disk diffusion method, and minimum inhibitory concentration and minimum bactericidal concentration evaluation. The NPs were 229.65 nm, the encapsulation efficiency was 81%. The concentration of lawsone that exerts 50% cell growth inhibition (IC<sub>50</sub>) against Panc-1 cells was calculated 118.4 μL. Apoptosis induction was evidenced by the increased number of orange cells and increased proportion of cells in G1-Sub phase respectively. Moreover, lawsone-loaded nanoparticle upregulated BAX gene expression, while downregulated BCL2expression, suggesting the activation of apoptotic pathway. The observed cytotoxic/apoptotic properties suggest that Lawson-loaded PLGA-FA-CS-NPs hold a great potential in pancreatic cancer treatment.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"425-437"},"PeriodicalIF":2.3,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/98/63/NBT2-17-425.PMC10374556.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9945593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The treatment of periodontitis focuses on controlling the progression of inflammation, reducing plaque accumulation, and promoting bone tissue reconstruction. Among them, the reconstruction of irregular bone resorption caused by periodontitis is a long-standing challenge. At present, the local drug treatment of periodontitis is mainly anti-inflammatory and antibacterial drugs. In this study, psoralen (Pso), a Chinese herbal medicine with anti-inflammatory, antibacterial, and osteogenic effects, was selected for the local treatment of periodontitis. Meanwhile, an injectable methacrylate gelatin (GelMA) platform loading with Pso was constructed. Pso-GelMA had the properties of fluidity, light cohesion, self-healing, and slow release, which could be better used in the deep and narrow structure of the periodontal pocket, and greatly increased the effectiveness of local drug delivery. The pore size of Gelma hydrogel did not change after loading Pso by SEM. In vitro, Pso-GelMA effectively upregulated the expression of osteogenic genes and proteins, increased alkaline phosphatase activity, promoted the mineralisation of rat bone marrow mesenchymal stem cells (BMSCs) extracellular matrix, and had significant antibacterial effects on Staphylococcus aureus and Fusobacterium nucleatum. Therefore, Pso-GelMA has immense promise in the adjuvant treatment of periodontitis.
{"title":"Osteogenesis promotion by injectable methacryloylated gelatin containing psoralen and its bacteriostatic properties","authors":"Qi Zhang, Fuhang Chu, Yingjie Xu, Xiaonan Wu, Jie Yu, Beibei Cong, Yingtao Wu","doi":"10.1049/nbt2.12136","DOIUrl":"10.1049/nbt2.12136","url":null,"abstract":"<p>The treatment of periodontitis focuses on controlling the progression of inflammation, reducing plaque accumulation, and promoting bone tissue reconstruction. Among them, the reconstruction of irregular bone resorption caused by periodontitis is a long-standing challenge. At present, the local drug treatment of periodontitis is mainly anti-inflammatory and antibacterial drugs. In this study, psoralen (Pso), a Chinese herbal medicine with anti-inflammatory, antibacterial, and osteogenic effects, was selected for the local treatment of periodontitis. Meanwhile, an injectable methacrylate gelatin (GelMA) platform loading with Pso was constructed. Pso-GelMA had the properties of fluidity, light cohesion, self-healing, and slow release, which could be better used in the deep and narrow structure of the periodontal pocket, and greatly increased the effectiveness of local drug delivery. The pore size of Gelma hydrogel did not change after loading Pso by SEM. In vitro, Pso-GelMA effectively upregulated the expression of osteogenic genes and proteins, increased alkaline phosphatase activity, promoted the mineralisation of rat bone marrow mesenchymal stem cells (BMSCs) extracellular matrix, and had significant antibacterial effects on <i>Staphylococcus aureus</i> and <i>Fusobacterium nucle</i>atum. Therefore, Pso-GelMA has immense promise in the adjuvant treatment of periodontitis.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"376-386"},"PeriodicalIF":2.3,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f1/d8/NBT2-17-376.PMC10288355.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9698391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atherosclerosis is a progressive inflammatory disease characterised by excessive lipid accumulation and inflammatory cell infiltration and is the basis of most cardiovascular diseases and peripheral arterial diseases. Therefore, an effectively targeted delivery system is urgently needed to deliver ferroptosis-specific inhibitors to the site of arterial plaque and the inflammatory microenvironment. Inspired by the fact that neutrophils can be recruited to arterial plaques under the action of adhesion molecules and chemokines, the authors developed a neutrophil membrane hybrid liposome nano-mimetic system (Ptdser-NM-Lipo/Fer-1) that delivers Ferrostatin-1 (Fer-1) to the atherosclerotic plaque effectively, which is composed of Fer-1-loaded Ptdser-modified liposomes core and neutrophils shell. Fer-1 was released at the AS plaque site to remove reactive oxygen species (ROS) and improve the inflammatory microenvironment. In vitro ROS clearance experiments have shown that 50 μmol/ml Fer-1 can significantly remove ROS produced by H2O2-induced MOVAS cells and Ptdser-NM-Lipo/Fer-1 revealed a 3-fold increase in the inhibition rate of ROS than free Fer-1 in induced-RAW264.7, demonstrating its superior ROS-cleaning effect. Based on the interaction of adhesion molecules, such as vascular cell adhesion molecule 1, ICAM-1, P-selectin, E-selectin, and chemokines released in the inflamed site, the aorta in NM-Lipo-treated mice displayed 1.3-fold greater radiant efficiency than platelet membrane-Lipo-treated mice. Meanwhile, due to the modification of the Ptdser, the aorta in Ptdser-NM-Lipo/Fer-1-treated mice exhibited the highest fluorescence intensity, demonstrating its excellent targeting ability for atherosclerosis. Therefore, we present a specific formulation for the treatment of atherosclerosis with the potential for novel therapeutic uses.
动脉粥样硬化是一种进行性炎症性疾病,以脂质过度积累和炎症细胞浸润为特征,是大多数心血管疾病和外周动脉疾病的基础。因此,迫切需要一种有效的靶向递送系统,将铁中毒特异性抑制剂递送到动脉斑块部位和炎症微环境。受中性粒细胞可以在粘附分子和趋化因子的作用下被募集到动脉斑块这一事实的启发,作者开发了一种中性粒细胞膜杂交脂质体纳米模拟系统(Ptdser-NM-Lipo/ fe -1),该系统由装载fe -1的ptdser修饰脂质体核心和中性粒细胞外壳组成,可有效地将他铁素-1 (fe -1)递送到动脉粥样硬化斑块。fer1在AS斑块部位释放,去除活性氧(ROS),改善炎症微环境。体外ROS清除实验表明,50 μmol/ml fe -1能显著去除h2o2诱导的MOVAS细胞产生的ROS, Ptdser-NM-Lipo/ fe -1在诱导的raw264.7中对ROS的抑制率比游离fe -1提高3倍,表明其具有优越的ROS清除效果。基于血管细胞黏附分子1、ICAM-1、p -选择素、e-选择素以及炎症部位释放的趋化因子等黏附分子的相互作用,纳米脂处理小鼠主动脉的辐射效率比血小板膜脂处理小鼠高1.3倍。同时,由于Ptdser的修饰,Ptdser- nm - lipo / fer -1处理小鼠的主动脉显示出最高的荧光强度,表明其具有良好的动脉粥样硬化靶向能力。因此,我们提出了一种治疗动脉粥样硬化的特殊配方,具有新的治疗用途的潜力。
{"title":"Neutrophil membrane biomimetic delivery system (Ptdser-NM-Lipo/Fer-1) designed for targeting atherosclerosis therapy","authors":"Wei Li, Chang Liu, Sichuan Wang, Naifeng Liu","doi":"10.1049/nbt2.12137","DOIUrl":"10.1049/nbt2.12137","url":null,"abstract":"<p>Atherosclerosis is a progressive inflammatory disease characterised by excessive lipid accumulation and inflammatory cell infiltration and is the basis of most cardiovascular diseases and peripheral arterial diseases. Therefore, an effectively targeted delivery system is urgently needed to deliver ferroptosis-specific inhibitors to the site of arterial plaque and the inflammatory microenvironment. Inspired by the fact that neutrophils can be recruited to arterial plaques under the action of adhesion molecules and chemokines, the authors developed a neutrophil membrane hybrid liposome nano-mimetic system (Ptdser-NM-Lipo/Fer-1) that delivers Ferrostatin-1 (Fer-1) to the atherosclerotic plaque effectively, which is composed of Fer-1-loaded Ptdser-modified liposomes core and neutrophils shell. Fer-1 was released at the AS plaque site to remove reactive oxygen species (ROS) and improve the inflammatory microenvironment. In vitro ROS clearance experiments have shown that 50 μmol/ml Fer-1 can significantly remove ROS produced by H<sub>2</sub>O<sub>2</sub>-induced MOVAS cells and Ptdser-NM-Lipo/Fer-1 revealed a 3-fold increase in the inhibition rate of ROS than free Fer-1 in induced-RAW264.7, demonstrating its superior ROS-cleaning effect. Based on the interaction of adhesion molecules, such as vascular cell adhesion molecule 1, ICAM-1, P-selectin, E-selectin, and chemokines released in the inflamed site, the aorta in NM-Lipo-treated mice displayed 1.3-fold greater radiant efficiency than platelet membrane-Lipo-treated mice. Meanwhile, due to the modification of the Ptdser, the aorta in Ptdser-NM-Lipo/Fer-1-treated mice exhibited the highest fluorescence intensity, demonstrating its excellent targeting ability for atherosclerosis. Therefore, we present a specific formulation for the treatment of atherosclerosis with the potential for novel therapeutic uses.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"387-395"},"PeriodicalIF":2.3,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9706115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ellagic acid (EA), which is widely distributed in many foods, has been found to possess inhibitory activity against xanthine oxidase (XO). However, there is ongoing debate about the difference in XO inhibitory activity between EA and allopurinol. Additionally, the inhibitory kinetics and mechanism of EA on XO are still unclear. Herein, the authors systematically studied the inhibitory effects of EA on XO. The authors’ findings showed that EA is a reversible inhibitor with mixed-type inhibition, and its inhibitory activity is weaker than allopurinol. Fluorescence quenching experiments suggested that the generation of EA-XO complex was exothermic and spontaneous. In silico analysis further confirmed that EA entered the XO catalytic centre. Furthermore, the authors verified the anti-hyperuricemia effect of EA in vivo. This study elucidates the inhibition kinetics and mechanism of EA on XO, and lays a theoretical foundation for the further development of drugs and functional foods containing EA for the treatment of hyperuricemia.
{"title":"Xanthine oxidase inhibitory kinetics and mechanism of ellagic acid: In vitro, in silico and in vivo studies","authors":"Jianmin Chen, Zemin He, Sijin Yu, Xiaozhen Cai, Danhong Zhu, Yanhua Lin","doi":"10.1049/nbt2.12135","DOIUrl":"10.1049/nbt2.12135","url":null,"abstract":"<p>Ellagic acid (EA), which is widely distributed in many foods, has been found to possess inhibitory activity against xanthine oxidase (XO). However, there is ongoing debate about the difference in XO inhibitory activity between EA and allopurinol. Additionally, the inhibitory kinetics and mechanism of EA on XO are still unclear. Herein, the authors systematically studied the inhibitory effects of EA on XO. The authors’ findings showed that EA is a reversible inhibitor with mixed-type inhibition, and its inhibitory activity is weaker than allopurinol. Fluorescence quenching experiments suggested that the generation of EA-XO complex was exothermic and spontaneous. In silico analysis further confirmed that EA entered the XO catalytic centre. Furthermore, the authors verified the anti-hyperuricemia effect of EA in vivo. This study elucidates the inhibition kinetics and mechanism of EA on XO, and lays a theoretical foundation for the further development of drugs and functional foods containing EA for the treatment of hyperuricemia.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"368-375"},"PeriodicalIF":2.3,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9709414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
About 50% of cancer patients receive radiation therapy. Despite the therapeutic benefits of this method, the toxicity of radiation in the normal tissues is unavoidable To improve the quality of radiation therapy, in addition to other methods such as IMRT, IGRT, and high radiation dose, nanoparticles have shown excellent potential when ionising radiation is applied to the target volume. Recently, bismuth-based nanoparticles (BiNPs) have become particularly popular in radiation therapy due to their high atomic numbers (Z), high X-ray attenuation coefficient, low toxicity, and low cost. Moreover, it is easy to synthesise in a variety of sizes and shapes. This study aimed to review the effects of the bismuth-based NP and its combination with other compounds, and their potential synergies in radiotherapy, discussed based on their physical, chemical, and biological interactions. Targeted and non-targeted bismuth-based NPs used in radiotherapy as radiosensitizers and dose enhancement effects are described. The results reported in the literature were categorised into various groups. Also, this review has highlighted the importance of bismuth-based NPs in different forms of cancer treatment to find the highest efficiency for applying them as a suitable candidate for various cancer therapy and future clinical applications.
{"title":"A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy","authors":"Daryoush Shahbazi-Gahrouei, Yazdan Choghazardi, Arezoo Kazemzadeh, Paria Naseri, Saghar Shahbazi-Gahrouei","doi":"10.1049/nbt2.12134","DOIUrl":"10.1049/nbt2.12134","url":null,"abstract":"<p>About 50% of cancer patients receive radiation therapy. Despite the therapeutic benefits of this method, the toxicity of radiation in the normal tissues is unavoidable To improve the quality of radiation therapy, in addition to other methods such as IMRT, IGRT, and high radiation dose, nanoparticles have shown excellent potential when ionising radiation is applied to the target volume. Recently, bismuth-based nanoparticles (BiNPs) have become particularly popular in radiation therapy due to their high atomic numbers (Z), high X-ray attenuation coefficient, low toxicity, and low cost. Moreover, it is easy to synthesise in a variety of sizes and shapes. This study aimed to review the effects of the bismuth-based NP and its combination with other compounds, and their potential synergies in radiotherapy, discussed based on their physical, chemical, and biological interactions. Targeted and non-targeted bismuth-based NPs used in radiotherapy as radiosensitizers and dose enhancement effects are described. The results reported in the literature were categorised into various groups. Also, this review has highlighted the importance of bismuth-based NPs in different forms of cancer treatment to find the highest efficiency for applying them as a suitable candidate for various cancer therapy and future clinical applications.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"302-311"},"PeriodicalIF":2.3,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9706085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Mahmoudi, Seyedeh Belin Tavakoly Sany, Marzieh Ahari Salmasi, Ali Bakhshi, Arad Bustan, Sahar heydari, Majid Rezayi, Fatemeh Gheybi
The outbreak of COVID-19 disease, the cause of severe acute respiratory syndrome, is considered a worldwide public health concern. Although studies indicated that the virus could spread through respiratory particles or droplets in close contact, current research have revealed that the virus stays viable in aerosols for several hours. Numerous investigations have highlighted the protective role of air purifiers in the management of COVID-19 transmission, however, there are still some doubts regarding the efficiency and safety of these technologies. According to those observations, using a proper ventilation system can extensively decrease the spread of COVID-19. However, most of those strategies are currently in the experimental stages. This review aimed at summarising the safety and effectiveness of the recent approaches in this field including using nanofibres that prevent the spread of airborne viruses like SARS-CoV-2. Here, the efficacy of controlling COVID-19 by means of combining multiple strategies is comprehensively discussed.
{"title":"Application of nanotechnology in air purifiers as a viable approach to protect against Corona virus","authors":"Ali Mahmoudi, Seyedeh Belin Tavakoly Sany, Marzieh Ahari Salmasi, Ali Bakhshi, Arad Bustan, Sahar heydari, Majid Rezayi, Fatemeh Gheybi","doi":"10.1049/nbt2.12132","DOIUrl":"10.1049/nbt2.12132","url":null,"abstract":"<p>The outbreak of COVID-19 disease, the cause of severe acute respiratory syndrome, is considered a worldwide public health concern. Although studies indicated that the virus could spread through respiratory particles or droplets in close contact, current research have revealed that the virus stays viable in aerosols for several hours. Numerous investigations have highlighted the protective role of air purifiers in the management of COVID-19 transmission, however, there are still some doubts regarding the efficiency and safety of these technologies. According to those observations, using a proper ventilation system can extensively decrease the spread of COVID-19. However, most of those strategies are currently in the experimental stages. This review aimed at summarising the safety and effectiveness of the recent approaches in this field including using nanofibres that prevent the spread of airborne viruses like SARS-CoV-2. Here, the efficacy of controlling COVID-19 by means of combining multiple strategies is comprehensively discussed.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"289-301"},"PeriodicalIF":2.3,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1a/66/NBT2-17-289.PMC10288363.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10082694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To assess and evaluate Chitosan-Metamizole nanoparticles for fracture healing and analgesic potential, nanoparticles were formulated using the ionotropic gelation method. The nanoparticles were evaluated for particle size, zeta potential, polydispersity index, loading efficiency, surface characteristics and drug release properties. The analgesic activity was determined in carrageenan-induced arthritic male Wister rats. Further fracture healing potency, mechanical testing, radiographic examination and bone histology of the femur were studied. The drug loading efficiency of 11.38%–17.45%, particle size of 140–220 nm, and zeta potential of 19.12–23.14 mV were observed with a spherical, smooth appearance. Nanoparticles showed sustained release behaviour over a longer period. Nearly 4-fold inhibition of oedema was observed in animals treated with nanoparticles with excellent fracture healing potential. The femurs treated with nanoparticles required greater force to fracture. Nanoparticles significantly improved the strength and healing process. Histopathological studies showed the potential of nanoparticles in the healing process. The study confirmed the potential of nanoparticles in fracture healing and enhancement of analgesic activity.
{"title":"Assessment and evaluation of Chitosan-Metamizole nanoparticles for the fracture healing and analgesic effect: Preclinical study in rat model","authors":"Li Yin, Liyong Yuan, Chunling Peng, Qionghua Wang","doi":"10.1049/nbt2.12131","DOIUrl":"10.1049/nbt2.12131","url":null,"abstract":"<p>To assess and evaluate Chitosan-Metamizole nanoparticles for fracture healing and analgesic potential, nanoparticles were formulated using the ionotropic gelation method. The nanoparticles were evaluated for particle size, zeta potential, polydispersity index, loading efficiency, surface characteristics and drug release properties. The analgesic activity was determined in carrageenan-induced arthritic male Wister rats. Further fracture healing potency, mechanical testing, radiographic examination and bone histology of the femur were studied. The drug loading efficiency of 11.38%–17.45%, particle size of 140–220 nm, and zeta potential of 19.12–23.14 mV were observed with a spherical, smooth appearance. Nanoparticles showed sustained release behaviour over a longer period. Nearly 4-fold inhibition of oedema was observed in animals treated with nanoparticles with excellent fracture healing potential. The femurs treated with nanoparticles required greater force to fracture. Nanoparticles significantly improved the strength and healing process. Histopathological studies showed the potential of nanoparticles in the healing process. The study confirmed the potential of nanoparticles in fracture healing and enhancement of analgesic activity.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"360-367"},"PeriodicalIF":2.3,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/ef/NBT2-17-360.PMC10288353.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9697427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahshad Mohamadkazem, Ali Neshastehriz, Seyed Mohammad Amini, Ali Moshiri, Atousa Janzadeh
Melanoma is a dangerous type of skin cancer sometimes treated with radiotherapy. However, it induces damage to the surrounding healthy tissue and possibly further away areas. Therefore, it is necessary to give a lower dose to the patient with targeted therapy. In this study, the radio-sensitising effect of gold-coated iron oxide nanoparticles on electron beam radiotherapy of a melanoma tumour with magnetic targeting in a mouse model was investigated. Gold-coated iron oxide nanoparticles were prepared in a steady procedure. The melanoma tumour model was induced in mice. Animals were divided into five groups: (1) normal; (2) melanoma; (3) gold-coated iron oxide nanoparticles alone; (4) electron beam radiotherapy; (5) electron beam radiotherapy plus gold-coated iron oxide nanoparticles. The magnet was placed on the tumour site for 2 h. The tumours were then exposed to 6 MeV electron beam radiotherapy for a dose of 8 Gy. Inductively coupled plasma optical emission spectrometry test, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay blood test were also performed. Gold-coated iron oxide nanoparticles with magnetic targeting before electron beam radiotherapy reduced the growth of the tumour compared to the control group. Blood tests did not show any significant toxicity. Deposition of nanoparticles was more in the tumour and spleen tissue and to a lesser extent in the liver, kidney, and lung tissues. The synergistic effect of nanoparticles administered by the intraperitoneal route and then concentrated into the tumour area by application of an external permanent magnet, before delivery of the electron beam radiotherapy improved the overall cancer treatment outcome and prevented metal distribution side effects.
{"title":"Radiosensitising effect of iron oxide-gold nanocomplex for electron beam therapy of melanoma in vivo by magnetic targeting","authors":"Mahshad Mohamadkazem, Ali Neshastehriz, Seyed Mohammad Amini, Ali Moshiri, Atousa Janzadeh","doi":"10.1049/nbt2.12129","DOIUrl":"10.1049/nbt2.12129","url":null,"abstract":"<p>Melanoma is a dangerous type of skin cancer sometimes treated with radiotherapy. However, it induces damage to the surrounding healthy tissue and possibly further away areas. Therefore, it is necessary to give a lower dose to the patient with targeted therapy. In this study, the radio-sensitising effect of gold-coated iron oxide nanoparticles on electron beam radiotherapy of a melanoma tumour with magnetic targeting in a mouse model was investigated. Gold-coated iron oxide nanoparticles were prepared in a steady procedure. The melanoma tumour model was induced in mice. Animals were divided into five groups: (1) normal; (2) melanoma; (3) gold-coated iron oxide nanoparticles alone; (4) electron beam radiotherapy; (5) electron beam radiotherapy plus gold-coated iron oxide nanoparticles. The magnet was placed on the tumour site for 2 h. The tumours were then exposed to 6 MeV electron beam radiotherapy for a dose of 8 Gy. Inductively coupled plasma optical emission spectrometry test, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay blood test were also performed. Gold-coated iron oxide nanoparticles with magnetic targeting before electron beam radiotherapy reduced the growth of the tumour compared to the control group. Blood tests did not show any significant toxicity. Deposition of nanoparticles was more in the tumour and spleen tissue and to a lesser extent in the liver, kidney, and lung tissues. The synergistic effect of nanoparticles administered by the intraperitoneal route and then concentrated into the tumour area by application of an external permanent magnet, before delivery of the electron beam radiotherapy improved the overall cancer treatment outcome and prevented metal distribution side effects.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 3","pages":"212-223"},"PeriodicalIF":2.3,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9488210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David B. MacManus, Majid Akbarzadeh Khorshidi, Mazdak Ghajari, Hamid M. Sedighi
<p>Micromechanics is the study of materials at the level of their constituents to describe the interactions of the microstructures and other micro-scale effects. Micromechanical approaches have wide applications in biology and medicine due to the nature of biological tissues and the size of micro-biomedical devices. Micromechanical experiments, continuum micromechanics, and computational multi-scale models of materials with an emphasis on the connections between material properties and mechanical responses at a micron length scale are significantly essential to design and manufacture the mechanical components of micro-biomedical devices and comprehend the behaviour of biological tissues. The micro-scale mechanics of biological tissues is a multidisciplinary and rapidly expanding area of research, which deals with the lower-scale effects on the mechanical behaviour of biological tissues, such as bone, brain, muscle, vasculature, skin, etc. In fact, there are different micro-scale deformations, interactions, and movements within these tissues (e.g. microstructural or bi-phasic properties) affecting the mechanical response of the materials. The micromechanical characteristics of a material are key to find how it interacts with its physical environment, which eventually modulates the functionality of the material. Such micro-biomechanical effects stem from the structural and architectural arrangements and the hierarchical nature of biological tissues. This Virtual Collection presents the latest and cutting-edge experimental, computational, and theoretical research on the mechanical properties/behaviours of biological tissues and therapeutics to take into account the micro-scale effects, such as microstructures deformations, micro-scale inhomogeneity, micro-damage, micro-porosity, etc., and the mechanics of cells and cell-substrate interactions.</p><p>In this Virtual Collection, we received six manuscripts, six of which underwent peer review. Of these six manuscripts, three have been accepted for publication in the Virtual Issue demonstrating a high quality and novel insights into Micromechanics in Biology and Medicine.</p><p>Rostami et al. characterised folic acid-functionalised PLA-PEG nanomicelles to deliver Letrozole for the effective treatment of cancer. In silico methods including docking approach, molecular dynamics simulation, and free energy calculations were used for the characterisation studies of PEG-FA and PLA-PEG nanocarriers in delivering Letrozole as an aromatase inhibitor in cancer cells. It was demonstrated the PLA-PEG-FA can be considered a versatile nanocarrier that can increase the effectiveness of aromatase inhibitors while reducing the side effects of the drug.</p><p>Alahdal et al. presented a ‘green’ approach to synthesise iron/gold Auroshell nanoparticles and tested with normal HUVEC cells and glioblastoma cancer cells. The Auroshell nanoparticles were found to have minimal toxicity within a safe range for normal cells. When t
微观力学是研究材料在其成分水平上描述微观结构和其他微观尺度效应的相互作用。由于生物组织的性质和微型生物医学装置的大小,微机械方法在生物学和医学中有着广泛的应用。微力学实验、连续微力学和材料的计算多尺度模型,强调材料特性和微米尺度上的机械响应之间的联系,对于设计和制造微生物医学设备的机械部件以及理解生物组织的行为至关重要。生物组织的微观力学是一个多学科和快速发展的研究领域,它涉及生物组织,如骨,脑,肌肉,脉管系统,皮肤等的机械行为的低尺度效应。事实上,在这些组织中存在不同的微观尺度变形、相互作用和运动(例如微观结构或双相特性),影响材料的机械响应。材料的微机械特性是发现它如何与物理环境相互作用的关键,而物理环境最终会调节材料的功能。这种微生物力学效应源于生物组织的结构和结构安排以及等级性质。这个虚拟集合展示了生物组织和治疗的力学特性/行为的最新和前沿的实验,计算和理论研究,考虑到微观尺度效应,如微观结构变形,微观尺度不均匀性,微损伤,微孔隙等,以及细胞和细胞-基质相互作用的力学。在这个虚拟馆藏中,我们收到了六份手稿,其中六份经过了同行评审。在这六篇手稿中,有三篇已经被接受在虚拟问题上发表,展示了对生物和医学微力学的高质量和新颖的见解。Rostami等人描述了叶酸功能化的PLA-PEG纳米胶束,用于递送来曲唑,以有效治疗癌症。采用对接方法、分子动力学模拟和自由能计算等方法,对PEG-FA和PLA-PEG纳米载体在癌细胞中递送来曲唑作为芳香酶抑制剂的特性进行了研究。结果表明,PLA-PEG-FA可以被认为是一种多功能纳米载体,可以增加芳香化酶抑制剂的有效性,同时减少药物的副作用。Alahdal等人提出了一种“绿色”方法来合成铁/金aurroshell纳米颗粒,并在正常HUVEC细胞和胶质母细胞瘤癌细胞中进行了测试。研究发现,在正常细胞的安全范围内,Auroshell纳米颗粒的毒性很小。当转移到肿瘤组织时,这些纳米颗粒表现出对恶性肿瘤的均匀加热(热疗治疗)。Alzahrani等人利用人巨细胞病毒ul83抗体功能化的MEMS微悬臂生物传感器检测不同浓度的人巨细胞病毒ul83抗原。结果表明,该抗原具有较高的选择性,能有效地检测到ul83抗原。这项技术显示了制造便携式、低成本的实时诊断生物传感器的潜力。在这个虚拟集合中发表的文章展示了微力学在生物学和医学中的重要性。微力学在研究生物现象和使用最先进的纳米技术进行有效治疗方面的重要性被清楚地证明,为这一令人兴奋的领域的进一步探索和研究打开了大门。David B. MacManus:概念化;项目管理;写作——原稿;写作-回顾&;编辑。Majid Akbarzadeh Khorshidi:概念化;项目管理;写作——原稿;写作-回顾&;编辑。Mazdak Ghajari:项目管理;写作——原稿;写作-回顾&;编辑。Hamid M. Sedighi:概念化;写作——原稿;写作-回顾&;编辑。
{"title":"Micromechanics in biology and medicine","authors":"David B. MacManus, Majid Akbarzadeh Khorshidi, Mazdak Ghajari, Hamid M. Sedighi","doi":"10.1049/nbt2.12130","DOIUrl":"10.1049/nbt2.12130","url":null,"abstract":"<p>Micromechanics is the study of materials at the level of their constituents to describe the interactions of the microstructures and other micro-scale effects. Micromechanical approaches have wide applications in biology and medicine due to the nature of biological tissues and the size of micro-biomedical devices. Micromechanical experiments, continuum micromechanics, and computational multi-scale models of materials with an emphasis on the connections between material properties and mechanical responses at a micron length scale are significantly essential to design and manufacture the mechanical components of micro-biomedical devices and comprehend the behaviour of biological tissues. The micro-scale mechanics of biological tissues is a multidisciplinary and rapidly expanding area of research, which deals with the lower-scale effects on the mechanical behaviour of biological tissues, such as bone, brain, muscle, vasculature, skin, etc. In fact, there are different micro-scale deformations, interactions, and movements within these tissues (e.g. microstructural or bi-phasic properties) affecting the mechanical response of the materials. The micromechanical characteristics of a material are key to find how it interacts with its physical environment, which eventually modulates the functionality of the material. Such micro-biomechanical effects stem from the structural and architectural arrangements and the hierarchical nature of biological tissues. This Virtual Collection presents the latest and cutting-edge experimental, computational, and theoretical research on the mechanical properties/behaviours of biological tissues and therapeutics to take into account the micro-scale effects, such as microstructures deformations, micro-scale inhomogeneity, micro-damage, micro-porosity, etc., and the mechanics of cells and cell-substrate interactions.</p><p>In this Virtual Collection, we received six manuscripts, six of which underwent peer review. Of these six manuscripts, three have been accepted for publication in the Virtual Issue demonstrating a high quality and novel insights into Micromechanics in Biology and Medicine.</p><p>Rostami et al. characterised folic acid-functionalised PLA-PEG nanomicelles to deliver Letrozole for the effective treatment of cancer. In silico methods including docking approach, molecular dynamics simulation, and free energy calculations were used for the characterisation studies of PEG-FA and PLA-PEG nanocarriers in delivering Letrozole as an aromatase inhibitor in cancer cells. It was demonstrated the PLA-PEG-FA can be considered a versatile nanocarrier that can increase the effectiveness of aromatase inhibitors while reducing the side effects of the drug.</p><p>Alahdal et al. presented a ‘green’ approach to synthesise iron/gold Auroshell nanoparticles and tested with normal HUVEC cells and glioblastoma cancer cells. The Auroshell nanoparticles were found to have minimal toxicity within a safe range for normal cells. When t","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 3","pages":"125-126"},"PeriodicalIF":2.3,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9b/f5/NBT2-17-125.PMC10190656.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9581032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}