Myosin light chain kinase (MLCK) is a dedicated kinase of myosin regulatory light chain (RLC), playing an essential role in the regulation of muscle contraction and cell motility. Much of the knowledge about MLCK comes from the study of vertebrate MLCK, and little is known about insect MLCK. Here, we identified the single MLCK gene in the locust Locusta migratoria, which spans over 1400 kb, includes 62 exons and accounts for at least five transcripts. We found that the five distinct transcripts of the locust MLCK gene are expressed in a tissue-specific manner, including three muscle-specific isoforms and two generic isoforms. To characterise the kinase activity of locust MLCK, we recombinantly expressed LmMLCK-G, the smallest locust MLCK isoform, in insect Sf9 cells. We demonstrated that LmMLCK-G is a Ca2+/calmodulin-dependent kinase that specifically phosphorylates serine 50 of locust muscle myosin RLC (LmRLC). Additionally, we found that almost all LmRLC molecules in the flight muscle and the hindleg muscles of adult locusts are phosphorylated.
{"title":"Characterisation of the myosin light chain kinase (MLCK) gene of Locusta migratoria and the encoded MLCK","authors":"Miao Wei, Ning Zhang, Xiang-dong Li","doi":"10.1111/imb.12902","DOIUrl":"10.1111/imb.12902","url":null,"abstract":"<p>Myosin light chain kinase (MLCK) is a dedicated kinase of myosin regulatory light chain (RLC), playing an essential role in the regulation of muscle contraction and cell motility. Much of the knowledge about MLCK comes from the study of vertebrate MLCK, and little is known about insect MLCK. Here, we identified the single MLCK gene in the locust <i>Locusta migratoria</i>, which spans over 1400 kb, includes 62 exons and accounts for at least five transcripts. We found that the five distinct transcripts of the locust MLCK gene are expressed in a tissue-specific manner, including three muscle-specific isoforms and two generic isoforms. To characterise the kinase activity of locust MLCK, we recombinantly expressed LmMLCK-G, the smallest locust MLCK isoform, in insect Sf9 cells. We demonstrated that LmMLCK-G is a Ca<sup>2+</sup>/calmodulin-dependent kinase that specifically phosphorylates serine 50 of locust muscle myosin RLC (LmRLC). Additionally, we found that almost all LmRLC molecules in the flight muscle and the hindleg muscles of adult locusts are phosphorylated.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 4","pages":"338-349"},"PeriodicalIF":2.3,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriela Krejčová, Gabriela Ruphuy, Petra Šalamúnová, Erik Sonntag, František Štěpánek, Adam Bajgar
Adjustment of the cellular metabolism of pro-inflammatory macrophages is essential for their bactericidal function; however, it underlies the development of many human diseases if induced chronically. Therefore, intervention of macrophage metabolic polarisation has been recognised as a potent strategy for their treatment. Although many small-molecule inhibitors affecting macrophage metabolism have been identified, their in vivo administration requires a tool for macrophage-specific delivery to limit their potential side effects. Here, we establish Drosophila melanogaster as a simple experimental model for in vivo testing of macrophage-specific delivery tools. We found that yeast-derived glucan particles (GPs) are suitable for macrophage-specific delivery of small-molecule inhibitors. Systemic administration of GPs loaded with atorvastatin, the inhibitor of hydroxy-methyl-glutaryl-CoA reductase (Hmgcr), leads to intervention of mevalonate pathway specifically in macrophages, without affecting HMGCR activity in other tissues. Using this tool, we demonstrate that mevalonate pathway is essential for macrophage pro-inflammatory polarisation and individual's survival of infection.
{"title":"Inhibition of mevalonate pathway by macrophage-specific delivery of atorvastatin prevents their pro-inflammatory polarisation","authors":"Gabriela Krejčová, Gabriela Ruphuy, Petra Šalamúnová, Erik Sonntag, František Štěpánek, Adam Bajgar","doi":"10.1111/imb.12900","DOIUrl":"10.1111/imb.12900","url":null,"abstract":"<p>Adjustment of the cellular metabolism of pro-inflammatory macrophages is essential for their bactericidal function; however, it underlies the development of many human diseases if induced chronically. Therefore, intervention of macrophage metabolic polarisation has been recognised as a potent strategy for their treatment. Although many small-molecule inhibitors affecting macrophage metabolism have been identified, their in vivo administration requires a tool for macrophage-specific delivery to limit their potential side effects. Here, we establish <i>Drosophila melanogaster</i> as a simple experimental model for in vivo testing of macrophage-specific delivery tools. We found that yeast-derived glucan particles (GPs) are suitable for macrophage-specific delivery of small-molecule inhibitors. Systemic administration of GPs loaded with atorvastatin, the inhibitor of hydroxy-methyl<i>-</i>glutaryl-CoA reductase (<i>Hmgcr</i>), leads to intervention of mevalonate pathway specifically in macrophages, without affecting HMGCR activity in other tissues. Using this tool, we demonstrate that mevalonate pathway is essential for macrophage pro-inflammatory polarisation and individual's survival of infection.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 4","pages":"323-337"},"PeriodicalIF":2.3,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12900","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139897970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ben J. Hunt, Mirko Pegoraro, Hollie Marshall, Eamonn B. Mallon
Epigenetic mechanisms, such as DNA methylation, are crucial factors in animal development. In some mammals, almost all DNA methylation is erased during embryo development and re-established in a sex- and cell-specific manner. This erasure and re-establishment is thought to primarily be a vertebrate-specific trait. Insects are particularly interesting in terms of development as many species often undergo remarkable morphological changes en route to maturity, that is, morphogenesis. However, little is known about the role of epigenetic mechanisms in this process across species. We have used whole-genome bisulfite sequencing to track genome-wide DNA methylation changes through the development of an economically and environmentally important pollinator species, the bumblebee Bombus terrestris (Hymenoptera:Apidae Linnaeus). We find overall levels of DNA methylation vary throughout development, and we find developmentally relevant differentially methylated genes throughout. Intriguingly, we have identified a depletion of DNA methylation in ovaries/eggs and an enrichment of highly methylated genes in sperm. We suggest this could represent a sex-specific DNA methylation erasure event. To our knowledge, this is the first suggestion of possible developmental DNA methylation erasure in an insect species. This study lays the required groundwork for functional experimental work to determine if there is a causal nature to the DNA methylation differences identified. Additionally, the application of single-cell methylation sequencing to this system will enable more accurate identification of if or when DNA methylation is erased during development.
DNA 甲基化等表观遗传机制是动物发育的关键因素。在一些哺乳动物中,几乎所有的 DNA 甲基化都会在胚胎发育过程中被清除,并以性别和细胞特异性的方式重新建立。这种删除和重建被认为主要是脊椎动物的特异性。昆虫的发育尤其有趣,因为许多物种在走向成熟的过程中往往会发生显著的形态变化,即形态发生。然而,人们对表观遗传机制在不同物种这一过程中的作用知之甚少。我们利用全基因组亚硫酸氢盐测序技术,追踪了具有重要经济和环境意义的授粉物种--大黄蜂(Bombus terrestris,膜翅目:鳞翅目)在发育过程中的全基因组 DNA 甲基化变化。我们发现 DNA 甲基化的总体水平在整个发育过程中各不相同,我们还发现了与发育相关的不同甲基化基因。有趣的是,我们在卵巢/卵子中发现了 DNA 甲基化的消耗,而在精子中则发现了高甲基化基因的富集。我们认为这可能代表了一种性别特异性 DNA 甲基化清除事件。据我们所知,这是首次提出昆虫物种在发育过程中可能出现DNA甲基化清除。这项研究为确定 DNA 甲基化差异是否存在因果关系的功能性实验工作奠定了必要的基础。此外,在该系统中应用单细胞甲基化测序将能更准确地确定 DNA 甲基化是否或何时在发育过程中被消除。
{"title":"A role for DNA methylation in bumblebee morphogenesis hints at female-specific developmental erasure","authors":"Ben J. Hunt, Mirko Pegoraro, Hollie Marshall, Eamonn B. Mallon","doi":"10.1111/imb.12897","DOIUrl":"10.1111/imb.12897","url":null,"abstract":"<p>Epigenetic mechanisms, such as DNA methylation, are crucial factors in animal development. In some mammals, almost all DNA methylation is erased during embryo development and re-established in a sex- and cell-specific manner. This erasure and re-establishment is thought to primarily be a vertebrate-specific trait. Insects are particularly interesting in terms of development as many species often undergo remarkable morphological changes en route to maturity, that is, morphogenesis. However, little is known about the role of epigenetic mechanisms in this process across species. We have used whole-genome bisulfite sequencing to track genome-wide DNA methylation changes through the development of an economically and environmentally important pollinator species, the bumblebee <i>Bombus terrestris (Hymenoptera:Apidae Linnaeus)</i>. We find overall levels of DNA methylation vary throughout development, and we find developmentally relevant differentially methylated genes throughout. Intriguingly, we have identified a depletion of DNA methylation in ovaries/eggs and an enrichment of highly methylated genes in sperm. We suggest this could represent a sex-specific DNA methylation erasure event. To our knowledge, this is the first suggestion of possible developmental DNA methylation erasure in an insect species. This study lays the required groundwork for functional experimental work to determine if there is a causal nature to the DNA methylation differences identified. Additionally, the application of single-cell methylation sequencing to this system will enable more accurate identification of if or when DNA methylation is erased during development.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 5","pages":"481-492"},"PeriodicalIF":2.3,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12897","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dion Garrett, Graham Teakle, Rosemary Collier, James R. Bell, Sergio Cerezo-Medina, Ramiro Morales-Hojas
Aphid genomic resources enable the study of complex life history traits and provide information on vector biology, host adaption and speciation. The currant–lettuce aphid (Nasonovia ribisnigri(Hemiptera: Aphididae) (Mosley)) is a cosmopolitan pest of outdoor lettuce (Lactuca sativa (Asterales: Asteraceae) (Linnaeus)). Until recently, the use of resistant cultivars was an effective method for managing N. ribisnigri. A resistant cultivar containing a single gene (Nr-locus), introduced in the 1980s, conferred complete resistance to feeding. Overreliance of this Nr-locus in lettuce resulted in N. ribisnigri's ability to break resistance mechanism, with first reports during 2003. Our work attempts to understand which candidate gene(s) are associated with this resistance-breaking mechanism. We present two de novo draft assembles for N. ribisnigri genomes, corresponding to both avirulent (Nr-locus susceptible) and virulent (Nr-locus resistant) biotypes. Changes in gene expression of the two N. ribisnigri biotypes were investigated using transcriptomic analyses of RNA-sequencing (RNA-seq) data to understand the potential mechanisms of resistance to the Nr-locus in lettuce. The draft genome assemblies were 94.2% and 91.4% complete for the avirulent and virulent biotypes, respectively. Out of the 18,872 differentially expressed genes, a single gene/locus was identified in N. ribisnigri that was shared between two resistant-breaking biotypes. This locus was further explored and validated in Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) experiments and has predicted localisations in both the cytoplasm and nucleus. This is the first study to provide evidence that a single gene/locus is likely responsible for the ability of N. ribisnigri to overcome the Nr-locus resistance in the lettuce host.
蚜虫基因组资源有助于研究复杂的生活史特征,并提供有关媒介生物学、宿主适应性和物种变异的信息。醋栗莴苣蚜(Nasonovia ribisnigri (Hemiptera: Aphididae) (Mosley))是室外莴苣(Lactuca sativa (Asterales: Asteraceae) (Linnaeus) )的一种世界性害虫。直到最近,使用抗性栽培品种仍是防治 N. ribisnigri 的有效方法。20 世纪 80 年代引入的一种抗性栽培品种含有单一基因(Nr-locus),能完全抵抗食害。在莴苣中过度依赖这种 Nr-locus,导致 N. ribisnigri 能够打破抗性机制,2003 年首次报告了这种情况。我们的工作试图了解哪些候选基因与这种抗性破坏机制有关。我们展示了两个全新的 N. ribisnigri 基因组草案,分别对应无毒(Nr-locus 易感)和有毒(Nr-locus 耐药)生物型。通过对 RNA 序列(RNA-seq)数据进行转录组分析,研究了两种 N. ribisnigri 生物型的基因表达变化,以了解莴苣对 Nr-locus 的抗性的潜在机制。无抗性生物型和有抗性生物型的基因组组装草案的完整率分别为 94.2% 和 91.4%。在 18,872 个差异表达基因中,在 N. ribisnigri 中发现了一个基因/位点,该基因/位点是两个抗性突破生物型共有的。实时定量反转录 PCR(qRT-PCR)实验对该基因座进行了进一步探索和验证,并预测了其在细胞质和细胞核中的定位。这是首次有研究证明,单个基因/位点可能是 N. ribisnigri 在莴苣宿主体内克服 Nr-位点抗性能力的原因。
{"title":"Genome assembly and transcriptomic analysis to elucidate the ability of Nasonovia ribisnigri to break host plant resistance","authors":"Dion Garrett, Graham Teakle, Rosemary Collier, James R. Bell, Sergio Cerezo-Medina, Ramiro Morales-Hojas","doi":"10.1111/imb.12894","DOIUrl":"10.1111/imb.12894","url":null,"abstract":"<p>Aphid genomic resources enable the study of complex life history traits and provide information on vector biology, host adaption and speciation. The currant–lettuce aphid (<i>Nasonovia ribisnigri</i> <i>(Hemiptera: Aphididae</i>) (Mosley)) is a cosmopolitan pest of outdoor lettuce (<i>Lactuca sativa</i> (Asterales: Asteraceae) (Linnaeus)). Until recently, the use of resistant cultivars was an effective method for managing <i>N</i>. <i>ribisnigri</i>. A resistant cultivar containing a single gene (Nr-locus), introduced in the 1980s, conferred complete resistance to feeding. Overreliance of this Nr-locus in lettuce resulted in <i>N</i>. <i>ribisnigri's</i> ability to break resistance mechanism, with first reports during 2003. Our work attempts to understand which candidate gene(s) are associated with this resistance-breaking mechanism. We present two de novo draft assembles for <i>N</i>. <i>ribisnigri</i> genomes, corresponding to both avirulent (Nr-locus susceptible) and virulent (Nr-locus resistant) biotypes. Changes in gene expression of the two <i>N</i>. <i>ribisnigri</i> biotypes were investigated using transcriptomic analyses of RNA-sequencing (RNA-seq) data to understand the potential mechanisms of resistance to the Nr-locus in lettuce. The draft genome assemblies were 94.2% and 91.4% complete for the avirulent and virulent biotypes, respectively. Out of the 18,872 differentially expressed genes, a single gene/locus was identified in <i>N</i>. <i>ribisnigri</i> that was shared between two resistant-breaking biotypes. This locus was further explored and validated in Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) experiments and has predicted localisations in both the cytoplasm and nucleus. This is the first study to provide evidence that a single gene/locus is likely responsible for the ability of <i>N</i>. <i>ribisnigri</i> to overcome the Nr-locus resistance in the lettuce host.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 3","pages":"228-245"},"PeriodicalIF":2.6,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12894","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The RNA interference pathway mediated by microRNAs (miRNAs) is one of the methods to defend against viruses in insects. Recent studies showed that miRNAs participate in viral infection by binding to target genes to regulate their expression. Here, we found that the Bombyx mori miRNA, miR-6498-5p was down-regulated, whereas its predicted target gene pyridoxal phosphate phosphatase PHOSPHO2 (BmPLPP2) was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Both in vivo and in vitro experiments showed that miR-6498-5p targets BmPLPP2 and suppresses its expression. Furthermore, we found miR-6498-5p inhibits BmNPV genomic DNA (gDNA) replication, whereas BmPLPP2 promotes BmNPV gDNA replication. As a pyridoxal phosphate (PLP) phosphatase (PLPP), the overexpression of BmPLPP2 results in a reduction of PLP content, whereas the knockdown of BmPLPP2 leads to an increase in PLP content. In addition, exogenous PLP suppresses the replication of BmNPV gDNA; in contrast, the PLP inhibitor 4-deoxypyridoxine facilitates BmNPV gDNA replication. Taken together, we concluded that miR-6498-5p has a potential anti-BmNPV role by down-regulating BmPLPP2 to modulate PLP content, but BmNPV induces miR-6498-5p down-regulation to promote its proliferation. Our findings provide valuable insights into the role of host miRNA in B. mori–BmNPV interaction. Furthermore, the identification of the antiviral molecule PLP offers a novel perspective on strategies for preventing and managing viral infection in sericulture.
{"title":"Bmo-miR-6498-5p suppresses Bombyx mori nucleopolyhedrovirus infection by down-regulating BmPLPP2 to modulate pyridoxal phosphate content in B. mori","authors":"Hui-Hua Cao, Wei-Wei Kong, Xi-Ya Chen, Sadaf Ayaz, Cai-Ping Hou, Yi-Sheng Wang, Shi-Huo Liu, Jia-ping Xu","doi":"10.1111/imb.12896","DOIUrl":"10.1111/imb.12896","url":null,"abstract":"<p>The RNA interference pathway mediated by microRNAs (miRNAs) is one of the methods to defend against viruses in insects. Recent studies showed that miRNAs participate in viral infection by binding to target genes to regulate their expression. Here, we found that the <i>Bombyx mori</i> miRNA, miR-6498-5p was down-regulated, whereas its predicted target gene <i>pyridoxal phosphate phosphatase PHOSPHO2</i> (<i>BmPLPP2</i>) was up-regulated upon <i>Bombyx mori</i> nucleopolyhedrovirus (BmNPV) infection. Both in vivo and in vitro experiments showed that miR-6498-5p targets <i>BmPLPP2</i> and suppresses its expression. Furthermore, we found miR-6498-5p inhibits BmNPV genomic DNA (gDNA) replication, whereas <i>BmPLPP2</i> promotes BmNPV gDNA replication. As a pyridoxal phosphate (PLP) phosphatase (PLPP), the overexpression of <i>BmPLPP2</i> results in a reduction of PLP content, whereas the knockdown of <i>BmPLPP2</i> leads to an increase in PLP content. In addition, exogenous PLP suppresses the replication of BmNPV gDNA; in contrast, the PLP inhibitor 4-deoxypyridoxine facilitates BmNPV gDNA replication. Taken together, we concluded that miR-6498-5p has a potential anti-BmNPV role by down-regulating <i>BmPLPP2</i> to modulate PLP content, but BmNPV induces miR-6498-5p down-regulation to promote its proliferation. Our findings provide valuable insights into the role of host miRNA in <i>B. mori</i>–BmNPV interaction. Furthermore, the identification of the antiviral molecule PLP offers a novel perspective on strategies for preventing and managing viral infection in sericulture.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 3","pages":"259-269"},"PeriodicalIF":2.6,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139712019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher B. Cunningham, Emily A. Shelby, Elizabeth C. McKinney, Alvin M. Simmons, Allen J. Moore, Patricia J. Moore
The function of DNA methylation in insects and the DNA methyltransferase (Dnmt) genes that influence methylation remains uncertain. We used RNA interference to reduce the gene expression of Dnmt1 within the whitefly Bemisia tabaci (Hemiptera:Aleyrodidae; Gennadius), a hemipteran species that relies on Dnmt1 for proper gametogenesis. We then used RNA-seq to test an a priori hypothesis that meiosis-related genetic pathways would be perturbed. We generally did not find an overall effect on meiosis-related pathways. However, we found that genes in the Wnt pathway, genes associated with the entry into meiosis in vertebrates, were differentially expressed. Our results are consistent with Dnmt1 knockdown influencing specific pathways and not causing general transcriptional response. This is a finding that is also seen with other insect species. We also characterised the methylome of B. tabaci and assessed the influence of Dnmt1 knockdown on cytosine methylation. This species has methylome characteristics comparable to other hemipterans regarding overall level, enrichment within gene bodies, and a bimodal distribution of methylated/non-methylated genes. Very little differential methylation was observed, and difference in methylation were not associated with differences in gene expression. The effect on Wnt presents an interesting new candidate pathway for future studies.
昆虫 DNA 甲基化的功能以及影响甲基化的 DNA 甲基转移酶(Dnmt)基因仍不确定。我们利用 RNA 干扰减少了烟粉虱(Hemiptera:Aleyrodidae; Gennadius)体内 Dnmt1 的基因表达。然后,我们使用 RNA-seq 对减数分裂相关遗传通路会受到干扰这一先验假设进行了检验。一般来说,我们没有发现减数分裂相关通路受到整体影响。但我们发现,Wnt 通路中的基因,即与脊椎动物进入减数分裂相关的基因,出现了差异表达。我们的结果与 Dnmt1 基因敲除影响特定通路而非引起一般转录反应的结果一致。这一发现在其他昆虫物种中也可以看到。我们还描述了 B. tabaci 的甲基组特征,并评估了 Dnmt1 敲除对胞嘧啶甲基化的影响。在整体水平、基因体内的富集程度以及甲基化/非甲基化基因的双峰分布方面,该物种的甲基组特征与其他半翅目昆虫相当。观察到的甲基化差异很小,甲基化差异与基因表达差异无关。对 Wnt 的影响为今后的研究提供了一个有趣的新候选途径。
{"title":"An association between Dnmt1 and Wnt in the production of oocytes in the whitefly Bemisia tabaci","authors":"Christopher B. Cunningham, Emily A. Shelby, Elizabeth C. McKinney, Alvin M. Simmons, Allen J. Moore, Patricia J. Moore","doi":"10.1111/imb.12893","DOIUrl":"10.1111/imb.12893","url":null,"abstract":"<p>The function of DNA methylation in insects and the DNA methyltransferase (<i>Dnmt</i>) genes that influence methylation remains uncertain. We used RNA interference to reduce the gene expression of <i>Dnmt1</i> within the whitefly <i>Bemisia tabaci (Hemiptera:Aleyrodidae; Gennadius)</i>, a hemipteran species that relies on <i>Dnmt1</i> for proper gametogenesis. We then used RNA-seq to test an <i>a priori</i> hypothesis that meiosis-related genetic pathways would be perturbed. We generally did not find an overall effect on meiosis-related pathways. However, we found that genes in the <i>Wnt</i> pathway, genes associated with the entry into meiosis in vertebrates, were differentially expressed. Our results are consistent with <i>Dnmt1</i> knockdown influencing specific pathways and not causing general transcriptional response. This is a finding that is also seen with other insect species. We also characterised the methylome of <i>B. tabaci</i> and assessed the influence of <i>Dnmt1</i> knockdown on cytosine methylation. This species has methylome characteristics comparable to other hemipterans regarding overall level, enrichment within gene bodies, and a bimodal distribution of methylated/non-methylated genes. Very little differential methylation was observed, and difference in methylation were not associated with differences in gene expression. The effect on <i>Wnt</i> presents an interesting new candidate pathway for future studies.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 5","pages":"467-480"},"PeriodicalIF":2.3,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12893","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139712018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including Drosophila. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, Ostrinia furnacalis. Injection of recombinant O. furnacalis GBP (OfGBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (IMD) and Dorsal. The level of OfGBP mRNA was upregulated after bacterial infection. Knockdown of OfGBP expression led to a decrease in IMD, Relish, MyD88 and Dorsal mRNA levels. OfGBP induced phenoloxidase activity and affected hemocyte behaviours in O. furnacalis larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.
{"title":"Pleiotropic immunoregulation by growth-blocking peptide in Ostrinia furnacalis","authors":"Dongchun Hu, Fuqiang Xu, Zupeng Gao, Kangkang Chen, Wenlong Guo, Zitian Wang, Shuzhong Li, Congjing Feng","doi":"10.1111/imb.12898","DOIUrl":"10.1111/imb.12898","url":null,"abstract":"<p>Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including <i>Drosophila</i>. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, <i>Ostrinia furnacalis</i>. Injection of recombinant <i>O. furnacalis</i> GBP (<i>Of</i>GBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (<i>IMD</i>) and <i>Dorsal</i>. The level of <i>Of</i>GBP mRNA was upregulated after bacterial infection. Knockdown of <i>Of</i>GBP expression led to a decrease in <i>IMD</i>, <i>Relish</i>, <i>MyD88</i> and <i>Dorsal</i> mRNA levels. <i>Of</i>GBP induced phenoloxidase activity and affected hemocyte behaviours in <i>O. furnacalis</i> larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 3","pages":"270-282"},"PeriodicalIF":2.6,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139702408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.
{"title":"Studying the role of Bombyx mori molybdenum cofactor sulfurase in Bombyx mori nucleopolyhedrovirus infection","authors":"Jun-li Lv, Wen-qing Lai, Yu-quan Gong, Kai-yi Zheng, Xiao-ying Zhang, Xue-yang Wang, Li-shang Dai, Mu-wang Li","doi":"10.1111/imb.12895","DOIUrl":"10.1111/imb.12895","url":null,"abstract":"<p>Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of <i>Bombyx mori MoCoS</i> in response to BmNPV remains unclear. In this study, <i>BmMoCoS</i> was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of <i>BmMoCoS</i> were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that <i>BmMoCoS</i> was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 3","pages":"246-258"},"PeriodicalIF":2.6,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139697307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agriculturally and economically important pest worldwide that has developed resistance to β-cypermethrin. Glutathione S-transferases (GSTs) have been reported to be involved in the detoxification of insecticides in insects. We have found that both ZcGSTd6 and ZcGSTd10 were up-regulated by β-cypermethrin induction in our previous study, so we aimed to explore their potential relationship with β-cypermethrin tolerance in this study. The heterologous expression of ZcGSTd6 and ZcGSTd10 in Escherichia coli showed significantly high activities against 1-chloro-2,4-dinitrobenzene (CDNB). The kinetic parameters of ZcGSTd6 and ZcGSTd10 were determined by Lineweaver–Burk. The Vmax and Km of ZcGSTd6 were 0.50 μmol/min·mg and 0.3 mM, respectively. The Vmax and Km of ZcGSTd10 were 1.82 μmol/min·mg and 0.53 mM. The 3D modelling and molecular docking results revealed that β-cypermethrin exhibited a stronger bounding to the active site SER-9 of ZcGSTd10. The sensitivity to β-cypermethrin was significantly increased by 18.73% and 27.21%, respectively, after the knockdown of ZcGSTd6 and ZcGSTd10 by using RNA interference. In addition, the inhibition of CDNB at 50% (IC50) and the inhibition constants (Ki) of β-cypermethrin against ZcGSTd10 were determined as 0.41 and 0.33 mM, respectively. The Ki and IC50 of β-cypermethrin against ZcSGTd6 were not analysed. These results suggested that ZcGSTd10 could be an essential regulator involved in the tolerance of Z. cucurbitae to β-cypermethrin.
{"title":"Suppressing the expression of glutathione S-transferase gene GSTd10 increases the sensitivity of Zeugodacus cucurbitae against β-cypermethrin","authors":"Xiao-Di Zhai, Shi-Heng Wang, Meng Ma, Deng Pan, Jin-Jun Wang, Dong Wei","doi":"10.1111/imb.12892","DOIUrl":"10.1111/imb.12892","url":null,"abstract":"<p><i>Zeugodacus cucurbitae</i> Coquillett (Diptera: Tephritidae) is an agriculturally and economically important pest worldwide that has developed resistance to <i>β</i>-cypermethrin. Glutathione <i>S</i>-transferases (GSTs) have been reported to be involved in the detoxification of insecticides in insects. We have found that both <i>ZcGSTd6</i> and <i>ZcGSTd10</i> were up-regulated by <i>β</i>-cypermethrin induction in our previous study, so we aimed to explore their potential relationship with <i>β</i>-cypermethrin tolerance in this study. The heterologous expression of ZcGSTd6 and ZcGSTd10 in <i>Escherichia coli</i> showed significantly high activities against 1-chloro-2,4-dinitrobenzene (CDNB). The kinetic parameters of ZcGSTd6 and ZcGSTd10 were determined by Lineweaver–Burk. The <i>V</i><sub>max</sub> and <i>K</i><sub>m</sub> of ZcGSTd6 were 0.50 μmol/min·mg and 0.3 mM, respectively. The <i>V</i><sub>max</sub> and <i>K</i><sub>m</sub> of ZcGSTd10 were 1.82 μmol/min·mg and 0.53 mM. The 3D modelling and molecular docking results revealed that <i>β</i>-cypermethrin exhibited a stronger bounding to the active site SER-9 of ZcGSTd10. The sensitivity to <i>β</i>-cypermethrin was significantly increased by 18.73% and 27.21%, respectively, after the knockdown of <i>ZcGSTd6</i> and <i>ZcGSTd10</i> by using RNA interference. In addition, the inhibition of CDNB at 50% (IC<sub>50</sub>) and the inhibition constants (<i>Ki</i>) of <i>β</i>-cypermethrin against ZcGSTd10 were determined as 0.41 and 0.33 mM, respectively. The <i>Ki</i> and IC<sub>50</sub> of <i>β</i>-cypermethrin against ZcSGTd6 were not analysed. These results suggested that <i>ZcGSTd10</i> could be an essential regulator involved in the tolerance of <i>Z. cucurbitae</i> to <i>β</i>-cypermethrin.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 3","pages":"218-227"},"PeriodicalIF":2.6,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The hAT family transposable element, hopper, was originally discovered as a defective 3120-bp full-length element in a wild-type strain of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), and subsequently a functional 3131-bp element, hopperBdwe, was isolated from a white eye mutant strain. The latter study showed that closely related elements exist in melonfly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae), a closely related subgenus, suggesting that hopper could have a widespread presence in the Bactrocera genus. To further understand the distribution of hopper within and beyond the B. dorsalis species complex, primer pairs from hopperBdwe and its adjacent genomic insertion site were used to survey the presence and relatedness of hopper in five species within the complex and four species beyond the complex. Based on sequence identity of a 1.94 kb internal nucleotide sequence, the closest relationships were with mutated elements from B. dorsalis s.s. and species synonymized with B. dorsalis including B. papayae, B. philippinensis and B. invadens, ranging in identity between 88.4% and 99.5%. Notably, Bactrocera carambolae (Drew & Hancock) (Diptera: Tephritidae), which is most closely related to B. dorsalis beyond the synonymized species, shared hopper identities of 97.3%–99.5%. Beyond the B. dorsalis complex, Z. cucurbitae,Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) and Bactrocera zonata (Saunders) (Diptera: Tephritidae) shared identities of 83.1%–97.1%, while hopper was absent from the Bactrocera oleae (Gmelin) (Diptera: Tephritidae) strain tested. While the functional autonomous hopperBdwe element was not detected in these species, another closely related hopper element isolated from a B. dorsalis genetic sexing strain has an uninterrupted transposase open reading frame. The discontinuous presence of hopper in the Bactrocera genus has implications for its use for genomic manipulation and understanding the phylogenetic relationship of these species.
hAT 家族转座元件 hopper 最初是在东方果蝇 Bactrocera dorsalis (Hendel) (双翅目:Tephritidae)的一个野生型品系中发现的,是一个有缺陷的 3120-bp 全长元件。后一项研究表明,在瓜蝇(Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae))这一密切相关的亚属中也存在密切相关的元件,这表明跳虫可能广泛存在于 Bactrocera 属中。为了进一步了解跳虫在 B. dorsalis 种群内外的分布情况,研究人员使用来自 hopperBdwe 及其邻近基因组插入位点的引物对调查了跳虫在该种群内 5 个物种和该种群外 4 个物种中的存在情况和亲缘关系。根据 1.94 kb 内部核苷酸序列的序列同一性,与 B. dorsalis s.s.和与 B. dorsalis 同名的物种(包括 B.papayae、B.philippinensis 和 B.invadens)的变异元件关系最密切,同一性在 88.4% 到 99.5% 之间。值得注意的是,Bactrocera carambolae(Drew & Hancock)(双翅目:Tephritidae)与 B. dorsalis 的亲缘关系最为密切,除同名物种外,其与 B. dorsalis 的同源性为 97.3%-99.5%。在 B. dorsalis 复合体之外,Z. cucurbitae、Bactrocera tryoni (Froggatt) (双翅目:栉孔蝇科)和 Bactrocera zonata (Saunders) (双翅目:栉孔蝇科)的同源性为 83.1%-97.1%,而在所测试的 Bactrocera oleae (Gmelin) (双翅目:栉孔蝇科)菌株中则没有跳虫。虽然在这些物种中没有检测到功能自主的 hopperBdwe 元件,但从 B. dorsalis 基因性别鉴定菌株中分离出的另一个密切相关的 hopper 元件具有不间断的转座酶开放阅读框。跳虫在Bactrocera属中的不连续存在对其在基因组操作中的应用以及了解这些物种的系统发育关系都有影响。
{"title":"The hAT family hopper transposon exists as highly similar yet discontinuous elements in the Bactrocera tephritid fly genus","authors":"Alfred M. Handler, Richard B. Furlong","doi":"10.1111/imb.12891","DOIUrl":"10.1111/imb.12891","url":null,"abstract":"<p>The <i>hAT</i> family transposable element, <i>hopper</i>, was originally discovered as a defective 3120-bp full-length element in a wild-type strain of the oriental fruit fly, <i>Bactrocera dorsalis</i> (Hendel) (Diptera: Tephritidae), and subsequently a functional 3131-bp element, <i>hopper</i><sup>Bdwe</sup>, was isolated from a <i>white eye</i> mutant strain. The latter study showed that closely related elements exist in melonfly, <i>Zeugodacus cucurbitae</i> (Coquillett) (Diptera: Tephritidae), a closely related subgenus, suggesting that <i>hopper</i> could have a widespread presence in the <i>Bactrocera</i> genus. To further understand the distribution of <i>hopper</i> within and beyond the <i>B. dorsalis</i> species complex, primer pairs from <i>hopper</i><sup>Bdwe</sup> and its adjacent genomic insertion site were used to survey the presence and relatedness of <i>hopper</i> in five species within the complex and four species beyond the complex. Based on sequence identity of a 1.94 kb internal nucleotide sequence, the closest relationships were with mutated elements from <i>B. dorsalis</i> s.s. and species synonymized with <i>B. dorsalis</i> including <i>B. papayae</i>, <i>B. philippinensis</i> and <i>B. invadens</i>, ranging in identity between 88.4% and 99.5%. Notably, <i>Bactrocera carambolae</i> (Drew & Hancock) (Diptera: Tephritidae), which is most closely related to <i>B. dorsalis</i> beyond the synonymized species, shared <i>hopper</i> identities of 97.3%–99.5%. Beyond the <i>B. dorsalis</i> complex, <i>Z. cucurbitae,</i> <i>Bactrocera tryoni</i> (Froggatt) (Diptera: Tephritidae) and <i>Bactrocera zonata</i> (Saunders) (Diptera: Tephritidae) shared identities of 83.1%–97.1%, while <i>hopper</i> was absent from the <i>Bactrocera oleae</i> (Gmelin) (Diptera: Tephritidae) strain tested. While the functional autonomous <i>hopper</i><sup>Bdwe</sup> element was not detected in these species, another closely related <i>hopper</i> element isolated from a <i>B. dorsalis</i> genetic sexing strain has an uninterrupted transposase open reading frame. The discontinuous presence of <i>hopper</i> in the <i>Bactrocera</i> genus has implications for its use for genomic manipulation and understanding the phylogenetic relationship of these species.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 3","pages":"185-194"},"PeriodicalIF":2.6,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}