Pub Date : 2003-12-01DOI: 10.1109/JMEMS.2003.820272
K. Lee, Liwei Lin
A micromachined battery based on liquid electrolyte and metal electrodes for on-demand and disposable usages has been successfully demonstrated. The microbattery uses gold as the positive electrode and zinc as the negative electrode and is fabricated by using the standard surface micromachining technology. Two kinds of electrolytes have been tested, including the combination of sulfuric acid/hydrogen peroxide and potassium hydroxide. The operation of the battery can be on-demand by putting a droplet of electrolyte to activate the operation. Theoretical voltage and capacity of the microbattery are formulated and compared with experimental results. The experimental study shows that a maximum voltage of 1.5 V and maximum capacity of 122.2 /spl mu/W-min have been achieved by using a single droplet of about 0.5 /spl mu/l of sulfuric acid/hydrogen peroxide.
{"title":"Electrolyte-based on-demand and disposable microbattery","authors":"K. Lee, Liwei Lin","doi":"10.1109/JMEMS.2003.820272","DOIUrl":"https://doi.org/10.1109/JMEMS.2003.820272","url":null,"abstract":"A micromachined battery based on liquid electrolyte and metal electrodes for on-demand and disposable usages has been successfully demonstrated. The microbattery uses gold as the positive electrode and zinc as the negative electrode and is fabricated by using the standard surface micromachining technology. Two kinds of electrolytes have been tested, including the combination of sulfuric acid/hydrogen peroxide and potassium hydroxide. The operation of the battery can be on-demand by putting a droplet of electrolyte to activate the operation. Theoretical voltage and capacity of the microbattery are formulated and compared with experimental results. The experimental study shows that a maximum voltage of 1.5 V and maximum capacity of 122.2 /spl mu/W-min have been achieved by using a single droplet of about 0.5 /spl mu/l of sulfuric acid/hydrogen peroxide.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"27 1","pages":"840-847"},"PeriodicalIF":0.0,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83143009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-12-01DOI: 10.1109/JMEMS.2003.820262
A. Lee, C. McConaghy, G. Sommargren, P. Krulevitch, E. Campbell
This research utilizes the levitation effect of electrostatic comb fingers to design vertical-to-the-substrate actuation for optical phase shifting interferometry applications. For typical polysilicon comb drives with 2 /spl mu/m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 /spl mu/m above the stationary comb fingers. This distance is ideal for most phase shifting interferometric applications. A parallel plate capacitor between the suspended mass and the substrate provides in situ position sensing to control the vertical movement, providing a total feedback-controlled system. The travel range of the designed vertical microactuator is 1.2 /spl mu/m. Since the levitation force is not linear to the input voltage, a lock-in amplifier capacitive sensing circuit combined with a digital signal processor enables a linearized travel trajectory with 1.5 nm position control accuracy. A completely packaged micro phase shifter is described in this paper. One application for this microactuator is to provide linear phase shifting in the phase shifting diffraction interferometer (PSDI) developed at LLNL which can perform optical metrology down to 2 /spl Aring/ accuracy.
{"title":"Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry","authors":"A. Lee, C. McConaghy, G. Sommargren, P. Krulevitch, E. Campbell","doi":"10.1109/JMEMS.2003.820262","DOIUrl":"https://doi.org/10.1109/JMEMS.2003.820262","url":null,"abstract":"This research utilizes the levitation effect of electrostatic comb fingers to design vertical-to-the-substrate actuation for optical phase shifting interferometry applications. For typical polysilicon comb drives with 2 /spl mu/m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 /spl mu/m above the stationary comb fingers. This distance is ideal for most phase shifting interferometric applications. A parallel plate capacitor between the suspended mass and the substrate provides in situ position sensing to control the vertical movement, providing a total feedback-controlled system. The travel range of the designed vertical microactuator is 1.2 /spl mu/m. Since the levitation force is not linear to the input voltage, a lock-in amplifier capacitive sensing circuit combined with a digital signal processor enables a linearized travel trajectory with 1.5 nm position control accuracy. A completely packaged micro phase shifter is described in this paper. One application for this microactuator is to provide linear phase shifting in the phase shifting diffraction interferometer (PSDI) developed at LLNL which can perform optical metrology down to 2 /spl Aring/ accuracy.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"33 1","pages":"960-971"},"PeriodicalIF":0.0,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81659552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-01-01DOI: 10.1109/JMEMS.2003.820304
C. Rusu, S. Sedky, B. Parmentier, A. Verbist, O. Richard, B. Brijs, L. Geenen, A. Witvrouw, F. Lärmer, F. Fischer, S. Kronmüller, V. Leca, B. Otter
Thick poly-SiGe layers, deposited by plasma-enhanced chemical vapor deposition (PECVD), are very promising structural layers for use in microaccelerometers, microgyroscopes or for thin-film encapsulation, especially for applications where the thermal budget is limited. In this work it is shown for the first time that these layers are an attractive alternative to low-pressure CVD (LPCVD) poly-Si or poly-SiGe because of their high growth rate (100-200 nm/min) and low deposition temperature (520/spl deg/C-590/spl deg/C). The combination of both of these features is impossible to achieve with either LPCVD SiGe (2-30 nm/min growth rate) or LPCVD poly-Si (annealing temperature higher than 900/spl deg/C to achieve structural layer having low tensile stress). Additional advantages are that no nucleation layer is needed (deposition directly on SiO/sub 2/ is possible) and that the as-deposited layers are polycrystalline. No stress or dopant activation anneal of the structural layer is needed since in situ phosphorus doping gives an as-deposited tensile stress down to 20 MPa, and a resistivity of 10 m/spl Omega/-cm to 30 m/spl Omega/-cm. With in situ boron doping, resistivities down to 0.6 m/spl Omega/-cm are possible. The use of these films as an encapsulation layer above an accelerometer is shown.
{"title":"New low-stress PECVD poly-SiGe Layers for MEMS","authors":"C. Rusu, S. Sedky, B. Parmentier, A. Verbist, O. Richard, B. Brijs, L. Geenen, A. Witvrouw, F. Lärmer, F. Fischer, S. Kronmüller, V. Leca, B. Otter","doi":"10.1109/JMEMS.2003.820304","DOIUrl":"https://doi.org/10.1109/JMEMS.2003.820304","url":null,"abstract":"Thick poly-SiGe layers, deposited by plasma-enhanced chemical vapor deposition (PECVD), are very promising structural layers for use in microaccelerometers, microgyroscopes or for thin-film encapsulation, especially for applications where the thermal budget is limited. In this work it is shown for the first time that these layers are an attractive alternative to low-pressure CVD (LPCVD) poly-Si or poly-SiGe because of their high growth rate (100-200 nm/min) and low deposition temperature (520/spl deg/C-590/spl deg/C). The combination of both of these features is impossible to achieve with either LPCVD SiGe (2-30 nm/min growth rate) or LPCVD poly-Si (annealing temperature higher than 900/spl deg/C to achieve structural layer having low tensile stress). Additional advantages are that no nucleation layer is needed (deposition directly on SiO/sub 2/ is possible) and that the as-deposited layers are polycrystalline. No stress or dopant activation anneal of the structural layer is needed since in situ phosphorus doping gives an as-deposited tensile stress down to 20 MPa, and a resistivity of 10 m/spl Omega/-cm to 30 m/spl Omega/-cm. With in situ boron doping, resistivities down to 0.6 m/spl Omega/-cm are possible. The use of these films as an encapsulation layer above an accelerometer is shown.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"83 1","pages":"816-825"},"PeriodicalIF":0.0,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90636303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-12-16DOI: 10.1109/JMEMS.2002.805211
X. Li, T. Abe, Y. Liu, M. Esashi
This paper describes the fabrication technology for high-density electrical feed-throughs in Pyrex glass wafers. Small through holes (40-80 /spl mu/m in diameter) in Pyrex glass wafers have been fabricated using deep-reactive-ion etching (DRIE) in a sulfur hexafluoride (SF/sub 6/) plasma. The maximum aspect ratios obtained were between 5 and 7 for a hole pattern and 10 for a trench pattern. Through the wafer etching of a hole pattern of 50 /spl mu/m diameter was carried out using 150-/spl mu/m-thick Pyrex glass wafers. The electrical feed-throughs in the wafers were fabricated by filling the through-holes with electroplated nickel. We were able to successfully bond the glass wafer to silicon by anodic bonding after removing the electroplated nickel on the surface of the wafer by chemical-mechanical polishing (CMP). The electric resistance of the feed-through was estimated by a 4 point wire sensing method to be about 40 m/spl Omega/ per hole. The heat cycles test shows that the resistance changes were within 3% after 100 cycles. The fabrication of high density electrical feed-throughs is one of the key processes in the field of MEMS. Probable applications of this technology are in electrical feed-throughs between logic elements and microprobe arrays for high-density data storage and for packaged devices.
本文介绍了高温玻璃晶圆中高密度电馈线的制造工艺。在六氟化硫(SF/sub 6/)等离子体中,采用深度反应蚀刻(DRIE)技术在Pyrex玻璃晶圆上制备了直径为40-80 μ l μ m的小通孔。所获得的最大纵横比在孔型和沟槽型之间分别为5 ~ 7和10。采用厚度为150 μ m /spl μ m的Pyrex玻璃晶圆,通过晶圆刻蚀,实现了直径为50 μ m /spl μ m的孔洞图案。通过在晶圆的通孔中填充电镀镍来制造晶圆上的电馈线。通过化学机械抛光(CMP)去除硅片表面的电镀镍后,通过阳极键合成功地将硅片与硅结合在一起。通过4点导线传感方法估计馈线的电阻约为40 m/spl ω /每个孔。热循环试验表明,经过100次循环后,电阻变化在3%以内。高密度电馈通的制备是MEMS领域的关键工艺之一。该技术的可能应用是在高密度数据存储和封装设备的逻辑元件和微探针阵列之间的电馈线。
{"title":"Fabrication of high-density electrical feed-throughs by deep-reactive-ion etching of Pyrex glass","authors":"X. Li, T. Abe, Y. Liu, M. Esashi","doi":"10.1109/JMEMS.2002.805211","DOIUrl":"https://doi.org/10.1109/JMEMS.2002.805211","url":null,"abstract":"This paper describes the fabrication technology for high-density electrical feed-throughs in Pyrex glass wafers. Small through holes (40-80 /spl mu/m in diameter) in Pyrex glass wafers have been fabricated using deep-reactive-ion etching (DRIE) in a sulfur hexafluoride (SF/sub 6/) plasma. The maximum aspect ratios obtained were between 5 and 7 for a hole pattern and 10 for a trench pattern. Through the wafer etching of a hole pattern of 50 /spl mu/m diameter was carried out using 150-/spl mu/m-thick Pyrex glass wafers. The electrical feed-throughs in the wafers were fabricated by filling the through-holes with electroplated nickel. We were able to successfully bond the glass wafer to silicon by anodic bonding after removing the electroplated nickel on the surface of the wafer by chemical-mechanical polishing (CMP). The electric resistance of the feed-through was estimated by a 4 point wire sensing method to be about 40 m/spl Omega/ per hole. The heat cycles test shows that the resistance changes were within 3% after 100 cycles. The fabrication of high density electrical feed-throughs is one of the key processes in the field of MEMS. Probable applications of this technology are in electrical feed-throughs between logic elements and microprobe arrays for high-density data storage and for packaged devices.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"48 1","pages":"625-630"},"PeriodicalIF":0.0,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85465461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-12-16DOI: 10.1109/JMEMS.2002.805044
Biao Li, H. Xie, Bai Xu, R. Geer, J. Castracane
A focused ion beam (FIB) moire method is proposed and demonstrated to measure the strain in microstructures. This technique is based on the advantages of the FIB system in nanofabrication, imaging, selective deposition, and fine adjustment. A nanograting is directly written on the top of the microstructures by ion milling without the requirement of an etch mask. The FIB moire pattern is formed by the interference between a prepared specimen grating and FIB raster scan lines. The strain of the microstructures is derived by calculating the average spacing of moire fringes. The sensitivity and accuracy of FIB moire in strain measurement is subsequently discussed. Since the local strain of a microstructure itself can be monitored during the process, the FIB moire technique has many potential applications in the mechanical metrology of microelectromechanical systems (MEMS). As an example, the strain distribution along the sticking microstructures and the contribution of surface oxidization and mass loading to the cantilever strain is determined by this FIB moire technique.
{"title":"Investigation of strain in microstructures by a novel moire method","authors":"Biao Li, H. Xie, Bai Xu, R. Geer, J. Castracane","doi":"10.1109/JMEMS.2002.805044","DOIUrl":"https://doi.org/10.1109/JMEMS.2002.805044","url":null,"abstract":"A focused ion beam (FIB) moire method is proposed and demonstrated to measure the strain in microstructures. This technique is based on the advantages of the FIB system in nanofabrication, imaging, selective deposition, and fine adjustment. A nanograting is directly written on the top of the microstructures by ion milling without the requirement of an etch mask. The FIB moire pattern is formed by the interference between a prepared specimen grating and FIB raster scan lines. The strain of the microstructures is derived by calculating the average spacing of moire fringes. The sensitivity and accuracy of FIB moire in strain measurement is subsequently discussed. Since the local strain of a microstructure itself can be monitored during the process, the FIB moire technique has many potential applications in the mechanical metrology of microelectromechanical systems (MEMS). As an example, the strain distribution along the sticking microstructures and the contribution of surface oxidization and mass loading to the cantilever strain is determined by this FIB moire technique.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"4 1","pages":"829-836"},"PeriodicalIF":0.0,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85599809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-12-16DOI: 10.1109/JMEMS.2002.805052
H. Noh, P. Hesketh, G. Frye-Mason
This paper presents a parylene gas chromatographic column with an embedded heating element. The parylene coating on a silicon microchannel and parylene/parylene thermal bonding technique were employed to fabricate a parylene column. The heating element is a thin gold film evaporated on the corrugated surface of the parylene column having long and rectangular geometry. Joule heating via the thin gold film is a very effective heating system for a parylene column. ANSYS heat transfer analysis was performed to investigate the thermal cycling and temperature uniformity of the parylene column. The parylene column showed much faster heating and cooling rates as well as lower power consumption compared to a silicon/glass column. The temperature difference between the top and the bottom of a parylene column that is due to the low thermal conductivity of parylene could be reduced to less than 0.1 K by inserting a thin metal layer between two parylene layers, forming a triple layer structure (parylene/platinum/parylene).
{"title":"Parylene gas chromatographic column for rapid thermal cycling","authors":"H. Noh, P. Hesketh, G. Frye-Mason","doi":"10.1109/JMEMS.2002.805052","DOIUrl":"https://doi.org/10.1109/JMEMS.2002.805052","url":null,"abstract":"This paper presents a parylene gas chromatographic column with an embedded heating element. The parylene coating on a silicon microchannel and parylene/parylene thermal bonding technique were employed to fabricate a parylene column. The heating element is a thin gold film evaporated on the corrugated surface of the parylene column having long and rectangular geometry. Joule heating via the thin gold film is a very effective heating system for a parylene column. ANSYS heat transfer analysis was performed to investigate the thermal cycling and temperature uniformity of the parylene column. The parylene column showed much faster heating and cooling rates as well as lower power consumption compared to a silicon/glass column. The temperature difference between the top and the bottom of a parylene column that is due to the low thermal conductivity of parylene could be reduced to less than 0.1 K by inserting a thin metal layer between two parylene layers, forming a triple layer structure (parylene/platinum/parylene).","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"1 1","pages":"718-725"},"PeriodicalIF":0.0,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82955416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-12-16DOI: 10.1109/JMEMS.2002.803278
G. Lammel, S. Schweizer, S. Schiesser, P. Renaud
We present a microspectrometer based on a tunable interference filter for infrared or visible light that scans the desired part of the spectrum within milliseconds. A single pixel detector measures serially the intensity at selected wavelengths. This concept avoids expensive linear detectors as used for grating spectrometers. The tunable filter is fabricated by a new porous silicon technology using only two photolithography steps. A Bragg mirror or a Fabry-Perot bandpass filter for transmission wavelengths between 400 nm and 8 /spl mu/m at normal incidence is created by modulations of the refractive index in the filter plate. Two thermal bimorph micro-actuators tilt the plate by up to 90/spl deg/, changing the incidence angle of the beam to be analyzed. This tunes the wavelength transmitted to the detector by a factor of 1.16. The filter area can be chosen between 0.27 /spl times/ 0.70 mm/sup 2/ and 2.50 /spl times/ 3.00 mm/sup 2/, the filter thickness is typically 30 /spl mu/m. The spectral resolution of /spl Delta//spl lambda///spl lambda/ = 1/25 is sufficient for most sensor applications, e.g., measurement of CO/sub 2/ and CO in combustion processes by their IR absorption bands as will be presented.
{"title":"Tunable optical filter of porous silicon as key component for a MEMS spectrometer","authors":"G. Lammel, S. Schweizer, S. Schiesser, P. Renaud","doi":"10.1109/JMEMS.2002.803278","DOIUrl":"https://doi.org/10.1109/JMEMS.2002.803278","url":null,"abstract":"We present a microspectrometer based on a tunable interference filter for infrared or visible light that scans the desired part of the spectrum within milliseconds. A single pixel detector measures serially the intensity at selected wavelengths. This concept avoids expensive linear detectors as used for grating spectrometers. The tunable filter is fabricated by a new porous silicon technology using only two photolithography steps. A Bragg mirror or a Fabry-Perot bandpass filter for transmission wavelengths between 400 nm and 8 /spl mu/m at normal incidence is created by modulations of the refractive index in the filter plate. Two thermal bimorph micro-actuators tilt the plate by up to 90/spl deg/, changing the incidence angle of the beam to be analyzed. This tunes the wavelength transmitted to the detector by a factor of 1.16. The filter area can be chosen between 0.27 /spl times/ 0.70 mm/sup 2/ and 2.50 /spl times/ 3.00 mm/sup 2/, the filter thickness is typically 30 /spl mu/m. The spectral resolution of /spl Delta//spl lambda///spl lambda/ = 1/25 is sufficient for most sensor applications, e.g., measurement of CO/sub 2/ and CO in combustion processes by their IR absorption bands as will be presented.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"103 1","pages":"815-828"},"PeriodicalIF":0.0,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86750104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-12-16DOI: 10.1109/JMEMS.2002.805048
A. Ullmann, I. Fono
The piezoelectric valve-less pump is an attractive device to be used as a micro pump for low flow rates. The pump converts the reciprocating motion of a diaphragm, activated by a piezoelectric disk, into a pumping action. Instead of conventional valves, which have moving parts, nozzle/diffuser elements that have a preferential flow direction are used to direct the flow from the inlet to the outlet. In this paper, an improved dynamic model for the simulation of valve-less piezoelectric pumps is presented. The model is capable of accurate simulation of the pump performance including the natural frequency, flow rate, and pressure drop. The model is utilized here to study the effect of the driving frequency and the inlet/outlet length and diameter of the leading pipes on the pump performance. Comparison with experiments shows good agreement with a minimal number of adjusting parameters.
{"title":"The piezoelectric valve-less pump - improved dynamic model","authors":"A. Ullmann, I. Fono","doi":"10.1109/JMEMS.2002.805048","DOIUrl":"https://doi.org/10.1109/JMEMS.2002.805048","url":null,"abstract":"The piezoelectric valve-less pump is an attractive device to be used as a micro pump for low flow rates. The pump converts the reciprocating motion of a diaphragm, activated by a piezoelectric disk, into a pumping action. Instead of conventional valves, which have moving parts, nozzle/diffuser elements that have a preferential flow direction are used to direct the flow from the inlet to the outlet. In this paper, an improved dynamic model for the simulation of valve-less piezoelectric pumps is presented. The model is capable of accurate simulation of the pump performance including the natural frequency, flow rate, and pressure drop. The model is utilized here to study the effect of the driving frequency and the inlet/outlet length and diameter of the leading pipes on the pump performance. Comparison with experiments shows good agreement with a minimal number of adjusting parameters.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"13 1","pages":"655-664"},"PeriodicalIF":0.0,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89740014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-12-16DOI: 10.1109/JMEMS.2002.805209
Dong Liu, M. Maxey, G. E. Kamiadakis
Modeling of active control of microparticles is important in a number of different microfluidic applications, including bioflows and self-assembled structures. We present here a fast method for simulating the dynamics of many particles in complex microgeometries. The method is based on a spatial distribution of finite force multipoles and requires much less resolution than full direct numerical simulations. The numerical formulation is summarized, and examples are given for Stokes flow and low Reynolds number flow in smooth and rough microchannels. Comparisons made with full direct numerical simulations and experiments validate the accuracy and efficiency of the proposed approach.
{"title":"A fast method for particulate microflows","authors":"Dong Liu, M. Maxey, G. E. Kamiadakis","doi":"10.1109/JMEMS.2002.805209","DOIUrl":"https://doi.org/10.1109/JMEMS.2002.805209","url":null,"abstract":"Modeling of active control of microparticles is important in a number of different microfluidic applications, including bioflows and self-assembled structures. We present here a fast method for simulating the dynamics of many particles in complex microgeometries. The method is based on a spatial distribution of finite force multipoles and requires much less resolution than full direct numerical simulations. The numerical formulation is summarized, and examples are given for Stokes flow and low Reynolds number flow in smooth and rough microchannels. Comparisons made with full direct numerical simulations and experiments validate the accuracy and efficiency of the proposed approach.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"27 1","pages":"691-702"},"PeriodicalIF":0.0,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86036105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-12-16DOI: 10.1109/JMEMS.2002.806025
C. Harris, K. Kelly, Tao Wang, A. McCandless, S. Motakef
Planar micro-cross-flow heat exchangers, similar in concept to most automobile radiators, have been fabricated using two different processes. A process that was previously reported (Harris et al., 2000) to fabricate a polymer heat exchanger involved embossing two identical polymer parts using the LIGA process. Then the two parts were aligned and bonded together. In this paper, a process is described to fabricate a nickel micro-cross-flow heat exchanger by embossing a sacrificial polymer mandrel using a LIGA-fabricated mold insert. The mandrel is coated with nickel (using either electroplating or electroless plating), then the sacrificial mandrel is dissolved. Experimental results are reported for both the polymer and nickel heat exchangers to determine the rates of heat transfer between the in-plane liquid (water) and the through-plane gas (air). Pressure drops of both fluid streams were also measured. The experimental results compare favorably with a modified version of the analytical model that was described previously. The fabricated heat exchangers have values of heat transfer/volume that are more than five times higher than conventional scale counterparts (with characteristic dimensions at least one order of magnitude larger than those reported here) and values of heat transfer/mass that are 50% greater than their conventional scale counterparts.
平面微交叉流热交换器,在概念上类似于大多数汽车散热器,已经采用两种不同的工艺制造。先前报道的一种工艺(Harris et al., 2000)制造聚合物热交换器涉及使用LIGA工艺压印两个相同的聚合物部件。然后这两部分被对齐并粘合在一起。本文介绍了一种利用liga制造的模具镶件在牺牲聚合物芯轴上压纹的方法来制造镍微交叉流换热器的工艺。在芯轴上涂上镍(电镀或化学镀),然后溶解牺牲芯轴。本文报道了聚合物热交换器和镍热交换器的实验结果,以确定平面内液体(水)和平面内气体(空气)之间的传热速率。还测量了两种流体流的压降。实验结果与先前描述的分析模型的修正版本相吻合。制造的热交换器的传热/体积值比传统规模的热交换器高五倍以上(特征尺寸至少比这里报道的大一个数量级),传热/质量值比传统规模的热交换器大50%。
{"title":"Fabrication, modeling, and testing of micro-cross-flow heat exchangers","authors":"C. Harris, K. Kelly, Tao Wang, A. McCandless, S. Motakef","doi":"10.1109/JMEMS.2002.806025","DOIUrl":"https://doi.org/10.1109/JMEMS.2002.806025","url":null,"abstract":"Planar micro-cross-flow heat exchangers, similar in concept to most automobile radiators, have been fabricated using two different processes. A process that was previously reported (Harris et al., 2000) to fabricate a polymer heat exchanger involved embossing two identical polymer parts using the LIGA process. Then the two parts were aligned and bonded together. In this paper, a process is described to fabricate a nickel micro-cross-flow heat exchanger by embossing a sacrificial polymer mandrel using a LIGA-fabricated mold insert. The mandrel is coated with nickel (using either electroplating or electroless plating), then the sacrificial mandrel is dissolved. Experimental results are reported for both the polymer and nickel heat exchangers to determine the rates of heat transfer between the in-plane liquid (water) and the through-plane gas (air). Pressure drops of both fluid streams were also measured. The experimental results compare favorably with a modified version of the analytical model that was described previously. The fabricated heat exchangers have values of heat transfer/volume that are more than five times higher than conventional scale counterparts (with characteristic dimensions at least one order of magnitude larger than those reported here) and values of heat transfer/mass that are 50% greater than their conventional scale counterparts.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"40 1","pages":"726-735"},"PeriodicalIF":0.0,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81364670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}