首页 > 最新文献

IET nanobiotechnology最新文献

英文 中文
Inhibition of pulmonary artery smooth muscle cells via the delivery of curcuminoid WZ35 by Cu-based metal organic frameworks 铜基金属有机框架传递姜黄素WZ35对肺动脉平滑肌细胞的抑制作用
IF 2.3 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-05-16 DOI: 10.1049/nbt2.12138
Zhidan Hua, Mingming Han, Lanlan Song, Yongle Yan, Honglang Chen, Jilong Wang, Chao Li, Yanfan Chen, Hanhan Yan, Mayun Chen

Hypoxic pulmonary hypertension (HPH) is a life-threatening disease that occurs due to a lack of oxygen in the lungs, leading to an increase in pulmonary vascular resistance, right ventricular failure, and ultimately death. HPH is a multifactorial disorder that involves multiple molecular pathways, making it a challenge for clinicians to identify effective therapies. Pulmonary artery smooth muscle cells (PASMCs) play a crucial role in HPH pathogenesis by proliferating, resisting apoptosis, and promoting vascular remodelling. Curcumin, a natural polyphenolic compound, has shown potential as a therapeutic agent for HPH by reducing pulmonary vascular resistance, inhibiting vascular remodelling, and promoting apoptosis of PASMCs. Regulation of PASMCs could significantly inhibits HPH. However, curcumin has the disadvantages of poor solubility and low bioavailability, and its derivative WZ35 has better biosafety. Here, Cu-based metal organic frameworks (MOFCu) was fabricated to encapsulate the curcumin analogue WZ35 (MOFCu@WZ35) for the inhibition of PASMCs proliferation. The authors found that the MOFCu@WZ35 could promote the death of PASMCs. Furthermore, the authors believed that this drug delivery system will effectively alleviate the HPH.

低氧性肺动脉高压(HPH)是一种危及生命的疾病,由于肺部缺氧而发生,导致肺血管阻力增加,右心室衰竭,最终死亡。HPH是一种涉及多种分子途径的多因素疾病,这使得临床医生确定有效的治疗方法成为一项挑战。肺动脉平滑肌细胞(PASMCs)通过增殖、抵抗凋亡和促进血管重构在HPH的发病机制中起着至关重要的作用。姜黄素是一种天然多酚类化合物,通过降低肺血管阻力、抑制血管重构和促进PASMCs凋亡,显示出作为HPH治疗剂的潜力。调控PASMCs可显著抑制HPH。但姜黄素存在溶解度差、生物利用度低等缺点,其衍生物WZ35具有较好的生物安全性。本文制备了cu基金属有机框架(MOFCu)包封姜黄素类似物WZ35 (MOFCu@WZ35),以抑制PASMCs的增殖。作者发现MOFCu@WZ35可促进PASMCs的死亡。此外,作者认为该给药系统可以有效缓解HPH。
{"title":"Inhibition of pulmonary artery smooth muscle cells via the delivery of curcuminoid WZ35 by Cu-based metal organic frameworks","authors":"Zhidan Hua,&nbsp;Mingming Han,&nbsp;Lanlan Song,&nbsp;Yongle Yan,&nbsp;Honglang Chen,&nbsp;Jilong Wang,&nbsp;Chao Li,&nbsp;Yanfan Chen,&nbsp;Hanhan Yan,&nbsp;Mayun Chen","doi":"10.1049/nbt2.12138","DOIUrl":"10.1049/nbt2.12138","url":null,"abstract":"<p>Hypoxic pulmonary hypertension (HPH) is a life-threatening disease that occurs due to a lack of oxygen in the lungs, leading to an increase in pulmonary vascular resistance, right ventricular failure, and ultimately death. HPH is a multifactorial disorder that involves multiple molecular pathways, making it a challenge for clinicians to identify effective therapies. Pulmonary artery smooth muscle cells (PASMCs) play a crucial role in HPH pathogenesis by proliferating, resisting apoptosis, and promoting vascular remodelling. Curcumin, a natural polyphenolic compound, has shown potential as a therapeutic agent for HPH by reducing pulmonary vascular resistance, inhibiting vascular remodelling, and promoting apoptosis of PASMCs. Regulation of PASMCs could significantly inhibits HPH. However, curcumin has the disadvantages of poor solubility and low bioavailability, and its derivative WZ35 has better biosafety. Here, Cu-based metal organic frameworks (MOF<sub>Cu</sub>) was fabricated to encapsulate the curcumin analogue WZ35 (MOF<sub>Cu</sub>@WZ35) for the inhibition of PASMCs proliferation. The authors found that the MOF<sub>Cu</sub>@WZ35 could promote the death of PASMCs. Furthermore, the authors believed that this drug delivery system will effectively alleviate the HPH.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"420-424"},"PeriodicalIF":2.3,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9892051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lawsone encapsulated polylactic-co-glycolic acid nanoparticles modified with chitosan-folic acid successfully inhibited cell growth and triggered apoptosis in Panc-1 cancer cells 壳聚糖-叶酸修饰的Lawsone包封聚乳酸-羟基乙酸纳米颗粒成功抑制了Panc-1癌细胞的生长并引发了细胞凋亡
IF 2.3 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-05-16 DOI: 10.1049/nbt2.12139
Helia Ghafaripour, Masoud Homayouni Tabrizi, Ehsan Karimi, Niloofar Barati Naeeni

The present research aims to encapsulate lawsone in polylactic-co-glycolic acid (PLGA) nanoparticles modified with folic acid (FA) and chitosan (CS) to study its anticancer effects against Panc-1 cells. The nanoparticles were analysed in means of shape/size and zeta potential index using scanning electron microscope and dynamic light scattering. High-performance liquid chromatography was applied to evaluate the lawsone entrapment efficacy. The authors performed acridine orange/propidium iodide staining and flow cytometry to monitor apoptosis induction and cell cycle arrest. The expressions of apoptosis-related genes (BAX and BCL-2) were assessed by real time PCR. Nanoparticle antioxidative and antibacterial activities were examined by DPPH/ABTS scavenging assay, disk diffusion method, and minimum inhibitory concentration and minimum bactericidal concentration evaluation. The NPs were 229.65 nm, the encapsulation efficiency was 81%. The concentration of lawsone that exerts 50% cell growth inhibition (IC50) against Panc-1 cells was calculated 118.4 μL. Apoptosis induction was evidenced by the increased number of orange cells and increased proportion of cells in G1-Sub phase respectively. Moreover, lawsone-loaded nanoparticle upregulated BAX gene expression, while downregulated BCL2expression, suggesting the activation of apoptotic pathway. The observed cytotoxic/apoptotic properties suggest that Lawson-loaded PLGA-FA-CS-NPs hold a great potential in pancreatic cancer treatment.

本研究旨在将lawsone包封在叶酸(FA)和壳聚糖(CS)修饰的聚乳酸-羟基乙酸(PLGA)纳米颗粒中,研究其对Panc-1细胞的抗癌作用。利用扫描电镜和动态光散射对纳米颗粒的形状/大小和zeta电位指数进行了分析。采用高效液相色谱法评价其捕集效果。作者采用吖啶橙/碘化丙啶染色和流式细胞术监测细胞凋亡诱导和细胞周期阻滞。实时荧光定量PCR检测细胞凋亡相关基因BAX和BCL-2的表达。采用DPPH/ABTS清除率法、圆盘扩散法、最小抑菌浓度和最小杀菌浓度评价等方法考察纳米颗粒的抗氧化和抗菌活性。NPs为229.65 nm,包封率为81%。对Panc-1细胞产生50%细胞生长抑制(IC50)的lawsone浓度为118.4 μL。橙色细胞数量增加,g1 -亚期细胞比例增加,证实了细胞凋亡的诱导。此外,负载lawsone的纳米颗粒上调BAX基因表达,下调bcl2表达,提示激活凋亡通路。观察到的细胞毒性/凋亡特性表明,lawson负载的PLGA-FA-CS-NPs在胰腺癌治疗中具有很大的潜力。
{"title":"Lawsone encapsulated polylactic-co-glycolic acid nanoparticles modified with chitosan-folic acid successfully inhibited cell growth and triggered apoptosis in Panc-1 cancer cells","authors":"Helia Ghafaripour,&nbsp;Masoud Homayouni Tabrizi,&nbsp;Ehsan Karimi,&nbsp;Niloofar Barati Naeeni","doi":"10.1049/nbt2.12139","DOIUrl":"10.1049/nbt2.12139","url":null,"abstract":"<p>The present research aims to encapsulate lawsone in polylactic-co-glycolic acid (PLGA) nanoparticles modified with folic acid (FA) and chitosan (CS) to study its anticancer effects against Panc-1 cells. The nanoparticles were analysed in means of shape/size and zeta potential index using scanning electron microscope and dynamic light scattering. High-performance liquid chromatography was applied to evaluate the lawsone entrapment efficacy. The authors performed acridine orange/propidium iodide staining and flow cytometry to monitor apoptosis induction and cell cycle arrest. The expressions of apoptosis-related genes (BAX and BCL-2) were assessed by real time PCR. Nanoparticle antioxidative and antibacterial activities were examined by DPPH/ABTS scavenging assay, disk diffusion method, and minimum inhibitory concentration and minimum bactericidal concentration evaluation. The NPs were 229.65 nm, the encapsulation efficiency was 81%. The concentration of lawsone that exerts 50% cell growth inhibition (IC<sub>50</sub>) against Panc-1 cells was calculated 118.4 μL. Apoptosis induction was evidenced by the increased number of orange cells and increased proportion of cells in G1-Sub phase respectively. Moreover, lawsone-loaded nanoparticle upregulated BAX gene expression, while downregulated BCL2expression, suggesting the activation of apoptotic pathway. The observed cytotoxic/apoptotic properties suggest that Lawson-loaded PLGA-FA-CS-NPs hold a great potential in pancreatic cancer treatment.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"425-437"},"PeriodicalIF":2.3,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/98/63/NBT2-17-425.PMC10374556.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9945593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osteogenesis promotion by injectable methacryloylated gelatin containing psoralen and its bacteriostatic properties 含补骨脂素的甲基丙烯酰化明胶的促骨作用及其抑菌性能
IF 2.3 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-05-16 DOI: 10.1049/nbt2.12136
Qi Zhang, Fuhang Chu, Yingjie Xu, Xiaonan Wu, Jie Yu, Beibei Cong, Yingtao Wu

The treatment of periodontitis focuses on controlling the progression of inflammation, reducing plaque accumulation, and promoting bone tissue reconstruction. Among them, the reconstruction of irregular bone resorption caused by periodontitis is a long-standing challenge. At present, the local drug treatment of periodontitis is mainly anti-inflammatory and antibacterial drugs. In this study, psoralen (Pso), a Chinese herbal medicine with anti-inflammatory, antibacterial, and osteogenic effects, was selected for the local treatment of periodontitis. Meanwhile, an injectable methacrylate gelatin (GelMA) platform loading with Pso was constructed. Pso-GelMA had the properties of fluidity, light cohesion, self-healing, and slow release, which could be better used in the deep and narrow structure of the periodontal pocket, and greatly increased the effectiveness of local drug delivery. The pore size of Gelma hydrogel did not change after loading Pso by SEM. In vitro, Pso-GelMA effectively upregulated the expression of osteogenic genes and proteins, increased alkaline phosphatase activity, promoted the mineralisation of rat bone marrow mesenchymal stem cells (BMSCs) extracellular matrix, and had significant antibacterial effects on Staphylococcus aureus and Fusobacterium nucleatum. Therefore, Pso-GelMA has immense promise in the adjuvant treatment of periodontitis.

牙周炎的治疗重点是控制炎症的发展,减少菌斑的积累,促进骨组织重建。其中,牙周炎引起的不规则骨吸收的重建是一个长期的挑战。目前,牙周炎的局部药物治疗主要是抗炎和抗菌药物。本研究选用具有抗炎、抗菌、成骨作用的中草药补骨脂素(Pso)局部治疗牙周炎。同时,构建了装载Pso的可注射甲基丙烯酸酯明胶(GelMA)平台。Pso-GelMA具有流动性、轻黏聚性、自愈性、缓释性等特点,能更好地应用于牙周袋深部狭窄结构,大大提高了局部给药效果。扫描电镜显示,加载Pso后,凝胶的孔径没有变化。在体外实验中,Pso-GelMA能有效上调成骨基因和成骨蛋白的表达,提高碱性磷酸酶活性,促进大鼠骨髓间充质干细胞(BMSCs)细胞外基质矿化,并对金黄色葡萄球菌和核梭杆菌具有显著的抗菌作用。因此,Pso-GelMA在牙周炎的辅助治疗中具有巨大的前景。
{"title":"Osteogenesis promotion by injectable methacryloylated gelatin containing psoralen and its bacteriostatic properties","authors":"Qi Zhang,&nbsp;Fuhang Chu,&nbsp;Yingjie Xu,&nbsp;Xiaonan Wu,&nbsp;Jie Yu,&nbsp;Beibei Cong,&nbsp;Yingtao Wu","doi":"10.1049/nbt2.12136","DOIUrl":"10.1049/nbt2.12136","url":null,"abstract":"<p>The treatment of periodontitis focuses on controlling the progression of inflammation, reducing plaque accumulation, and promoting bone tissue reconstruction. Among them, the reconstruction of irregular bone resorption caused by periodontitis is a long-standing challenge. At present, the local drug treatment of periodontitis is mainly anti-inflammatory and antibacterial drugs. In this study, psoralen (Pso), a Chinese herbal medicine with anti-inflammatory, antibacterial, and osteogenic effects, was selected for the local treatment of periodontitis. Meanwhile, an injectable methacrylate gelatin (GelMA) platform loading with Pso was constructed. Pso-GelMA had the properties of fluidity, light cohesion, self-healing, and slow release, which could be better used in the deep and narrow structure of the periodontal pocket, and greatly increased the effectiveness of local drug delivery. The pore size of Gelma hydrogel did not change after loading Pso by SEM. In vitro, Pso-GelMA effectively upregulated the expression of osteogenic genes and proteins, increased alkaline phosphatase activity, promoted the mineralisation of rat bone marrow mesenchymal stem cells (BMSCs) extracellular matrix, and had significant antibacterial effects on <i>Staphylococcus aureus</i> and <i>Fusobacterium nucle</i>atum. Therefore, Pso-GelMA has immense promise in the adjuvant treatment of periodontitis.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"376-386"},"PeriodicalIF":2.3,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f1/d8/NBT2-17-376.PMC10288355.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9698391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrophil membrane biomimetic delivery system (Ptdser-NM-Lipo/Fer-1) designed for targeting atherosclerosis therapy 中性粒细胞膜仿生输送系统(Ptdser-NM-Lipo/Fer-1)设计用于动脉粥样硬化治疗
IF 2.3 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-05-15 DOI: 10.1049/nbt2.12137
Wei Li, Chang Liu, Sichuan Wang, Naifeng Liu

Atherosclerosis is a progressive inflammatory disease characterised by excessive lipid accumulation and inflammatory cell infiltration and is the basis of most cardiovascular diseases and peripheral arterial diseases. Therefore, an effectively targeted delivery system is urgently needed to deliver ferroptosis-specific inhibitors to the site of arterial plaque and the inflammatory microenvironment. Inspired by the fact that neutrophils can be recruited to arterial plaques under the action of adhesion molecules and chemokines, the authors developed a neutrophil membrane hybrid liposome nano-mimetic system (Ptdser-NM-Lipo/Fer-1) that delivers Ferrostatin-1 (Fer-1) to the atherosclerotic plaque effectively, which is composed of Fer-1-loaded Ptdser-modified liposomes core and neutrophils shell. Fer-1 was released at the AS plaque site to remove reactive oxygen species (ROS) and improve the inflammatory microenvironment. In vitro ROS clearance experiments have shown that 50 μmol/ml Fer-1 can significantly remove ROS produced by H2O2-induced MOVAS cells and Ptdser-NM-Lipo/Fer-1 revealed a 3-fold increase in the inhibition rate of ROS than free Fer-1 in induced-RAW264.7, demonstrating its superior ROS-cleaning effect. Based on the interaction of adhesion molecules, such as vascular cell adhesion molecule 1, ICAM-1, P-selectin, E-selectin, and chemokines released in the inflamed site, the aorta in NM-Lipo-treated mice displayed 1.3-fold greater radiant efficiency than platelet membrane-Lipo-treated mice. Meanwhile, due to the modification of the Ptdser, the aorta in Ptdser-NM-Lipo/Fer-1-treated mice exhibited the highest fluorescence intensity, demonstrating its excellent targeting ability for atherosclerosis. Therefore, we present a specific formulation for the treatment of atherosclerosis with the potential for novel therapeutic uses.

动脉粥样硬化是一种进行性炎症性疾病,以脂质过度积累和炎症细胞浸润为特征,是大多数心血管疾病和外周动脉疾病的基础。因此,迫切需要一种有效的靶向递送系统,将铁中毒特异性抑制剂递送到动脉斑块部位和炎症微环境。受中性粒细胞可以在粘附分子和趋化因子的作用下被募集到动脉斑块这一事实的启发,作者开发了一种中性粒细胞膜杂交脂质体纳米模拟系统(Ptdser-NM-Lipo/ fe -1),该系统由装载fe -1的ptdser修饰脂质体核心和中性粒细胞外壳组成,可有效地将他铁素-1 (fe -1)递送到动脉粥样硬化斑块。fer1在AS斑块部位释放,去除活性氧(ROS),改善炎症微环境。体外ROS清除实验表明,50 μmol/ml fe -1能显著去除h2o2诱导的MOVAS细胞产生的ROS, Ptdser-NM-Lipo/ fe -1在诱导的raw264.7中对ROS的抑制率比游离fe -1提高3倍,表明其具有优越的ROS清除效果。基于血管细胞黏附分子1、ICAM-1、p -选择素、e-选择素以及炎症部位释放的趋化因子等黏附分子的相互作用,纳米脂处理小鼠主动脉的辐射效率比血小板膜脂处理小鼠高1.3倍。同时,由于Ptdser的修饰,Ptdser- nm - lipo / fer -1处理小鼠的主动脉显示出最高的荧光强度,表明其具有良好的动脉粥样硬化靶向能力。因此,我们提出了一种治疗动脉粥样硬化的特殊配方,具有新的治疗用途的潜力。
{"title":"Neutrophil membrane biomimetic delivery system (Ptdser-NM-Lipo/Fer-1) designed for targeting atherosclerosis therapy","authors":"Wei Li,&nbsp;Chang Liu,&nbsp;Sichuan Wang,&nbsp;Naifeng Liu","doi":"10.1049/nbt2.12137","DOIUrl":"10.1049/nbt2.12137","url":null,"abstract":"<p>Atherosclerosis is a progressive inflammatory disease characterised by excessive lipid accumulation and inflammatory cell infiltration and is the basis of most cardiovascular diseases and peripheral arterial diseases. Therefore, an effectively targeted delivery system is urgently needed to deliver ferroptosis-specific inhibitors to the site of arterial plaque and the inflammatory microenvironment. Inspired by the fact that neutrophils can be recruited to arterial plaques under the action of adhesion molecules and chemokines, the authors developed a neutrophil membrane hybrid liposome nano-mimetic system (Ptdser-NM-Lipo/Fer-1) that delivers Ferrostatin-1 (Fer-1) to the atherosclerotic plaque effectively, which is composed of Fer-1-loaded Ptdser-modified liposomes core and neutrophils shell. Fer-1 was released at the AS plaque site to remove reactive oxygen species (ROS) and improve the inflammatory microenvironment. In vitro ROS clearance experiments have shown that 50 μmol/ml Fer-1 can significantly remove ROS produced by H<sub>2</sub>O<sub>2</sub>-induced MOVAS cells and Ptdser-NM-Lipo/Fer-1 revealed a 3-fold increase in the inhibition rate of ROS than free Fer-1 in induced-RAW264.7, demonstrating its superior ROS-cleaning effect. Based on the interaction of adhesion molecules, such as vascular cell adhesion molecule 1, ICAM-1, P-selectin, E-selectin, and chemokines released in the inflamed site, the aorta in NM-Lipo-treated mice displayed 1.3-fold greater radiant efficiency than platelet membrane-Lipo-treated mice. Meanwhile, due to the modification of the Ptdser, the aorta in Ptdser-NM-Lipo/Fer-1-treated mice exhibited the highest fluorescence intensity, demonstrating its excellent targeting ability for atherosclerosis. Therefore, we present a specific formulation for the treatment of atherosclerosis with the potential for novel therapeutic uses.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"387-395"},"PeriodicalIF":2.3,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9706115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Xanthine oxidase inhibitory kinetics and mechanism of ellagic acid: In vitro, in silico and in vivo studies 鞣花酸黄嘌呤氧化酶抑制动力学和机制:体外、硅和体内研究
IF 2.3 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-05-08 DOI: 10.1049/nbt2.12135
Jianmin Chen, Zemin He, Sijin Yu, Xiaozhen Cai, Danhong Zhu, Yanhua Lin

Ellagic acid (EA), which is widely distributed in many foods, has been found to possess inhibitory activity against xanthine oxidase (XO). However, there is ongoing debate about the difference in XO inhibitory activity between EA and allopurinol. Additionally, the inhibitory kinetics and mechanism of EA on XO are still unclear. Herein, the authors systematically studied the inhibitory effects of EA on XO. The authors’ findings showed that EA is a reversible inhibitor with mixed-type inhibition, and its inhibitory activity is weaker than allopurinol. Fluorescence quenching experiments suggested that the generation of EA-XO complex was exothermic and spontaneous. In silico analysis further confirmed that EA entered the XO catalytic centre. Furthermore, the authors verified the anti-hyperuricemia effect of EA in vivo. This study elucidates the inhibition kinetics and mechanism of EA on XO, and lays a theoretical foundation for the further development of drugs and functional foods containing EA for the treatment of hyperuricemia.

鞣花酸(eragic acid, EA)广泛存在于多种食品中,具有抑制黄嘌呤氧化酶(xanthine oxidase, XO)的活性。然而,关于EA和别嘌呤醇之间XO抑制活性的差异仍存在争议。此外,EA对XO的抑制动力学和机制尚不清楚。本文系统地研究了EA对XO的抑制作用。结果表明,EA是一种可逆的混合型抑制抑制剂,其抑制活性弱于别嘌呤醇。荧光猝灭实验表明,EA-XO配合物的生成是放热自发的。硅分析进一步证实EA进入了XO催化中心。此外,作者还在体内验证了EA抗高尿酸血症的作用。本研究阐明了EA对XO的抑制动力学和机制,为进一步开发含EA治疗高尿酸血症的药物和功能食品奠定了理论基础。
{"title":"Xanthine oxidase inhibitory kinetics and mechanism of ellagic acid: In vitro, in silico and in vivo studies","authors":"Jianmin Chen,&nbsp;Zemin He,&nbsp;Sijin Yu,&nbsp;Xiaozhen Cai,&nbsp;Danhong Zhu,&nbsp;Yanhua Lin","doi":"10.1049/nbt2.12135","DOIUrl":"10.1049/nbt2.12135","url":null,"abstract":"<p>Ellagic acid (EA), which is widely distributed in many foods, has been found to possess inhibitory activity against xanthine oxidase (XO). However, there is ongoing debate about the difference in XO inhibitory activity between EA and allopurinol. Additionally, the inhibitory kinetics and mechanism of EA on XO are still unclear. Herein, the authors systematically studied the inhibitory effects of EA on XO. The authors’ findings showed that EA is a reversible inhibitor with mixed-type inhibition, and its inhibitory activity is weaker than allopurinol. Fluorescence quenching experiments suggested that the generation of EA-XO complex was exothermic and spontaneous. In silico analysis further confirmed that EA entered the XO catalytic centre. Furthermore, the authors verified the anti-hyperuricemia effect of EA in vivo. This study elucidates the inhibition kinetics and mechanism of EA on XO, and lays a theoretical foundation for the further development of drugs and functional foods containing EA for the treatment of hyperuricemia.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"368-375"},"PeriodicalIF":2.3,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9709414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy 铋基纳米粒子及其在癌症放射治疗中的放射增敏和剂量增强应用综述
IF 2.3 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-05-04 DOI: 10.1049/nbt2.12134
Daryoush Shahbazi-Gahrouei, Yazdan Choghazardi, Arezoo Kazemzadeh, Paria Naseri, Saghar Shahbazi-Gahrouei

About 50% of cancer patients receive radiation therapy. Despite the therapeutic benefits of this method, the toxicity of radiation in the normal tissues is unavoidable To improve the quality of radiation therapy, in addition to other methods such as IMRT, IGRT, and high radiation dose, nanoparticles have shown excellent potential when ionising radiation is applied to the target volume. Recently, bismuth-based nanoparticles (BiNPs) have become particularly popular in radiation therapy due to their high atomic numbers (Z), high X-ray attenuation coefficient, low toxicity, and low cost. Moreover, it is easy to synthesise in a variety of sizes and shapes. This study aimed to review the effects of the bismuth-based NP and its combination with other compounds, and their potential synergies in radiotherapy, discussed based on their physical, chemical, and biological interactions. Targeted and non-targeted bismuth-based NPs used in radiotherapy as radiosensitizers and dose enhancement effects are described. The results reported in the literature were categorised into various groups. Also, this review has highlighted the importance of bismuth-based NPs in different forms of cancer treatment to find the highest efficiency for applying them as a suitable candidate for various cancer therapy and future clinical applications.

大约50%的癌症患者接受放射治疗。为了提高放射治疗的质量,除了IMRT、IGRT和高辐射剂量等其他方法外,纳米粒子在电离辐射作用于靶体积时显示出了良好的潜力。近年来,铋基纳米粒子(BiNPs)因其高原子序数(Z)、高x射线衰减系数、低毒性和低成本而在放射治疗中特别受欢迎。此外,它很容易合成各种尺寸和形状。本研究旨在回顾铋基NP及其与其他化合物的联合作用,以及它们在放疗中的潜在协同作用,并基于它们的物理、化学和生物相互作用进行了讨论。靶向和非靶向铋基NPs在放射治疗中用作放射增敏剂和剂量增强效应进行了描述。文献中报道的结果被分为不同的组。此外,本综述还强调了铋基NPs在不同形式癌症治疗中的重要性,以找到将其作为各种癌症治疗和未来临床应用的合适候选物的最高效率。
{"title":"A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy","authors":"Daryoush Shahbazi-Gahrouei,&nbsp;Yazdan Choghazardi,&nbsp;Arezoo Kazemzadeh,&nbsp;Paria Naseri,&nbsp;Saghar Shahbazi-Gahrouei","doi":"10.1049/nbt2.12134","DOIUrl":"10.1049/nbt2.12134","url":null,"abstract":"<p>About 50% of cancer patients receive radiation therapy. Despite the therapeutic benefits of this method, the toxicity of radiation in the normal tissues is unavoidable To improve the quality of radiation therapy, in addition to other methods such as IMRT, IGRT, and high radiation dose, nanoparticles have shown excellent potential when ionising radiation is applied to the target volume. Recently, bismuth-based nanoparticles (BiNPs) have become particularly popular in radiation therapy due to their high atomic numbers (Z), high X-ray attenuation coefficient, low toxicity, and low cost. Moreover, it is easy to synthesise in a variety of sizes and shapes. This study aimed to review the effects of the bismuth-based NP and its combination with other compounds, and their potential synergies in radiotherapy, discussed based on their physical, chemical, and biological interactions. Targeted and non-targeted bismuth-based NPs used in radiotherapy as radiosensitizers and dose enhancement effects are described. The results reported in the literature were categorised into various groups. Also, this review has highlighted the importance of bismuth-based NPs in different forms of cancer treatment to find the highest efficiency for applying them as a suitable candidate for various cancer therapy and future clinical applications.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"302-311"},"PeriodicalIF":2.3,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9706085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of nanotechnology in air purifiers as a viable approach to protect against Corona virus 纳米技术在空气净化器中的应用是预防冠状病毒的可行方法
IF 2.3 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-04-25 DOI: 10.1049/nbt2.12132
Ali Mahmoudi, Seyedeh Belin Tavakoly Sany, Marzieh Ahari Salmasi, Ali Bakhshi, Arad Bustan, Sahar heydari, Majid Rezayi, Fatemeh Gheybi

The outbreak of COVID-19 disease, the cause of severe acute respiratory syndrome, is considered a worldwide public health concern. Although studies indicated that the virus could spread through respiratory particles or droplets in close contact, current research have revealed that the virus stays viable in aerosols for several hours. Numerous investigations have highlighted the protective role of air purifiers in the management of COVID-19 transmission, however, there are still some doubts regarding the efficiency and safety of these technologies. According to those observations, using a proper ventilation system can extensively decrease the spread of COVID-19. However, most of those strategies are currently in the experimental stages. This review aimed at summarising the safety and effectiveness of the recent approaches in this field including using nanofibres that prevent the spread of airborne viruses like SARS-CoV-2. Here, the efficacy of controlling COVID-19 by means of combining multiple strategies is comprehensively discussed.

引起严重急性呼吸系统综合征的COVID-19疫情被认为是一个全球公共卫生问题。虽然研究表明,病毒可以通过密切接触的呼吸道颗粒或飞沫传播,但目前的研究表明,病毒在气溶胶中可以存活数小时。许多调查都强调了空气净化器在管理COVID-19传播中的保护作用,但对这些技术的效率和安全性仍存在一些疑问。根据这些观察结果,使用适当的通风系统可以大大减少COVID-19的传播。然而,这些策略中的大多数目前都处于实验阶段。本综述旨在总结该领域最新方法的安全性和有效性,包括使用纳米纤维防止空气传播的病毒,如SARS-CoV-2。在此,综合讨论多种策略相结合的防控效果。
{"title":"Application of nanotechnology in air purifiers as a viable approach to protect against Corona virus","authors":"Ali Mahmoudi,&nbsp;Seyedeh Belin Tavakoly Sany,&nbsp;Marzieh Ahari Salmasi,&nbsp;Ali Bakhshi,&nbsp;Arad Bustan,&nbsp;Sahar heydari,&nbsp;Majid Rezayi,&nbsp;Fatemeh Gheybi","doi":"10.1049/nbt2.12132","DOIUrl":"10.1049/nbt2.12132","url":null,"abstract":"<p>The outbreak of COVID-19 disease, the cause of severe acute respiratory syndrome, is considered a worldwide public health concern. Although studies indicated that the virus could spread through respiratory particles or droplets in close contact, current research have revealed that the virus stays viable in aerosols for several hours. Numerous investigations have highlighted the protective role of air purifiers in the management of COVID-19 transmission, however, there are still some doubts regarding the efficiency and safety of these technologies. According to those observations, using a proper ventilation system can extensively decrease the spread of COVID-19. However, most of those strategies are currently in the experimental stages. This review aimed at summarising the safety and effectiveness of the recent approaches in this field including using nanofibres that prevent the spread of airborne viruses like SARS-CoV-2. Here, the efficacy of controlling COVID-19 by means of combining multiple strategies is comprehensively discussed.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"289-301"},"PeriodicalIF":2.3,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1a/66/NBT2-17-289.PMC10288363.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10082694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Assessment and evaluation of Chitosan-Metamizole nanoparticles for the fracture healing and analgesic effect: Preclinical study in rat model 壳聚糖-甲基咪唑纳米颗粒对骨折愈合和镇痛作用的评估和评价:大鼠模型的临床前研究
IF 2.3 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-04-24 DOI: 10.1049/nbt2.12131
Li Yin, Liyong Yuan, Chunling Peng, Qionghua Wang

To assess and evaluate Chitosan-Metamizole nanoparticles for fracture healing and analgesic potential, nanoparticles were formulated using the ionotropic gelation method. The nanoparticles were evaluated for particle size, zeta potential, polydispersity index, loading efficiency, surface characteristics and drug release properties. The analgesic activity was determined in carrageenan-induced arthritic male Wister rats. Further fracture healing potency, mechanical testing, radiographic examination and bone histology of the femur were studied. The drug loading efficiency of 11.38%–17.45%, particle size of 140–220 nm, and zeta potential of 19.12–23.14 mV were observed with a spherical, smooth appearance. Nanoparticles showed sustained release behaviour over a longer period. Nearly 4-fold inhibition of oedema was observed in animals treated with nanoparticles with excellent fracture healing potential. The femurs treated with nanoparticles required greater force to fracture. Nanoparticles significantly improved the strength and healing process. Histopathological studies showed the potential of nanoparticles in the healing process. The study confirmed the potential of nanoparticles in fracture healing and enhancement of analgesic activity.

为了评估壳聚糖-甲基咪唑纳米颗粒的骨折愈合和镇痛潜力,采用离子化凝胶法制备了纳米颗粒。对纳米颗粒的粒径、zeta电位、多分散性指数、负载效率、表面特性和药物释放性能进行了评价。测定了卡拉胶诱导的关节炎雄性Wister大鼠的镇痛活性。进一步研究股骨骨折愈合效能、力学测试、影像学检查及骨组织。载药率为11.38% ~ 17.45%,粒径为140 ~ 220 nm, zeta电位为19.12 ~ 23.14 mV,呈球形,外观光滑。纳米颗粒在较长时间内表现出持续释放行为。在具有良好骨折愈合潜力的纳米颗粒治疗的动物中,观察到近4倍的水肿抑制。用纳米颗粒处理的股骨需要更大的力才能骨折。纳米颗粒显著改善了强度和愈合过程。组织病理学研究显示了纳米颗粒在愈合过程中的潜力。该研究证实了纳米颗粒在骨折愈合和增强镇痛活性方面的潜力。
{"title":"Assessment and evaluation of Chitosan-Metamizole nanoparticles for the fracture healing and analgesic effect: Preclinical study in rat model","authors":"Li Yin,&nbsp;Liyong Yuan,&nbsp;Chunling Peng,&nbsp;Qionghua Wang","doi":"10.1049/nbt2.12131","DOIUrl":"10.1049/nbt2.12131","url":null,"abstract":"<p>To assess and evaluate Chitosan-Metamizole nanoparticles for fracture healing and analgesic potential, nanoparticles were formulated using the ionotropic gelation method. The nanoparticles were evaluated for particle size, zeta potential, polydispersity index, loading efficiency, surface characteristics and drug release properties. The analgesic activity was determined in carrageenan-induced arthritic male Wister rats. Further fracture healing potency, mechanical testing, radiographic examination and bone histology of the femur were studied. The drug loading efficiency of 11.38%–17.45%, particle size of 140–220 nm, and zeta potential of 19.12–23.14 mV were observed with a spherical, smooth appearance. Nanoparticles showed sustained release behaviour over a longer period. Nearly 4-fold inhibition of oedema was observed in animals treated with nanoparticles with excellent fracture healing potential. The femurs treated with nanoparticles required greater force to fracture. Nanoparticles significantly improved the strength and healing process. Histopathological studies showed the potential of nanoparticles in the healing process. The study confirmed the potential of nanoparticles in fracture healing and enhancement of analgesic activity.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"360-367"},"PeriodicalIF":2.3,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/ef/NBT2-17-360.PMC10288353.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9697427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiosensitising effect of iron oxide-gold nanocomplex for electron beam therapy of melanoma in vivo by magnetic targeting 氧化铁-金纳米复合物在体内磁场靶向电子束治疗黑色素瘤中的放射增敏作用
IF 2.3 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-04-21 DOI: 10.1049/nbt2.12129
Mahshad Mohamadkazem, Ali Neshastehriz, Seyed Mohammad Amini, Ali Moshiri, Atousa Janzadeh

Melanoma is a dangerous type of skin cancer sometimes treated with radiotherapy. However, it induces damage to the surrounding healthy tissue and possibly further away areas. Therefore, it is necessary to give a lower dose to the patient with targeted therapy. In this study, the radio-sensitising effect of gold-coated iron oxide nanoparticles on electron beam radiotherapy of a melanoma tumour with magnetic targeting in a mouse model was investigated. Gold-coated iron oxide nanoparticles were prepared in a steady procedure. The melanoma tumour model was induced in mice. Animals were divided into five groups: (1) normal; (2) melanoma; (3) gold-coated iron oxide nanoparticles alone; (4) electron beam radiotherapy; (5) electron beam radiotherapy plus gold-coated iron oxide nanoparticles. The magnet was placed on the tumour site for 2 h. The tumours were then exposed to 6 MeV electron beam radiotherapy for a dose of 8 Gy. Inductively coupled plasma optical emission spectrometry test, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay blood test were also performed. Gold-coated iron oxide nanoparticles with magnetic targeting before electron beam radiotherapy reduced the growth of the tumour compared to the control group. Blood tests did not show any significant toxicity. Deposition of nanoparticles was more in the tumour and spleen tissue and to a lesser extent in the liver, kidney, and lung tissues. The synergistic effect of nanoparticles administered by the intraperitoneal route and then concentrated into the tumour area by application of an external permanent magnet, before delivery of the electron beam radiotherapy improved the overall cancer treatment outcome and prevented metal distribution side effects.

黑色素瘤是一种危险的皮肤癌,有时用放射治疗。然而,它会对周围的健康组织和可能更远的区域造成损害。因此,有必要给予患者较低的剂量进行靶向治疗。在本研究中,研究了金包覆氧化铁纳米颗粒在小鼠模型中对黑素瘤磁靶向电子束放疗的放射增敏作用。用稳定的方法制备了包金氧化铁纳米颗粒。建立小鼠黑色素瘤模型。动物分为五组:(1)正常;(2)黑色素瘤;(3)单包金氧化铁纳米颗粒;(4)电子束放疗;(5)电子束放疗加包金氧化铁纳米颗粒。将磁铁放置在肿瘤部位2小时,然后将肿瘤暴露于6mev的8 Gy剂量的电子束放射治疗中。采用电感耦合等离子体发射光谱法、苏木精和伊红染色法、酶联免疫吸附法血液检测。与对照组相比,在电子束放射治疗前,磁性靶向的金涂层氧化铁纳米颗粒减少了肿瘤的生长。血液测试没有显示任何明显的毒性纳米颗粒沉积在肿瘤和脾脏组织中较多,在肝、肾和肺组织中较少。在电子束放射治疗之前,通过腹腔注射纳米颗粒,然后通过外部永磁体将其集中到肿瘤区域,其协同作用改善了整体癌症治疗结果,并防止了金属分布的副作用。
{"title":"Radiosensitising effect of iron oxide-gold nanocomplex for electron beam therapy of melanoma in vivo by magnetic targeting","authors":"Mahshad Mohamadkazem,&nbsp;Ali Neshastehriz,&nbsp;Seyed Mohammad Amini,&nbsp;Ali Moshiri,&nbsp;Atousa Janzadeh","doi":"10.1049/nbt2.12129","DOIUrl":"10.1049/nbt2.12129","url":null,"abstract":"<p>Melanoma is a dangerous type of skin cancer sometimes treated with radiotherapy. However, it induces damage to the surrounding healthy tissue and possibly further away areas. Therefore, it is necessary to give a lower dose to the patient with targeted therapy. In this study, the radio-sensitising effect of gold-coated iron oxide nanoparticles on electron beam radiotherapy of a melanoma tumour with magnetic targeting in a mouse model was investigated. Gold-coated iron oxide nanoparticles were prepared in a steady procedure. The melanoma tumour model was induced in mice. Animals were divided into five groups: (1) normal; (2) melanoma; (3) gold-coated iron oxide nanoparticles alone; (4) electron beam radiotherapy; (5) electron beam radiotherapy plus gold-coated iron oxide nanoparticles. The magnet was placed on the tumour site for 2 h. The tumours were then exposed to 6 MeV electron beam radiotherapy for a dose of 8 Gy. Inductively coupled plasma optical emission spectrometry test, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay blood test were also performed. Gold-coated iron oxide nanoparticles with magnetic targeting before electron beam radiotherapy reduced the growth of the tumour compared to the control group. Blood tests did not show any significant toxicity. Deposition of nanoparticles was more in the tumour and spleen tissue and to a lesser extent in the liver, kidney, and lung tissues. The synergistic effect of nanoparticles administered by the intraperitoneal route and then concentrated into the tumour area by application of an external permanent magnet, before delivery of the electron beam radiotherapy improved the overall cancer treatment outcome and prevented metal distribution side effects.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 3","pages":"212-223"},"PeriodicalIF":2.3,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9488210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Micromechanics in biology and medicine 生物和医学中的微观力学
IF 2.3 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-04-19 DOI: 10.1049/nbt2.12130
David B. MacManus, Majid Akbarzadeh Khorshidi, Mazdak Ghajari, Hamid M. Sedighi
<p>Micromechanics is the study of materials at the level of their constituents to describe the interactions of the microstructures and other micro-scale effects. Micromechanical approaches have wide applications in biology and medicine due to the nature of biological tissues and the size of micro-biomedical devices. Micromechanical experiments, continuum micromechanics, and computational multi-scale models of materials with an emphasis on the connections between material properties and mechanical responses at a micron length scale are significantly essential to design and manufacture the mechanical components of micro-biomedical devices and comprehend the behaviour of biological tissues. The micro-scale mechanics of biological tissues is a multidisciplinary and rapidly expanding area of research, which deals with the lower-scale effects on the mechanical behaviour of biological tissues, such as bone, brain, muscle, vasculature, skin, etc. In fact, there are different micro-scale deformations, interactions, and movements within these tissues (e.g. microstructural or bi-phasic properties) affecting the mechanical response of the materials. The micromechanical characteristics of a material are key to find how it interacts with its physical environment, which eventually modulates the functionality of the material. Such micro-biomechanical effects stem from the structural and architectural arrangements and the hierarchical nature of biological tissues. This Virtual Collection presents the latest and cutting-edge experimental, computational, and theoretical research on the mechanical properties/behaviours of biological tissues and therapeutics to take into account the micro-scale effects, such as microstructures deformations, micro-scale inhomogeneity, micro-damage, micro-porosity, etc., and the mechanics of cells and cell-substrate interactions.</p><p>In this Virtual Collection, we received six manuscripts, six of which underwent peer review. Of these six manuscripts, three have been accepted for publication in the Virtual Issue demonstrating a high quality and novel insights into Micromechanics in Biology and Medicine.</p><p>Rostami et al. characterised folic acid-functionalised PLA-PEG nanomicelles to deliver Letrozole for the effective treatment of cancer. In silico methods including docking approach, molecular dynamics simulation, and free energy calculations were used for the characterisation studies of PEG-FA and PLA-PEG nanocarriers in delivering Letrozole as an aromatase inhibitor in cancer cells. It was demonstrated the PLA-PEG-FA can be considered a versatile nanocarrier that can increase the effectiveness of aromatase inhibitors while reducing the side effects of the drug.</p><p>Alahdal et al. presented a ‘green’ approach to synthesise iron/gold Auroshell nanoparticles and tested with normal HUVEC cells and glioblastoma cancer cells. The Auroshell nanoparticles were found to have minimal toxicity within a safe range for normal cells. When t
微观力学是研究材料在其成分水平上描述微观结构和其他微观尺度效应的相互作用。由于生物组织的性质和微型生物医学装置的大小,微机械方法在生物学和医学中有着广泛的应用。微力学实验、连续微力学和材料的计算多尺度模型,强调材料特性和微米尺度上的机械响应之间的联系,对于设计和制造微生物医学设备的机械部件以及理解生物组织的行为至关重要。生物组织的微观力学是一个多学科和快速发展的研究领域,它涉及生物组织,如骨,脑,肌肉,脉管系统,皮肤等的机械行为的低尺度效应。事实上,在这些组织中存在不同的微观尺度变形、相互作用和运动(例如微观结构或双相特性),影响材料的机械响应。材料的微机械特性是发现它如何与物理环境相互作用的关键,而物理环境最终会调节材料的功能。这种微生物力学效应源于生物组织的结构和结构安排以及等级性质。这个虚拟集合展示了生物组织和治疗的力学特性/行为的最新和前沿的实验,计算和理论研究,考虑到微观尺度效应,如微观结构变形,微观尺度不均匀性,微损伤,微孔隙等,以及细胞和细胞-基质相互作用的力学。在这个虚拟馆藏中,我们收到了六份手稿,其中六份经过了同行评审。在这六篇手稿中,有三篇已经被接受在虚拟问题上发表,展示了对生物和医学微力学的高质量和新颖的见解。Rostami等人描述了叶酸功能化的PLA-PEG纳米胶束,用于递送来曲唑,以有效治疗癌症。采用对接方法、分子动力学模拟和自由能计算等方法,对PEG-FA和PLA-PEG纳米载体在癌细胞中递送来曲唑作为芳香酶抑制剂的特性进行了研究。结果表明,PLA-PEG-FA可以被认为是一种多功能纳米载体,可以增加芳香化酶抑制剂的有效性,同时减少药物的副作用。Alahdal等人提出了一种“绿色”方法来合成铁/金aurroshell纳米颗粒,并在正常HUVEC细胞和胶质母细胞瘤癌细胞中进行了测试。研究发现,在正常细胞的安全范围内,Auroshell纳米颗粒的毒性很小。当转移到肿瘤组织时,这些纳米颗粒表现出对恶性肿瘤的均匀加热(热疗治疗)。Alzahrani等人利用人巨细胞病毒ul83抗体功能化的MEMS微悬臂生物传感器检测不同浓度的人巨细胞病毒ul83抗原。结果表明,该抗原具有较高的选择性,能有效地检测到ul83抗原。这项技术显示了制造便携式、低成本的实时诊断生物传感器的潜力。在这个虚拟集合中发表的文章展示了微力学在生物学和医学中的重要性。微力学在研究生物现象和使用最先进的纳米技术进行有效治疗方面的重要性被清楚地证明,为这一令人兴奋的领域的进一步探索和研究打开了大门。David B. MacManus:概念化;项目管理;写作——原稿;写作-回顾&;编辑。Majid Akbarzadeh Khorshidi:概念化;项目管理;写作——原稿;写作-回顾&;编辑。Mazdak Ghajari:项目管理;写作——原稿;写作-回顾&;编辑。Hamid M. Sedighi:概念化;写作——原稿;写作-回顾&;编辑。
{"title":"Micromechanics in biology and medicine","authors":"David B. MacManus,&nbsp;Majid Akbarzadeh Khorshidi,&nbsp;Mazdak Ghajari,&nbsp;Hamid M. Sedighi","doi":"10.1049/nbt2.12130","DOIUrl":"10.1049/nbt2.12130","url":null,"abstract":"&lt;p&gt;Micromechanics is the study of materials at the level of their constituents to describe the interactions of the microstructures and other micro-scale effects. Micromechanical approaches have wide applications in biology and medicine due to the nature of biological tissues and the size of micro-biomedical devices. Micromechanical experiments, continuum micromechanics, and computational multi-scale models of materials with an emphasis on the connections between material properties and mechanical responses at a micron length scale are significantly essential to design and manufacture the mechanical components of micro-biomedical devices and comprehend the behaviour of biological tissues. The micro-scale mechanics of biological tissues is a multidisciplinary and rapidly expanding area of research, which deals with the lower-scale effects on the mechanical behaviour of biological tissues, such as bone, brain, muscle, vasculature, skin, etc. In fact, there are different micro-scale deformations, interactions, and movements within these tissues (e.g. microstructural or bi-phasic properties) affecting the mechanical response of the materials. The micromechanical characteristics of a material are key to find how it interacts with its physical environment, which eventually modulates the functionality of the material. Such micro-biomechanical effects stem from the structural and architectural arrangements and the hierarchical nature of biological tissues. This Virtual Collection presents the latest and cutting-edge experimental, computational, and theoretical research on the mechanical properties/behaviours of biological tissues and therapeutics to take into account the micro-scale effects, such as microstructures deformations, micro-scale inhomogeneity, micro-damage, micro-porosity, etc., and the mechanics of cells and cell-substrate interactions.&lt;/p&gt;&lt;p&gt;In this Virtual Collection, we received six manuscripts, six of which underwent peer review. Of these six manuscripts, three have been accepted for publication in the Virtual Issue demonstrating a high quality and novel insights into Micromechanics in Biology and Medicine.&lt;/p&gt;&lt;p&gt;Rostami et al. characterised folic acid-functionalised PLA-PEG nanomicelles to deliver Letrozole for the effective treatment of cancer. In silico methods including docking approach, molecular dynamics simulation, and free energy calculations were used for the characterisation studies of PEG-FA and PLA-PEG nanocarriers in delivering Letrozole as an aromatase inhibitor in cancer cells. It was demonstrated the PLA-PEG-FA can be considered a versatile nanocarrier that can increase the effectiveness of aromatase inhibitors while reducing the side effects of the drug.&lt;/p&gt;&lt;p&gt;Alahdal et al. presented a ‘green’ approach to synthesise iron/gold Auroshell nanoparticles and tested with normal HUVEC cells and glioblastoma cancer cells. The Auroshell nanoparticles were found to have minimal toxicity within a safe range for normal cells. When t","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 3","pages":"125-126"},"PeriodicalIF":2.3,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9b/f5/NBT2-17-125.PMC10190656.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9581032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IET nanobiotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1