Pub Date : 2024-11-16DOI: 10.1016/j.indcrop.2024.120014
Rodolpho R.C. Monteiro , F. Murilo T. de Luna , Diego Lomonaco , Roberto Fernandez-Lafuente , Rodrigo S. Vieira
The effect of the immobilization via interfacial activation on hydrophobic supports of lipase A from Candida antarctica (CALA) and Eversa Transform 2.0 (ETL) in the hydrolysis of residual coconut oil is herein explored. Firstly, some important process parameters (biocatalyst content, substrates ratio, reactor temperature and stirring) were evaluated using the Taguchi method for both free biocatalysts. For free ETL, it was possible to reach full hydrolysis after 6 h under optimized reaction conditions (9 wt% of ETL, 1:2 (oil/water, w/w), 50 °C and 180 rpm). For free CALA, reaching full hydrolysis was not possible under the same optimized reaction conditions, even after 24 h of reaction. Then, ETL and CALA were immobilized by interfacial activation on a methacrylate macroporous resin particles containing octadecyl groups. After reaction conditions optimization by the Taguchi method, immobilized ETL (ETL@C18) reached full hydrolysis under the same optimized reaction conditions of free ETL, but in only 3 h. Immobilized CALA (CALA@C18), reached full hydrolysis (>99 %) after 24 hours under optimized reaction conditions which was not possible employing free CALA (56 %). Finally, under optimized reaction conditions, ETL@C18 retained 85 % of its initial activity after 10 consecutive hydrolysis cycles, whereas CALA@C18 retained less than 50 % of its initial activity after 5 consecutive hydrolysis cycles.
{"title":"Improving the performance of lipases in the full hydrolysis of residual coconut oil by immobilization on hydrophobic supports","authors":"Rodolpho R.C. Monteiro , F. Murilo T. de Luna , Diego Lomonaco , Roberto Fernandez-Lafuente , Rodrigo S. Vieira","doi":"10.1016/j.indcrop.2024.120014","DOIUrl":"10.1016/j.indcrop.2024.120014","url":null,"abstract":"<div><div>The effect of the immobilization via interfacial activation on hydrophobic supports of lipase A from <em>Candida antarctica</em> (CALA) and Eversa Transform 2.0 (ETL) in the hydrolysis of residual coconut oil is herein explored. Firstly, some important process parameters (biocatalyst content, substrates ratio, reactor temperature and stirring) were evaluated using the Taguchi method for both free biocatalysts. For free ETL, it was possible to reach full hydrolysis after 6 h under optimized reaction conditions (9 wt% of ETL, 1:2 (oil/water, w/w), 50 °C and 180 rpm). For free CALA, reaching full hydrolysis was not possible under the same optimized reaction conditions, even after 24 h of reaction. Then, ETL and CALA were immobilized by interfacial activation on a methacrylate macroporous resin particles containing octadecyl groups. After reaction conditions optimization by the Taguchi method, immobilized ETL (ETL@C18) reached full hydrolysis under the same optimized reaction conditions of free ETL, but in only 3 h. Immobilized CALA (CALA@C18), reached full hydrolysis (>99 %) after 24 hours under optimized reaction conditions which was not possible employing free CALA (56 %). Finally, under optimized reaction conditions, ETL@C18 retained 85 % of its initial activity after 10 consecutive hydrolysis cycles, whereas CALA@C18 retained less than 50 % of its initial activity after 5 consecutive hydrolysis cycles.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120014"},"PeriodicalIF":5.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.indcrop.2024.120059
Estefanía Eras-Muñoz, Xavier Font, Teresa Gea
The sustainable production of sophorolipids (SLs) has promoted the use of alternative agricultural byproducts and residues as nutrient sources. Corn, sunflower, soybean, and rapeseed oilseed cakes have been studied as newer hydrophobic feedstocks for SL production through solid-state fermentation using the wild-type strain of Starmerella bombicola. Maximum sophorolipid production at 0.5-L bioreactors was found to be reached by corn cake (0.743 ± 0.038 gSL g−1Fati). HPLC analysis revealed that the composition of the hydrophobic substrate influences the profile and distribution of SL congeners. Emulsification and oil displacement tests were performed for the crude extracts showing that emulsification stability is influenced by SLs crude extract concentration. The best-performing oilseed cakes were scaled-up in a 22-L bioreactor demonstrating that the increase in scale by 44 times-maintained SLs production. The temperature influence was discussed, and the reproducibility of the method was confirmed. Outcomes highlighted a linear relation between initial fat concentration and SLs crude extract production.
{"title":"A comparative study of oilseed cakes as hydrophobic feedstocks for sophorolipid production by solid-state fermentation","authors":"Estefanía Eras-Muñoz, Xavier Font, Teresa Gea","doi":"10.1016/j.indcrop.2024.120059","DOIUrl":"10.1016/j.indcrop.2024.120059","url":null,"abstract":"<div><div>The sustainable production of sophorolipids (SLs) has promoted the use of alternative agricultural byproducts and residues as nutrient sources. Corn, sunflower, soybean, and rapeseed oilseed cakes have been studied as newer hydrophobic feedstocks for SL production through solid-state fermentation using the wild-type strain of <em>Starmerella bombicola</em>. Maximum sophorolipid production at 0.5-L bioreactors was found to be reached by corn cake (0.743 ± 0.038 gSL g<sup>−1</sup>Fat<sub>i</sub>). HPLC analysis revealed that the composition of the hydrophobic substrate influences the profile and distribution of SL congeners. Emulsification and oil displacement tests were performed for the crude extracts showing that emulsification stability is influenced by SLs crude extract concentration. The best-performing oilseed cakes were scaled-up in a 22-L bioreactor demonstrating that the increase in scale by 44 times-maintained SLs production. The temperature influence was discussed, and the reproducibility of the method was confirmed. Outcomes highlighted a linear relation between initial fat concentration and SLs crude extract production.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120059"},"PeriodicalIF":5.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.indcrop.2024.120038
Chuhang Bai , Xin Yuan , Yihong Cao , Ziyun Hao , Liping Pan , Jing Peng , Nan Liu , Shiguo Chen
Cotton fabric (CF) is closely related to human life, while its inherent porous structure makes it unable to effectively shield the strong ultraviolet (UV) irradiation, and its superior hygroscopicity provides a favorable environment for microbes, resulting in microbes’ proliferation on CF. The UV irradiation and microbes’ proliferation affect the service life of CF and harm seriously human health. Therefore, developing antimicrobial and UV-blocking fabrics is for the well-being of human. Herein, a novel reactive monochlorotriazine terminated quaternary ammonium salt and benzophenone derivative (BCQ) was synthesized to covalently bind onto CF to fabricate an antimicrobial and UV-blocking CF without compromising its intrinsic physicochemical properties and biocompatibility. The antimicrobial rates of CF finished with 10.0 mg/mL BCQ were higher than 99.99 % against both E.coli and S.aureus, and its antimicrobial rates still were greater than 96 % even after 50 washes, while the cell survival rate was more than 99.5 %. Additionally, the UVA and UVB values were less than 0.5 %, and the UPF value CF finished with 50.0 mg/mL BCQ were up to 210.92. Therefore, we provide a strategy for developing an antimicrobial and UV-blocking CF.
{"title":"Perdurable antimicrobial and ultraviolet-blocking cotton fabric by one-step eco-friendly strategy","authors":"Chuhang Bai , Xin Yuan , Yihong Cao , Ziyun Hao , Liping Pan , Jing Peng , Nan Liu , Shiguo Chen","doi":"10.1016/j.indcrop.2024.120038","DOIUrl":"10.1016/j.indcrop.2024.120038","url":null,"abstract":"<div><div>Cotton fabric (CF) is closely related to human life, while its inherent porous structure makes it unable to effectively shield the strong ultraviolet (UV) irradiation, and its superior hygroscopicity provides a favorable environment for microbes, resulting in microbes’ proliferation on CF. The UV irradiation and microbes’ proliferation affect the service life of CF and harm seriously human health. Therefore, developing antimicrobial and UV-blocking fabrics is for the well-being of human. Herein, a novel reactive monochlorotriazine terminated quaternary ammonium salt and benzophenone derivative (BCQ) was synthesized to covalently bind onto CF to fabricate an antimicrobial and UV-blocking CF without compromising its intrinsic physicochemical properties and biocompatibility. The antimicrobial rates of CF finished with 10.0 mg/mL BCQ were higher than 99.99 % against both <em>E.coli</em> and <em>S.aureus</em>, and its antimicrobial rates still were greater than 96 % even after 50 washes, while the cell survival rate was more than 99.5 %. Additionally, the UVA and UVB values were less than 0.5 %, and the UPF value CF finished with 50.0 mg/mL BCQ were up to 210.92. Therefore, we provide a strategy for developing an antimicrobial and UV-blocking CF.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"223 ","pages":"Article 120038"},"PeriodicalIF":5.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.indcrop.2024.120056
Guiqiong Li , Hongling Zhang , Pengyu Zhao , Qining Ran , Zhengyang Zhong , Hongquan Wu , Min Jiang , Yongsheng Zhang , Di Yang , Huaishan Gu , Yuanjian Liu , Yinling Su , Shijiang Li , Qing Gao , Yingchun Tian , Changling Zhao
Starch is the compound with the highest content in Panax notoginseng taproots, determining the taproot yield. Over 400 years of experience have revealed that Drumstick-forming characterizes the taproot yield increase, yet the increase connotation and its starch basis remain unclear. In this study, the weighing and drainage methods together with paraffin section and kit-based spectrophotometry indicted the Drumstick-forming characterized the extremely significant increases in the fresh weight (FW) per plant and starch granule density (SGD), the significant increases in the dry weight (DW), volume, amylose content (AC) and AC/amylopectin contents (APC) per plant, the significant decrease in the drying rate (DR) per plant and the non-significant increases in the APC, total starch content (TSC) and trehalose content (TC) per plant of the 2-year-old taproots, and the extremely significant increases in the FW, DW and volume per plant, the significant increase in the TC per plant, the extremely significant decrease in the SGD, the significant decrease in the AC, APC and TSC per plant and the non-significant decrease in the AC/APC and DR per plant of the 3-year-old taproots. Meanwhile, RNA-seq, phylogenetic analysis and quantitative real-time PCR showed that, due to the Drumstick-forming, the AC was mainly determined by the Pno04G003646 (phosphofructokinase gene, PFK), the APC mainly by the Pno09G001900 (invertase gene, INV) and Pno01G006431 (starch branching enzyme gene, SBE), the TSC mainly by the Pno01G006445 (fructose-bisphosphate aldolase gene, FBA), Pno01G006442 (FBA), Pno09G001900 (INV) and Pno01G006431 (SBE), and the AC, TSC and AC/APC were negatively regulated by the Pno06G005621 and Pno03G015691 both belonging to DNA binding with one finger. Altogether, this study clarifies the starch synthesis-dependent characterization of the Drumstick-forming on the increase of P. notoginseng taproot yields, underlying the optimization of the breeding and cultivation measures of P. notoginseng via inducing the Drumstick-forming.
{"title":"Transcriptome-based dissection of starch synthesis-dependent characterization of Drumstick-forming on yield increase of Panax notoginseng taproots","authors":"Guiqiong Li , Hongling Zhang , Pengyu Zhao , Qining Ran , Zhengyang Zhong , Hongquan Wu , Min Jiang , Yongsheng Zhang , Di Yang , Huaishan Gu , Yuanjian Liu , Yinling Su , Shijiang Li , Qing Gao , Yingchun Tian , Changling Zhao","doi":"10.1016/j.indcrop.2024.120056","DOIUrl":"10.1016/j.indcrop.2024.120056","url":null,"abstract":"<div><div>Starch is the compound with the highest content in <em>Panax notoginseng</em> taproots, determining the taproot yield. Over 400 years of experience have revealed that Drumstick-forming characterizes the taproot yield increase, yet the increase connotation and its starch basis remain unclear. In this study, the weighing and drainage methods together with paraffin section and kit-based spectrophotometry indicted the Drumstick-forming characterized the extremely significant increases in the fresh weight (FW) per plant and starch granule density (SGD), the significant increases in the dry weight (DW), volume, amylose content (AC) and AC/amylopectin contents (APC) per plant, the significant decrease in the drying rate (DR) per plant and the non-significant increases in the APC, total starch content (TSC) and trehalose content (TC) per plant of the 2-year-old taproots, and the extremely significant increases in the FW, DW and volume per plant, the significant increase in the TC per plant, the extremely significant decrease in the SGD, the significant decrease in the AC, APC and TSC per plant and the non-significant decrease in the AC/APC and DR per plant of the 3-year-old taproots. Meanwhile, RNA-seq, phylogenetic analysis and quantitative real-time PCR showed that, due to the Drumstick-forming, the AC was mainly determined by the <em>Pno04G003646</em> (phosphofructokinase gene, <em>PFK</em>), the APC mainly by the <em>Pno09G001900</em> (invertase gene, <em>INV</em>) and <em>Pno01G006431</em> (starch branching enzyme gene, <em>SBE</em>), the TSC mainly by the <em>Pno01G006445</em> (fructose-bisphosphate aldolase gene, <em>FBA</em>), <em>Pno01G006442</em> (<em>FBA</em>), <em>Pno09G001900</em> (<em>INV</em>) and <em>Pno01G006431</em> (<em>SBE</em>), and the AC, TSC and AC/APC were negatively regulated by the Pno06G005621 and Pno03G015691 both belonging to DNA binding with one finger. Altogether, this study clarifies the starch synthesis-dependent characterization of the Drumstick-forming on the increase of <em>P. notoginseng</em> taproot yields, underlying the optimization of the breeding and cultivation measures of <em>P. notoginseng</em> via inducing the Drumstick-forming<em>.</em></div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120056"},"PeriodicalIF":5.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Improving the toughness of epoxy resin (EP) while maintaining its strength is still considered a huge challenge. Herein, a novel bio-based curing agent, PA–DAD, has successfully been developed for EP that provides both mechanical reinforcement and flame retardancy. This agent was prepared via a straightforward neutralizing process between phytic acid (PA) and 1,10-diaminodecane (DAD). A series of bio-based curing agents labeled PA1–DAD6, PA1–DAD9, and PA1–DAD12 were produced by adjusting the PA and DAD stoichiometric ratio. During the curing process, PA–DAD dissociates into PA and DAD, PA functions as an ionic cross-linking site within the EP structure. This considerably enhances the mechanical properties of the EP compared with using DAD alone as a curing agent. As a consequence, the tensile, flexural, and the impact strength values of EP/5 % PA1–DAD6 enhanced by 103 %, 70 %, and 168 %, respectively, compared with EP/5 % DAD at a 5 wt% addition. Additionally, the tensile and flexural toughness values of EP/5 % PA1–DAD6 were 1250 % and 649 % higher compared to those of EP/5 % DAD, respectively, demonstrating the exceptional toughening effect of PA–DAD on EP. Furthermore, the flame retardancy of EP/PA–DAD improved because of the high P content in PA–DAD. Compared with EP/5 % DAD, EP/5 % PA1–DAD6 shown decreases of 10.7 % in peak heat release rate, 8.4 % in total heat release, and 13.6 % in total smoke production. The straightforward fabrication process, exceptional mechanical enhancement, and use of sustainable bio-based raw materials make PA–DAD highly suitable for large-scale production of advanced EP materials.
在保持环氧树脂(EP)强度的同时提高其韧性仍然是一项巨大的挑战。在此,我们成功开发了一种新型生物基固化剂 PA-DAD,用于 EP,该固化剂同时具有机械增强和阻燃性能。这种固化剂是通过植酸(PA)和 1,10-二氨基癸烷(DAD)之间的直接中和过程制备而成的。通过调整 PA 和 DAD 的化学计量比,制备出一系列生物基固化剂,分别标记为 PA1-DAD6、PA1-DAD9 和 PA1-DAD12。在固化过程中,PA-DAD 解离成 PA 和 DAD,PA 在 EP 结构中起到离子交联位点的作用。与单独使用 DAD 作为固化剂相比,这大大提高了 EP 的机械性能。因此,与添加量为 5 wt% 的 EP/5 % DAD 相比,EP/5 % PA1-DAD6 的拉伸、弯曲和冲击强度值分别提高了 103%、70% 和 168%。此外,与 EP/5 % DAD 相比,EP/5 % PA1-DAD6 的拉伸韧性和弯曲韧性值分别提高了 1250 % 和 649 %,这表明 PA-DAD 对 EP 具有优异的增韧效果。此外,由于 PA-DAD 中的 P 含量高,EP/PA-DAD 的阻燃性也得到了改善。与 EP/5 % DAD 相比,EP/5 % PA1-DAD6 的峰值放热率降低了 10.7%,总放热率降低了 8.4%,总产烟量降低了 13.6%。PA-DAD 的制造工艺简单、机械性能优异,而且使用了可持续的生物基原材料,因此非常适合大规模生产先进的 EP 材料。
{"title":"Bio-based curing agent for epoxy resins: Simultaneously improved toughness, strength, and flame retardancy","authors":"Xingwei He, Yupeng Xu, Lina Liu, Shenyuan Fu, Gaobo Lou","doi":"10.1016/j.indcrop.2024.120028","DOIUrl":"10.1016/j.indcrop.2024.120028","url":null,"abstract":"<div><div>Improving the toughness of epoxy resin (EP) while maintaining its strength is still considered a huge challenge. Herein, a novel bio-based curing agent, PA–DAD, has successfully been developed for EP that provides both mechanical reinforcement and flame retardancy. This agent was prepared via a straightforward neutralizing process between phytic acid (PA) and 1,10-diaminodecane (DAD). A series of bio-based curing agents labeled PA<sub>1</sub>–DAD<sub>6</sub>, PA<sub>1</sub>–DAD<sub>9</sub>, and PA<sub>1</sub>–DAD<sub>12</sub> were produced by adjusting the PA and DAD stoichiometric ratio. During the curing process, PA–DAD dissociates into PA and DAD, PA functions as an ionic cross-linking site within the EP structure. This considerably enhances the mechanical properties of the EP compared with using DAD alone as a curing agent. As a consequence, the tensile, flexural, and the impact strength values of EP/5 % PA<sub>1</sub>–DAD<sub>6</sub> enhanced by 103 %, 70 %, and 168 %, respectively, compared with EP/5 % DAD at a 5 wt% addition. Additionally, the tensile and flexural toughness values of EP/5 % PA<sub>1</sub>–DAD<sub>6</sub> were 1250 % and 649 % higher compared to those of EP/5 % DAD, respectively, demonstrating the exceptional toughening effect of PA–DAD on EP. Furthermore, the flame retardancy of EP/PA–DAD improved because of the high P content in PA–DAD. Compared with EP/5 % DAD, EP/5 % PA<sub>1</sub>–DAD<sub>6</sub> shown decreases of 10.7 % in peak heat release rate, 8.4 % in total heat release, and 13.6 % in total smoke production. The straightforward fabrication process, exceptional mechanical enhancement, and use of sustainable bio-based raw materials make PA–DAD highly suitable for large-scale production of advanced EP materials.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120028"},"PeriodicalIF":5.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herein, biodegradable polylactide (PLA) foams were prepared by supercritical CO2. To address the foaming challenges posed caused by the low crystallization rate and the weak melt strength of PLA, the blending of PLA and poly(butyleneadipate-co-terephthalate) (PBAT) was adopted in this work, the diphenylmethane diisocyanate (MDI) was utilized to boost the compatibility and rheological features of the PLA/PBAT combination. The effects of MDI and PBAT on the crystallization and rheological of the blends were studied. In PLA/PBAT foam, the density prepared was adjustable from 0.02 to 0.025 g/cm3, and the heat-conductivity was a minimum of 0.028 W/(m·K). In addition, the effect of PBAT on PLA cushioning performance was studied, the PLA/PBAT foam prepared has good mechanical properties, which can be used for cushioning packaging and heat insulation. The hardness of the PLA/PBAT blend foam slowly reduced as the PBAT increased, and the elasticity gradually increased. Notably, with 10 phr of PBAT, the compressive strength of the blend foam at 25 ℃ and 60 ℃ was 57 KPa and 55 KPa, respectively. This work broadens the application prospect of PLA and has a positive impact on promoting the high-value utilization of biobased polymers.
{"title":"Lightweight and insulation polylactide/poly(butyleneadipate-co-terephthalate) foam with good cushioning performance prepared by supercritical CO2","authors":"Chenxi Sun, Zhen Yu, Lijiang Jia, Xin Zhang, Yingjie Zhao, Zhenxiu Zhang","doi":"10.1016/j.indcrop.2024.120067","DOIUrl":"10.1016/j.indcrop.2024.120067","url":null,"abstract":"<div><div>Herein, biodegradable polylactide (PLA) foams were prepared by supercritical CO<sub>2</sub>. To address the foaming challenges posed caused by the low crystallization rate and the weak melt strength of PLA, the blending of PLA and poly(butyleneadipate-co-terephthalate) (PBAT) was adopted in this work, the diphenylmethane diisocyanate (MDI) was utilized to boost the compatibility and rheological features of the PLA/PBAT combination. The effects of MDI and PBAT on the crystallization and rheological of the blends were studied. In PLA/PBAT foam, the density prepared was adjustable from 0.02 to 0.025 g/cm<sup>3</sup>, and the heat-conductivity was a minimum of 0.028 W/(m·K). In addition, the effect of PBAT on PLA cushioning performance was studied, the PLA/PBAT foam prepared has good mechanical properties, which can be used for cushioning packaging and heat insulation. The hardness of the PLA/PBAT blend foam slowly reduced as the PBAT increased, and the elasticity gradually increased. Notably, with 10 phr of PBAT, the compressive strength of the blend foam at 25 ℃ and 60 ℃ was 57 KPa and 55 KPa, respectively. This work broadens the application prospect of PLA and has a positive impact on promoting the high-value utilization of biobased polymers.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"223 ","pages":"Article 120067"},"PeriodicalIF":5.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellulose nanocrystal (CNC) fillers have gained attention in research and industrial applications owing to their excellent properties and environmental bias. They can be added to natural rubber (NR) compounds to enhance properties such as the modulus of elasticity. CNCs can be extracted by different acid methods that promote singular features in interfacial adhesion, according to the type of acid used. This study addresses the feasibility of using cellulose nanoparticles in vulcanized NR composites. For this purpose, two different hydrolysis procedures using sulfuric acid and the less aggressive phosphoric acid were performed. These nanoparticles were then added to different amounts of NR compound. The effects of the CNCs on the vulcanization of the NR compound were evidenced by the formation of a zinc-cellulose-rubber complex, which reduced the optimal vulcanization time and increased the NR compound cure rate, particularly for the samples treated with phosphoric acid. In addition, the formation of this complex structure affected the morphology and mechanical properties of the composites. In particular, the tensile strength, elongation at break, and modulus at 300 % of the composites with nanocellulose treated with phosphoric acid increased by 90 %, 16 %, and 51 %, respectively, compared to the NR compound. Furthermore, the higher aspect ratio of the nanocellulose particles, mainly treated with phosphoric acid, favored the filler-matrix adhesion, making them a promising alternative to enhance the mechanical properties of NR compounds.
纤维素纳米晶(CNC)填料因其优异的性能和环保特性在研究和工业应用中备受关注。它们可添加到天然橡胶(NR)化合物中,以增强弹性模量等性能。根据所使用酸的类型,可通过不同的酸方法提取 CNC,从而促进界面粘附的奇异特征。本研究探讨了在硫化 NR 复合材料中使用纤维素纳米颗粒的可行性。为此,使用硫酸和侵蚀性较弱的磷酸进行了两种不同的水解程序。然后将这些纳米颗粒添加到不同数量的 NR 复合物中。锌-纤维素-橡胶复合物的形成证明了 CNC 对 NR 化合物硫化的影响,该复合物缩短了最佳硫化时间,提高了 NR 化合物的固化率,尤其是在使用磷酸处理的样品中。此外,这种复合结构的形成还影响了复合材料的形态和机械性能。与 NR 复合物相比,经磷酸处理的纳米纤维素复合材料的拉伸强度、断裂伸长率和 300% 时的模量分别提高了 90%、16% 和 51%。此外,主要经磷酸处理的纳米纤维素颗粒的长径比更高,有利于填料与基质的粘附,使其成为增强 NR 复合物机械性能的一种有前途的替代品。
{"title":"Nano cellulose-crystals: Isolation and their promising application as reinforcement in vulcanized natural rubber compounds","authors":"Flavia Letícia Silva , Carla Almeda Correia , Letícia Motta Oliveira , Hélio Ribeiro , Ticiane Sanches Valera","doi":"10.1016/j.indcrop.2024.120023","DOIUrl":"10.1016/j.indcrop.2024.120023","url":null,"abstract":"<div><div>Cellulose nanocrystal (CNC) fillers have gained attention in research and industrial applications owing to their excellent properties and environmental bias. They can be added to natural rubber (NR) compounds to enhance properties such as the modulus of elasticity. CNCs can be extracted by different acid methods that promote singular features in interfacial adhesion, according to the type of acid used. This study addresses the feasibility of using cellulose nanoparticles in vulcanized NR composites. For this purpose, two different hydrolysis procedures using sulfuric acid and the less aggressive phosphoric acid were performed. These nanoparticles were then added to different amounts of NR compound. The effects of the CNCs on the vulcanization of the NR compound were evidenced by the formation of a zinc-cellulose-rubber complex, which reduced the optimal vulcanization time and increased the NR compound cure rate, particularly for the samples treated with phosphoric acid. In addition, the formation of this complex structure affected the morphology and mechanical properties of the composites. In particular, the tensile strength, elongation at break, and modulus at 300 % of the composites with nanocellulose treated with phosphoric acid increased by 90 %, 16 %, and 51 %, respectively, compared to the NR compound. Furthermore, the higher aspect ratio of the nanocellulose particles, mainly treated with phosphoric acid, favored the filler-matrix adhesion, making them a promising alternative to enhance the mechanical properties of NR compounds.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120023"},"PeriodicalIF":5.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The research was aimed to evaluate seed samples of altogether 29 neem genotypes selected from various agro-ecological regions across India, focusing on their morphological and biochemical traits. Neem seeds of the selected genotypes underwent a comprehensive seed morphological evaluation encompassing seed length (SL), seed width (SW), 100-seed weight (SWT), and seed-kernel ratio (SKR). Furthermore, seeds were subjected to biochemical analyses to determine their oil content (OC) and azadirachtin content (AC). Significant genotypic variations were observed, with high heritability and genetic advance for traits like SWT and AC, signifying a strong genetic influence. Correlation and path coefficient analyses indicated that SW and AC positively influenced OC, while SWT showed a negative direct effect. Genetic divergence analysis categorized the genotypes into five clusters, highlighting substantial diversity. These findings accentuate the potential for selecting superior neem genotypes for breeding programs intended at enhancing fatty oil and azadirachtin production thereby contributing to sustainable agricultural practices and neem-based industries.
该研究旨在评估从印度不同农业生态区域选取的共 29 个楝树基因型的种子样本,重点关注其形态和生化性状。对所选基因型的楝树种子进行了全面的种子形态评估,包括种子长度(SL)、种子宽度(SW)、100 粒种子重量(SWT)和种仁比(SKR)。此外,还对种子进行了生化分析,以确定其油含量(OC)和氮芥含量(AC)。在 SWT 和 AC 等性状上,观察到了显著的基因型变异,遗传率和遗传进展较高,表明遗传影响很大。相关性和路径系数分析表明,SW 和 AC 对 OC 有正向影响,而 SWT 则有负向直接影响。遗传差异分析将基因型分为五个群组,突出显示了巨大的多样性。这些发现凸显了为育种计划选择楝树优良基因型的潜力,育种计划旨在提高脂肪油和杜鹃素的产量,从而促进可持续农业实践和以楝树为基础的产业。
{"title":"Assessment of seed and biochemical traits in neem germplasm for sustainable agriculture and industrial applications","authors":"Rimpee Garg , Anjali Bhatt , Ashok Kumar , Y.C. Tripathi , Rama Kant","doi":"10.1016/j.indcrop.2024.120018","DOIUrl":"10.1016/j.indcrop.2024.120018","url":null,"abstract":"<div><div>The research was aimed to evaluate seed samples of altogether 29 neem genotypes selected from various agro-ecological regions across India, focusing on their morphological and biochemical traits. Neem seeds of the selected genotypes underwent a comprehensive seed morphological evaluation encompassing seed length (SL), seed width (SW), 100-seed weight (SWT), and seed-kernel ratio (SKR). Furthermore, seeds were subjected to biochemical analyses to determine their oil content (OC) and azadirachtin content (AC). Significant genotypic variations were observed, with high heritability and genetic advance for traits like SWT and AC, signifying a strong genetic influence. Correlation and path coefficient analyses indicated that SW and AC positively influenced OC, while SWT showed a negative direct effect. Genetic divergence analysis categorized the genotypes into five clusters, highlighting substantial diversity. These findings accentuate the potential for selecting superior neem genotypes for breeding programs intended at enhancing fatty oil and azadirachtin production thereby contributing to sustainable agricultural practices and neem-based industries.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120018"},"PeriodicalIF":5.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.indcrop.2024.120073
Xuan Lan , Feng Zhen , Quanguo Zhang , Hongru Li , Zhiyun Zhang , Bin Qu , Yuxin Wang
Marine fouling caused major economic losses and has been a global challenge on environment protection. Currently, photocatalytic played an important role in dealing with sea pollution, enhancing the ability of resisting the bacteria and algae effectively. Rice straw biogas residue biochar with the natural in-situ nitrogen functional group has been widely utilized in the field of photocatalytic. The nitrogen functional group could effectively improve the photogenerated carrier transport rate. In addition, Cu2O as a typical photocatalyst could boost the photocatalytic ability, improving the performance of photocatalytic antifouling. In this work, the rice straw biogas residue biochar and Cu2O composited material (BRC) was synthesized by hydrothermal treatment and utilized in the field of photocatalytic and pollution removal. The natural nitrogen-containing lignocellulosic biochar was carbonized from rice straw biogas residue after anaerobic digestion and hydrothermal treatments. The BRC could impede the electron-hole complexation and continuously and efficiently generate reactive oxygen species (ROS), possessing an efficient photo-utilization rate. The BRC could exhibit excellent photocatalytic antifouling performance, with an antimicrobial rate of more than 95 %, and Chlorella adhesion density reduced by 94 %. In addition, BRC not only realized the resourceful utilization of agricultural waste, but also had a good prospect for the practical application of marine antifouling.
{"title":"Characterizations of high nitrogen-doped rice straw biogas residue biochars and their photocatalytic antifouling activity","authors":"Xuan Lan , Feng Zhen , Quanguo Zhang , Hongru Li , Zhiyun Zhang , Bin Qu , Yuxin Wang","doi":"10.1016/j.indcrop.2024.120073","DOIUrl":"10.1016/j.indcrop.2024.120073","url":null,"abstract":"<div><div>Marine fouling caused major economic losses and has been a global challenge on environment protection. Currently, photocatalytic played an important role in dealing with sea pollution, enhancing the ability of resisting the bacteria and algae effectively. Rice straw biogas residue biochar with the natural in-situ nitrogen functional group has been widely utilized in the field of photocatalytic. The nitrogen functional group could effectively improve the photogenerated carrier transport rate. In addition, Cu<sub>2</sub>O as a typical photocatalyst could boost the photocatalytic ability, improving the performance of photocatalytic antifouling. In this work, the rice straw biogas residue biochar and Cu<sub>2</sub>O composited material (BRC) was synthesized by hydrothermal treatment and utilized in the field of photocatalytic and pollution removal. The natural nitrogen-containing lignocellulosic biochar was carbonized from rice straw biogas residue after anaerobic digestion and hydrothermal treatments. The BRC could impede the electron-hole complexation and continuously and efficiently generate reactive oxygen species (ROS), possessing an efficient photo-utilization rate. The BRC could exhibit excellent photocatalytic antifouling performance, with an antimicrobial rate of more than 95 %, and Chlorella adhesion density reduced by 94 %. In addition, BRC not only realized the resourceful utilization of agricultural waste, but also had a good prospect for the practical application of marine antifouling.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120073"},"PeriodicalIF":5.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The research delves into the effects of dielectric barrier discharge air plasma on the antibacterial properties of Ocimum sanctum and Camellia sinensis leaf extract-coated corn fabric. Plasma treatment improved corn fabric hydrophilicity by activating the binding of hydrophilic functional groups on the fabric surface. XPS analysis showed increased O/C ratio and -COOH, -CO functional groups post-treatment. FTIR analysis revealed the reduction of lignin and other non-cellulosic impurities. Plasma treatment enhanced the fabric's surface properties, allowing for better adhesion and uniform coating of the bioactive extracts. Antibacterial efficacy was tested against the two most common disease-causing bacteria, Escherichia coli and Staphylococcus aureus, and was confirmed through qualitative and quantitative antimicrobial tests. SEM analysis showed reduced bacterial content on plasma-treated fibres. The antimicrobial finish's durability was assessed after five laundry cycles. The results indicated that incorporating plant extracts into plasma-treated corn fabric provided long-lasting and effective antibacterial strength. A proposed reaction mechanism suggests interactions between the plasma-treated fabric, plant actives and binding agent. This study highlights the synergistic effects of plasma treatment and natural extracts in producing sustainable and bioactive fabric materials with potential applications in medical and healthcare settings.
{"title":"Synergistic surface treatment of corn fabric using Dielectric Barrier Discharge plasma and plant extracts for enhancing antibacterial performance","authors":"Mumal Singh , Mona Vajpayee , Lalita Ledwani , Sudhir Kumar Nema","doi":"10.1016/j.indcrop.2024.120029","DOIUrl":"10.1016/j.indcrop.2024.120029","url":null,"abstract":"<div><div>The research delves into the effects of dielectric barrier discharge air plasma on the antibacterial properties of <em>Ocimum sanctum</em> and <em>Camellia sinensis</em> leaf extract-coated corn fabric. Plasma treatment improved corn fabric hydrophilicity by activating the binding of hydrophilic functional groups on the fabric surface. XPS analysis showed increased O/C ratio and -COOH, -CO functional groups post-treatment. FTIR analysis revealed the reduction of lignin and other non-cellulosic impurities. Plasma treatment enhanced the fabric's surface properties, allowing for better adhesion and uniform coating of the bioactive extracts. Antibacterial efficacy was tested against the two most common disease-causing bacteria<em>, Escherichia coli and Staphylococcus aureus,</em> and was confirmed through qualitative and quantitative antimicrobial tests. SEM analysis showed reduced bacterial content on plasma-treated fibres. The antimicrobial finish's durability was assessed after five laundry cycles. The results indicated that incorporating plant extracts into plasma-treated corn fabric provided long-lasting and effective antibacterial strength. A proposed reaction mechanism suggests interactions between the plasma-treated fabric, plant actives and binding agent. This study highlights the synergistic effects of plasma treatment and natural extracts in producing sustainable and bioactive fabric materials with potential applications in medical and healthcare settings.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120029"},"PeriodicalIF":5.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}