Pub Date : 2023-01-01DOI: 10.25165/j.ijabe.20231604.7599
Mehmet Fırat Baran, Cihan Demir, Ahmet Konuralp Eliçin, Osman Gökdoğan
This study has been conducted with the purpose of determining energy use efficiency and greenhouse gas emissions of garlic cultivation during the 2020-2021 cultivation season in Adıyaman province of Turkey. Questionnaires, observations and field works were performed in 134 garlic farms in the region through simple random method. In garlic cultivation, energy input was calculated as 32103.20 MJ/hm2 and energy output was calculated as 30096 MJ/hm2. With regards to the three highest inputs in garlic production, 46.66% of the energy inputs consisted of chemical fertilizers energy (14979.26 MJ/hm2), 11.29% consisted of farmyard manure energy (3625.71 MJ/hm2) and 10.48% consisted of human labour energy (3363.36 MJ/hm2). Energy use efficiency, specific energy, energy productivity and net energy in garlic cultivation were calculated as 0.94, 1.71 MJ/kg, 0.59 kg/MJ, and −2007.20 MJ/hm2, respectively. The total energy input consumed in garlic cultivation was classified as 27.19% direct energy, 72.81% indirect energy, 35.17% renewable energy and 64.87% non-renewable energy. Total GHG emissions and GHG ratio were calculated as 8636.60 kgCO2-eq/hm2 and 0.46 kgCO2-eq/kg, respectively. Keywords: energy use efficiency, garlic, greenhouse gas emissions, specific energy, Turkey DOI: 10.25165/j.ijabe.20231604.7599 Citation: Baran M F, Demir C, Eliçin A K, Gökdoğan O. Energy use efficiency and greenhouse gas emissions (GHG) analysis of garlic cultivation in Turkey. Int J Agric & Biol Eng, 2023; 16(4): 63-67.
本研究旨在确定土耳其Adıyaman省2020-2021种植季大蒜种植的能源利用效率和温室气体排放。采用简单随机法对该地区134个大蒜养殖场进行问卷调查、观察和实地调查。在大蒜栽培中,能量输入计算为32103.20 MJ/hm2,能量输出计算为30096 MJ/hm2。在大蒜生产的3大能量投入中,化肥能(14979.26 MJ/hm2)占46.66%,农家肥能(3625.71 MJ/hm2)占11.29%,人力能(3363.36 MJ/hm2)占10.48%。大蒜栽培的能量利用效率、比能、能量生产力和净能分别为0.94、1.71、0.59和- 2007.20 MJ/hm2。大蒜种植消耗的总能源投入中,直接能源占27.19%,间接能源占72.81%,可再生能源占35.17%,不可再生能源占64.87%。温室气体排放总量和温室气体比值分别为8636.60 kgCO2-eq/hm2和0.46 kgCO2-eq/kg。关键词:能源利用效率,大蒜,温室气体排放,比能,土耳其DOI: 10.25165/ j.j ijabe.20231604.7599引文来源:Baran M F, Demir C, eliin A K, Gökdoğan O.土耳其大蒜种植能源利用效率和温室气体排放(GHG)分析。农业与生物工程学报,2023;16(4): 63 - 67。
{"title":"Energy use efficiency and greenhouse gas emissions (GHG) analysis of garlic cultivation in Turkey","authors":"Mehmet Fırat Baran, Cihan Demir, Ahmet Konuralp Eliçin, Osman Gökdoğan","doi":"10.25165/j.ijabe.20231604.7599","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231604.7599","url":null,"abstract":"This study has been conducted with the purpose of determining energy use efficiency and greenhouse gas emissions of garlic cultivation during the 2020-2021 cultivation season in Adıyaman province of Turkey. Questionnaires, observations and field works were performed in 134 garlic farms in the region through simple random method. In garlic cultivation, energy input was calculated as 32103.20 MJ/hm2 and energy output was calculated as 30096 MJ/hm2. With regards to the three highest inputs in garlic production, 46.66% of the energy inputs consisted of chemical fertilizers energy (14979.26 MJ/hm2), 11.29% consisted of farmyard manure energy (3625.71 MJ/hm2) and 10.48% consisted of human labour energy (3363.36 MJ/hm2). Energy use efficiency, specific energy, energy productivity and net energy in garlic cultivation were calculated as 0.94, 1.71 MJ/kg, 0.59 kg/MJ, and −2007.20 MJ/hm2, respectively. The total energy input consumed in garlic cultivation was classified as 27.19% direct energy, 72.81% indirect energy, 35.17% renewable energy and 64.87% non-renewable energy. Total GHG emissions and GHG ratio were calculated as 8636.60 kgCO2-eq/hm2 and 0.46 kgCO2-eq/kg, respectively. Keywords: energy use efficiency, garlic, greenhouse gas emissions, specific energy, Turkey DOI: 10.25165/j.ijabe.20231604.7599 Citation: Baran M F, Demir C, Eliçin A K, Gökdoğan O. Energy use efficiency and greenhouse gas emissions (GHG) analysis of garlic cultivation in Turkey. Int J Agric & Biol Eng, 2023; 16(4): 63-67.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135658904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.25165/j.ijabe.20231604.7978
Jicheng Huang, Li Tan, Kunpeng Tian, Bin Zhang, Aimin Ji, Haolu Liu, Cheng Shen
Aiming at the problem of large differences in the laying angle and posture of plants cut by the hemp harvester, which is unfavorable for the subsequent picking-up, this paper analyzed the laying process and laying angles, and built a conveyor-plant rigid-flexible coupling model for simulating the laying of hemp plant. Moreover, the operating parameters were tested and optimized based on the central composite design theory, and carried out multi-objective optimization with the minimum laying angle as the response index. Firstly, the formation mechanism of the laying angle of hemp harvester was studied. Secondly, a test was designed with the quadratic orthogonal rotational combination test method, with the data being processed by Design-Expert. A regression mathematical model of the laying angle was built, and the influence of the interactions between factors on the laying angle was analyzed with the response surface method. Furthermore, multi-objective optimization was conducted on the regression model according to the actual production design requirements. As a result, the best combination was obtained, that is, when the forward speed is 0.7 m/s, speed ratio 1.40, and stubble height 95 mm, the minimum laying angle can be obtained, namely 124.9°. The optimization parameters were verified by the simulation and field tests. The simulation test showed that the simulated laying angle is 125.2°, with a relative error of 0.24% from the theoretical value, under the best combination of parameters. The field test showed that the average laying angle of hemp plant is 121.8°, with a relative error of 2.5% from the theoretical value, under the best combination of parameters. The results may provide a reference for the structural improvement and operating parameter control of hemp harvesters. Keywords: agricultural machinery, hemp, laying angle, rigid-flexible coupling model, optimization, response surface analysis DOI: 10.25165/j.ijabe.20231604.7978 Citation: Huang J C, Tan L, Tian K P, Zhang B, Ji A M, Liu H L, Shen C. Formation mechanism for the laying angle of hemp harvester based on ANSYS-ADAMS. Int J Agric & Biol Eng, 2023; 16(4): 109–115.
{"title":"Formation mechanism for the laying angle of hemp harvester based on ANSYS-ADAMS","authors":"Jicheng Huang, Li Tan, Kunpeng Tian, Bin Zhang, Aimin Ji, Haolu Liu, Cheng Shen","doi":"10.25165/j.ijabe.20231604.7978","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231604.7978","url":null,"abstract":"Aiming at the problem of large differences in the laying angle and posture of plants cut by the hemp harvester, which is unfavorable for the subsequent picking-up, this paper analyzed the laying process and laying angles, and built a conveyor-plant rigid-flexible coupling model for simulating the laying of hemp plant. Moreover, the operating parameters were tested and optimized based on the central composite design theory, and carried out multi-objective optimization with the minimum laying angle as the response index. Firstly, the formation mechanism of the laying angle of hemp harvester was studied. Secondly, a test was designed with the quadratic orthogonal rotational combination test method, with the data being processed by Design-Expert. A regression mathematical model of the laying angle was built, and the influence of the interactions between factors on the laying angle was analyzed with the response surface method. Furthermore, multi-objective optimization was conducted on the regression model according to the actual production design requirements. As a result, the best combination was obtained, that is, when the forward speed is 0.7 m/s, speed ratio 1.40, and stubble height 95 mm, the minimum laying angle can be obtained, namely 124.9°. The optimization parameters were verified by the simulation and field tests. The simulation test showed that the simulated laying angle is 125.2°, with a relative error of 0.24% from the theoretical value, under the best combination of parameters. The field test showed that the average laying angle of hemp plant is 121.8°, with a relative error of 2.5% from the theoretical value, under the best combination of parameters. The results may provide a reference for the structural improvement and operating parameter control of hemp harvesters. Keywords: agricultural machinery, hemp, laying angle, rigid-flexible coupling model, optimization, response surface analysis DOI: 10.25165/j.ijabe.20231604.7978 Citation: Huang J C, Tan L, Tian K P, Zhang B, Ji A M, Liu H L, Shen C. Formation mechanism for the laying angle of hemp harvester based on ANSYS-ADAMS. Int J Agric & Biol Eng, 2023; 16(4): 109–115.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"105 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135659789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.25165/j.ijabe.20231601.6528
Zhiwei Hu, Hua Yang, T. Lou, Hong-Ping Yan
{"title":"Concurrent channel and spatial attention in Fully Convolutional Network for individual pig image segmentation","authors":"Zhiwei Hu, Hua Yang, T. Lou, Hong-Ping Yan","doi":"10.25165/j.ijabe.20231601.6528","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231601.6528","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"66 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90405083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and numerical study on the shrinkage-deformation of carrot slices during hot air drying","authors":"Dalong Jiang, Congcong Li, Zifan Lin, Yun-tian Wu, Hongjuan Pei, M. Zielińska, Hongwei Xiao","doi":"10.25165/j.ijabe.20231601.6736","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231601.6736","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"65 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81870603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
: Manual peeling of Poria cocos has low efficiency and large loss, and other peeling methods are not suitable for Poria cocos peeling. To solve this problem, this study designed and fabricated a set of automatic peeling equipment for Poria cocos , which combined image processing technology with the structure and function of the vertical milling machine. This paper mainly reports the image detection algorithm of Poria cocos epidermis position for automatic peeling. Firstly, the blue marks were glued to the movable and the immovable parts of clamping parts, and the initial window was determined through them. Then, the grayscale image within the initial window was obtained with the help of the chromatic aberration |2 r - g - b | (red ( r ), green ( g ), blue ( b ) of pixels). The processing window was calculated with the aid of the distribution graph of the grayscale accumulation. Next, the grayscale image was taken into the process of the automatic binarization based on the Otsu method and the binary image was restored through dilation, erosion and denoising algorithm. Finally, pixel columns in the processing window were scanned column-by-column from the left to the right and the direction of each pixel column is from the bottom to the top. The first pixel with a value of 0 on each pixel column was set as the epidermis position of the current pixel column. The experiment results implied that, under the set light source, the average detection accuracy was 98.8%, and the average time to detect epidermis position once was 0.024 s. The detection accuracy and real-time performance of this algorithm meets the actual operation requirements of Poria cocos peeling. It lays the foundation for the automatic peeling operation of Poria cocos .
:手工去皮茯苓效率低,损耗大,其他去皮方法不适合茯苓去皮。为了解决这一问题,本研究将图像处理技术与立式铣床的结构和功能相结合,设计制作了一套茯苓自动去皮设备。本文主要报道了茯苓表皮自动脱皮位置的图像检测算法。首先在夹紧件的活动部件和不可活动部件上粘贴蓝色标记,通过它们确定初始窗口。然后,借助像素的色差| 2r - g - b |(红(r),绿(g),蓝(b)),得到初始窗口内的灰度图像。利用灰度累积分布图计算处理窗口。其次,将灰度图像纳入基于Otsu方法的自动二值化过程中,通过膨胀、侵蚀和去噪算法恢复二值化图像。最后,从左到右逐列扫描处理窗口中的像素列,每个像素列的方向从下到上。将每个像素列上值为0的第一个像素设置为当前像素列的表皮位置。实验结果表明,在设定的光源下,平均检测准确率为98.8%,一次检测表皮位置的平均时间为0.024 s。该算法的检测精度和实时性满足茯苓去皮的实际操作要求。为茯苓自动去皮操作奠定了基础。
{"title":"A novel method of automatic peeling for Poria cocos based on image processing","authors":"Xiongchu Zhang, Bingqi Chen, Zhian Zheng, Wenjie Wang, X. Fang, Congli Zhang","doi":"10.25165/j.ijabe.20231602.7044","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231602.7044","url":null,"abstract":": Manual peeling of Poria cocos has low efficiency and large loss, and other peeling methods are not suitable for Poria cocos peeling. To solve this problem, this study designed and fabricated a set of automatic peeling equipment for Poria cocos , which combined image processing technology with the structure and function of the vertical milling machine. This paper mainly reports the image detection algorithm of Poria cocos epidermis position for automatic peeling. Firstly, the blue marks were glued to the movable and the immovable parts of clamping parts, and the initial window was determined through them. Then, the grayscale image within the initial window was obtained with the help of the chromatic aberration |2 r - g - b | (red ( r ), green ( g ), blue ( b ) of pixels). The processing window was calculated with the aid of the distribution graph of the grayscale accumulation. Next, the grayscale image was taken into the process of the automatic binarization based on the Otsu method and the binary image was restored through dilation, erosion and denoising algorithm. Finally, pixel columns in the processing window were scanned column-by-column from the left to the right and the direction of each pixel column is from the bottom to the top. The first pixel with a value of 0 on each pixel column was set as the epidermis position of the current pixel column. The experiment results implied that, under the set light source, the average detection accuracy was 98.8%, and the average time to detect epidermis position once was 0.024 s. The detection accuracy and real-time performance of this algorithm meets the actual operation requirements of Poria cocos peeling. It lays the foundation for the automatic peeling operation of Poria cocos .","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"72 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84935012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.25165/j.ijabe.20231601.7562
Qihang Liu, Xinfa Wang, Mingfu Zhao, T. Liu
{"title":"Synergistic influence of the capture effect of western flower thrips (Frankliniella occidentalis) induced by proportional yellow-green light in the greenhouse","authors":"Qihang Liu, Xinfa Wang, Mingfu Zhao, T. Liu","doi":"10.25165/j.ijabe.20231601.7562","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231601.7562","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88869827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.25165/j.ijabe.20231601.7007
L. Cui, X. Xue, Wei Kong, S. Ding, Wei Gu, F. Le
{"title":"Design and implementation of a nonlinear robust controller based on the disturbance observer for the active spray boom suspension","authors":"L. Cui, X. Xue, Wei Kong, S. Ding, Wei Gu, F. Le","doi":"10.25165/j.ijabe.20231601.7007","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231601.7007","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"19 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86549151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.25165/j.ijabe.20231602.8003
Yang Yang, Hongguang Zhu
{"title":"Fluid-solid drag models selection for simulating wheat straw particle movement in anaerobic digester","authors":"Yang Yang, Hongguang Zhu","doi":"10.25165/j.ijabe.20231602.8003","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231602.8003","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"20 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90294479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.25165/j.ijabe.20231602.7721
S. Adilet, Kaiyu Zhao, Guangyao Liu, Nukeshev Sayakhat, Jun Chen, Guangrui Hu, Lingxin Bu, Yu Chen, Hongling Jin, Shuo Zhang, Zagainov Nikolay, Muratkhan Marat
{"title":"Investigation of the pin-roller metering device and tube effect for wheat seeds and granular fertilizers based on DEM","authors":"S. Adilet, Kaiyu Zhao, Guangyao Liu, Nukeshev Sayakhat, Jun Chen, Guangrui Hu, Lingxin Bu, Yu Chen, Hongling Jin, Shuo Zhang, Zagainov Nikolay, Muratkhan Marat","doi":"10.25165/j.ijabe.20231602.7721","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231602.7721","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"112 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76986766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.25165/j.ijabe.20231603.7437
Jie Zhang, Xinna Liu, Qian Wang
Tomato (Solanum lycopersicum L.) production was threatened by the inefficiency of fertilizers, contributing to the deterioration of the soil environment under greenhouse conditions in southern China. Biochar application could ameliorate the physical properties of soil and enhance the growth and productivity of tomatoes. In this study, a pot experiment was conducted with four biochar addition rates of 0% (BA0), 1% (BA1), 3% (BA3), and 5% (BA5). Results showed that the soil physical properties, morph-physiological indicators, yield, and water use efficiency (WUE) of tomatoes with biochar addition were significantly higher than those of tomatoes without biochar addition. Among the different treatments, BA5 provided the highest total porosity (53.09%), field capacity (40.73%), plant height (72.5 cm), net photosynthetic rate (16.04 mmol/m2·s), total dry matter (184.65 g/plant), yield (54.9 t/hm2), and WUE (38.5 kg/m3). The yield and WUE increased from 44.5 t/hm2 and 31.2 kg/m3 under BA0, respectively, to 54.9 t/hm2 and 38.5 kg/m3 under BA5, respectively. The results suggest that BA5 can maximize improvements in soil physical properties to augment plant growth, thereby increasing the yield and WUE of tomatoes. However, the effects of BA3 and BA5 on WUE were not significantly different. Thus, from the perspective of economic investment, BA3 is recommended. Keywords: maize straw, biochar application, soil properties, water use efficiency, tomato, greenhouse DOI: 10.25165/j.ijabe.20231603.7437 Citation: Zhang J, Liu X H, Wang Q. Effects of maize straw biochar application on soil physical properties, morph-physiological attributes, yield and water use efficiency of greenhouse tomato. Int J Agric & Biol Eng, 2023; 16(3): 151–159.
{"title":"Effects of maize straw biochar application on soil physical properties, morph-physiological attributes, yield and water use efficiency of greenhouse tomato","authors":"Jie Zhang, Xinna Liu, Qian Wang","doi":"10.25165/j.ijabe.20231603.7437","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231603.7437","url":null,"abstract":"Tomato (Solanum lycopersicum L.) production was threatened by the inefficiency of fertilizers, contributing to the deterioration of the soil environment under greenhouse conditions in southern China. Biochar application could ameliorate the physical properties of soil and enhance the growth and productivity of tomatoes. In this study, a pot experiment was conducted with four biochar addition rates of 0% (BA0), 1% (BA1), 3% (BA3), and 5% (BA5). Results showed that the soil physical properties, morph-physiological indicators, yield, and water use efficiency (WUE) of tomatoes with biochar addition were significantly higher than those of tomatoes without biochar addition. Among the different treatments, BA5 provided the highest total porosity (53.09%), field capacity (40.73%), plant height (72.5 cm), net photosynthetic rate (16.04 mmol/m2·s), total dry matter (184.65 g/plant), yield (54.9 t/hm2), and WUE (38.5 kg/m3). The yield and WUE increased from 44.5 t/hm2 and 31.2 kg/m3 under BA0, respectively, to 54.9 t/hm2 and 38.5 kg/m3 under BA5, respectively. The results suggest that BA5 can maximize improvements in soil physical properties to augment plant growth, thereby increasing the yield and WUE of tomatoes. However, the effects of BA3 and BA5 on WUE were not significantly different. Thus, from the perspective of economic investment, BA3 is recommended. Keywords: maize straw, biochar application, soil properties, water use efficiency, tomato, greenhouse DOI: 10.25165/j.ijabe.20231603.7437 Citation: Zhang J, Liu X H, Wang Q. Effects of maize straw biochar application on soil physical properties, morph-physiological attributes, yield and water use efficiency of greenhouse tomato. Int J Agric & Biol Eng, 2023; 16(3): 151–159.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135357561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}