首页 > 最新文献

International Journal of Machine Tools & Manufacture最新文献

英文 中文
Investigation on the material removal mechanism in ion implantation-assisted elliptical vibration cutting of hard and brittle material 离子注入辅助椭圆振动切割硬脆材料的材料去除机理研究
IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-10-03 DOI: 10.1016/j.ijmachtools.2024.104220
Jinyang Ke , Jianguo Zhang , Xiao Chen , Changlin Liu , Gui Long , Hao Sun , Jianfeng Xu
Ductile-regime machining has been used to generate damage-free surface of hard and brittle materials by setting the cutting depth to be smaller than the ductile-brittle transition depth (DBTD). However, the ductile-regime cutting of sapphire remains challenging owing to its extreme hardness, small DBTD, serious surface fractures, and severe tool wear. To solve this problem, ion implantation-assisted elliptical vibration cutting (Ii-EVC) has been proposed in this study to enhance the machinability of hard and brittle materials. Taking sapphire as an example, high-energy phosphorus ions were implanted into the workpiece to modify its surface. Nanoindentation tests revealed that the modified materials undergo plastic and elastic deformation more easily due to the decrease in hardness and modulus. Compared with nanocutting without implantation assistance, the DBTD of implanted sapphire has been increased by more than five times. The advantageous effects of Ii-EVC achieve great enhancement in machinability, including surface fractures suppression, tool-wear reduction, chips morphology transformation from discontinuous to continuous, and cutting force decrease. Furthermore, even near the cracks in the brittle region after Ii-EVC, the subsurface microstructure showed a more complete lattice arrangement and a strain distribution close to zero, indicating that crack propagation was effectively suppressed. Due to the promoted localized plastic deformation, the stress distribution in the implanted material is much smaller than that in pristine workpiece. Implantation-induced defects not only serve as a core for absorbing external energy from the high-frequency vibration and improving the in-grain deformation but also facilitate the formation of shear bands. The interface with high distortion between the modified layer and substrate can effectively dissipate strain energy and hinder crack propagation to the free surface. The turning experiments verified that Ii-EVC can achieve better surface quality, less tool wear and higher optical transmittance. Overall, Ii-EVC addresses the challenges of tool breakage and surface fracture caused by high-frequency collision between tool and workpiece in traditional EVC, overcomes the problem of limited modification depth in ion implantation, and increases the ductile-regime removal depth of extremely hard and brittle materials to several microns. Such findings demonstrate that Ii-EVC is a promising method for the ultra-precision manufacturing of advanced materials.
通过将切削深度设定为小于韧性-脆性过渡深度(DBTD),韧性-韧性加工已被用于加工硬脆材料的无损表面。然而,由于蓝宝石的硬度极高、DBTD 较小、表面断裂严重以及刀具磨损严重,蓝宝石的韧性-韧性切削仍然具有挑战性。为解决这一问题,本研究提出了离子注入辅助椭圆振动切割(Ii-EVC)技术,以提高硬脆材料的加工性能。以蓝宝石为例,将高能磷离子植入工件以改变其表面。纳米压痕测试表明,由于硬度和模量的降低,改性材料更容易发生塑性和弹性变形。与没有植入辅助的纳米切割相比,植入蓝宝石的 DBTD 增加了五倍以上。Ii-EVC 的优势效应大大提高了加工性能,包括抑制表面断裂、减少刀具磨损、切屑形态从不连续性转变为连续性以及降低切削力。此外,即使在 Ii-EVC 后脆性区域的裂纹附近,表层下的微观结构也显示出更完整的晶格排列和接近零的应变分布,表明裂纹扩展得到了有效抑制。由于促进了局部塑性变形,植入材料的应力分布远小于原始工件。植入引起的缺陷不仅可以作为吸收高频振动外部能量和改善晶粒内部变形的核心,还能促进剪切带的形成。改性层与基体之间的高畸变界面可有效耗散应变能,阻碍裂纹向自由表面扩展。车削实验验证了 Ii-EVC 可以获得更好的表面质量、更少的刀具磨损和更高的光学透射率。总之,Ii-EVC 解决了传统 EVC 中刀具与工件高频碰撞导致的刀具破损和表面断裂难题,克服了离子注入中改性深度有限的问题,并将极硬极脆材料的韧性--定常去除深度提高到几微米。这些研究结果表明,Ii-EVC 是一种很有前途的先进材料超精密制造方法。
{"title":"Investigation on the material removal mechanism in ion implantation-assisted elliptical vibration cutting of hard and brittle material","authors":"Jinyang Ke ,&nbsp;Jianguo Zhang ,&nbsp;Xiao Chen ,&nbsp;Changlin Liu ,&nbsp;Gui Long ,&nbsp;Hao Sun ,&nbsp;Jianfeng Xu","doi":"10.1016/j.ijmachtools.2024.104220","DOIUrl":"10.1016/j.ijmachtools.2024.104220","url":null,"abstract":"<div><div>Ductile-regime machining has been used to generate damage-free surface of hard and brittle materials by setting the cutting depth to be smaller than the ductile-brittle transition depth (DBTD). However, the ductile-regime cutting of sapphire remains challenging owing to its extreme hardness, small DBTD, serious surface fractures, and severe tool wear. To solve this problem, ion implantation-assisted elliptical vibration cutting (Ii-EVC) has been proposed in this study to enhance the machinability of hard and brittle materials. Taking sapphire as an example, high-energy phosphorus ions were implanted into the workpiece to modify its surface. Nanoindentation tests revealed that the modified materials undergo plastic and elastic deformation more easily due to the decrease in hardness and modulus. Compared with nanocutting without implantation assistance, the DBTD of implanted sapphire has been increased by more than five times. The advantageous effects of Ii-EVC achieve great enhancement in machinability, including surface fractures suppression, tool-wear reduction, chips morphology transformation from discontinuous to continuous, and cutting force decrease. Furthermore, even near the cracks in the brittle region after Ii-EVC, the subsurface microstructure showed a more complete lattice arrangement and a strain distribution close to zero, indicating that crack propagation was effectively suppressed. Due to the promoted localized plastic deformation, the stress distribution in the implanted material is much smaller than that in pristine workpiece. Implantation-induced defects not only serve as a core for absorbing external energy from the high-frequency vibration and improving the in-grain deformation but also facilitate the formation of shear bands. The interface with high distortion between the modified layer and substrate can effectively dissipate strain energy and hinder crack propagation to the free surface. The turning experiments verified that Ii-EVC can achieve better surface quality, less tool wear and higher optical transmittance. Overall, Ii-EVC addresses the challenges of tool breakage and surface fracture caused by high-frequency collision between tool and workpiece in traditional EVC, overcomes the problem of limited modification depth in ion implantation, and increases the ductile-regime removal depth of extremely hard and brittle materials to several microns. Such findings demonstrate that Ii-EVC is a promising method for the ultra-precision manufacturing of advanced materials.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"203 ","pages":"Article 104220"},"PeriodicalIF":14.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cutting mechanism of reaction-bonded silicon carbide in laser-assisted ultra-precision machining 激光辅助超精密加工中反应结合碳化硅的切削机理
IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-10-02 DOI: 10.1016/j.ijmachtools.2024.104219
Changlin Liu , Jinyang Ke , Tengfei Yin , Wai Sze Yip , Jianguo Zhang , Suet To , Jianfeng Xu
Reaction-bonded silicon carbide (RB-SiC) is an important material used in aerospace optical systems. Due to the property mismatch between Si and SiC phases, the underlying cutting mechanism in ultra-precision machining of RB-SiC remains relatively unclear. Recently, laser-assisted machining (LAM) has emerged as an effective technique to improve the machinability of hard and brittle materials, which brings the question that how the high temperature affects the machining mechanism of RB-SiC. To elucidate these aspects, a series of grooving experiments and MD simulations were conducted in this study. The interaction mechanism between phases on material removal and subsurface damage was revealed and the effect of cutting temperature on Si-SiC interaction was explored. The results indicate that in conventional ultra-precision machining, SiC grains could affect the deformation of Si phase, whereas the influence of Si phase on SiC deformation is limited. As the cutting temperature increases, the Si-SiC interaction is less apparent and the deformation of Si and SiC becomes more independent. Meanwhile, the prominence of phase property mismatch on subsurface damage are reduced while the extension of disordered phases into boundaries merges as an important mechanism in subsurface damage formation. This research helps to understand the thermal effect on material interaction between phases during machining and aid to improve the performance of LAM on RB-SiC.
反应结合碳化硅(RB-SiC)是航空航天光学系统中使用的一种重要材料。由于 Si 相和 SiC 相之间的性质不匹配,RB-SiC 超精密加工的基本切削机制仍相对不清楚。最近,激光辅助加工(LAM)已成为提高硬脆材料可加工性的有效技术,这就带来了高温如何影响 RB-SiC 加工机制的问题。为了阐明这些问题,本研究进行了一系列开槽实验和 MD 模拟。研究揭示了材料去除和表面下损伤相之间的相互作用机理,并探讨了切削温度对 Si-SiC 相互作用的影响。结果表明,在传统超精密加工中,SiC 晶粒会影响 Si 相的变形,而 Si 相对 SiC 变形的影响有限。随着切削温度的升高,Si-SiC 的相互作用变得不那么明显,Si 和 SiC 的变形变得更加独立。同时,相性质不匹配对次表面损伤的影响减小,而无序相向边界的扩展合并成为次表面损伤形成的重要机制。这项研究有助于理解加工过程中热对材料相间相互作用的影响,并有助于改善 RB-SiC 的 LAM 性能。
{"title":"Cutting mechanism of reaction-bonded silicon carbide in laser-assisted ultra-precision machining","authors":"Changlin Liu ,&nbsp;Jinyang Ke ,&nbsp;Tengfei Yin ,&nbsp;Wai Sze Yip ,&nbsp;Jianguo Zhang ,&nbsp;Suet To ,&nbsp;Jianfeng Xu","doi":"10.1016/j.ijmachtools.2024.104219","DOIUrl":"10.1016/j.ijmachtools.2024.104219","url":null,"abstract":"<div><div>Reaction-bonded silicon carbide (RB-SiC) is an important material used in aerospace optical systems. Due to the property mismatch between Si and SiC phases, the underlying cutting mechanism in ultra-precision machining of RB-SiC remains relatively unclear. Recently, laser-assisted machining (LAM) has emerged as an effective technique to improve the machinability of hard and brittle materials, which brings the question that how the high temperature affects the machining mechanism of RB-SiC. To elucidate these aspects, a series of grooving experiments and MD simulations were conducted in this study. The interaction mechanism between phases on material removal and subsurface damage was revealed and the effect of cutting temperature on Si-SiC interaction was explored. The results indicate that in conventional ultra-precision machining, SiC grains could affect the deformation of Si phase, whereas the influence of Si phase on SiC deformation is limited. As the cutting temperature increases, the Si-SiC interaction is less apparent and the deformation of Si and SiC becomes more independent. Meanwhile, the prominence of phase property mismatch on subsurface damage are reduced while the extension of disordered phases into boundaries merges as an important mechanism in subsurface damage formation. This research helps to understand the thermal effect on material interaction between phases during machining and aid to improve the performance of LAM on RB-SiC.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"203 ","pages":"Article 104219"},"PeriodicalIF":14.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging artificial intelligence for real-time indirect tool condition monitoring: From theoretical and technological progress to industrial applications 利用人工智能进行实时间接工具状态监测:从理论和技术进步到工业应用
IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-09-12 DOI: 10.1016/j.ijmachtools.2024.104209
Delin Liu , Zhanqiang Liu , Bing Wang , Qinghua Song , Hongxin Wang , Lizeng Zhang

Tool condition monitoring (TCM) during mechanical cutting is critical for maximising the utilisation of cutting tools and minimising the risk of equipment damage and personnel injury. The demand for highly efficient and sustainable machining in modern industries has led to the development of new processes operating under specific conditions. Real-world datasets obtained under harsh cutting conditions often suffer from intense interference, making the anti-interference capabilities of TCM methods crucial for effective industrial applications. Previous literature reviews on TCM have focused on theoretical methods for monitoring tool wear and breakage. However, reviews of the scientific methodologies and technologies employed in TCM for industrial production are limited. The lack of scientific understanding relevant to the monitoring of cutting tools in industrial production should be addressed urgently. The current data processing, feature dimensionality reduction, and decision-making methods utilised in TCM may not adequately fulfil the real-time and anti-interference demands. The TCM methods also face the challenges of small sample sizes and imbalanced data during real-world dataset processing. Therefore, this study conducts a systematic review of TCM methods to overcome these limitations. First, the theoretical guidelines for the application of TCM methods in industrial production are provided. The sensing system, signal processing, feature dimensionality reduction, and decision-making methods for TCM methods are comprehensively discussed in terms of both their advantages and limitations for applications in industrial production. Considering the effects of real-world datasets with small samples and imbalanced data caused by the harsh environment of a real factory, a systematic presentation is proposed at the data, feature, and decision levels. Finally, the challenges and potential research directions of TCM methods for industrial applications are discussed. A research route for smart factory-oriented machining system management is proposed based on published literature. This review bridges the gap between theoretical research and the industrial application of TCM techniques in industrial production. Prospective research and further development of TCM systems will provide the groundwork for establishing smart factories.

机械切削过程中的刀具状态监测(TCM)对于最大限度地利用切削刀具、降低设备损坏和人员伤害风险至关重要。现代工业对高效和可持续加工的需求促使人们开发出在特定条件下运行的新工艺。在苛刻的切削条件下获得的真实数据集通常会受到强烈干扰,因此 TCM 方法的抗干扰能力对于有效的工业应用至关重要。以往有关 TCM 的文献综述主要集中在监测刀具磨损和破损的理论方法上。然而,有关工业生产中使用的 TCM 科学方法和技术的综述却十分有限。对工业生产中切削工具监测缺乏科学认识的问题亟待解决。目前中医药中使用的数据处理、特征降维和决策方法可能无法充分满足实时性和抗干扰性的要求。在现实世界的数据集处理过程中,中医方法还面临样本量小和数据不平衡的挑战。因此,本研究对中医方法进行了系统回顾,以克服这些局限性。首先,为 TCM 方法在工业生产中的应用提供了理论指导。全面讨论了 TCM 方法的传感系统、信号处理、特征降维和决策方法在工业生产中应用的优势和局限性。考虑到小样本真实数据集和真实工厂恶劣环境造成的不平衡数据的影响,从数据、特征和决策三个层面提出了系统的介绍。最后,讨论了 TCM 方法在工业应用中面临的挑战和潜在的研究方向。根据已发表的文献,提出了面向工厂的智能加工系统管理的研究路线。这篇综述弥补了理论研究与 TCM 技术在工业生产中的工业应用之间的差距。中医药系统的前瞻性研究和进一步发展将为建立智能工厂奠定基础。
{"title":"Leveraging artificial intelligence for real-time indirect tool condition monitoring: From theoretical and technological progress to industrial applications","authors":"Delin Liu ,&nbsp;Zhanqiang Liu ,&nbsp;Bing Wang ,&nbsp;Qinghua Song ,&nbsp;Hongxin Wang ,&nbsp;Lizeng Zhang","doi":"10.1016/j.ijmachtools.2024.104209","DOIUrl":"10.1016/j.ijmachtools.2024.104209","url":null,"abstract":"<div><p>Tool condition monitoring (TCM) during mechanical cutting is critical for maximising the utilisation of cutting tools and minimising the risk of equipment damage and personnel injury. The demand for highly efficient and sustainable machining in modern industries has led to the development of new processes operating under specific conditions. Real-world datasets obtained under harsh cutting conditions often suffer from intense interference, making the anti-interference capabilities of TCM methods crucial for effective industrial applications. Previous literature reviews on TCM have focused on theoretical methods for monitoring tool wear and breakage. However, reviews of the scientific methodologies and technologies employed in TCM for industrial production are limited. The lack of scientific understanding relevant to the monitoring of cutting tools in industrial production should be addressed urgently. The current data processing, feature dimensionality reduction, and decision-making methods utilised in TCM may not adequately fulfil the real-time and anti-interference demands. The TCM methods also face the challenges of small sample sizes and imbalanced data during real-world dataset processing. Therefore, this study conducts a systematic review of TCM methods to overcome these limitations. First, the theoretical guidelines for the application of TCM methods in industrial production are provided. The sensing system, signal processing, feature dimensionality reduction, and decision-making methods for TCM methods are comprehensively discussed in terms of both their advantages and limitations for applications in industrial production. Considering the effects of real-world datasets with small samples and imbalanced data caused by the harsh environment of a real factory, a systematic presentation is proposed at the data, feature, and decision levels. Finally, the challenges and potential research directions of TCM methods for industrial applications are discussed. A research route for smart factory-oriented machining system management is proposed based on published literature. This review bridges the gap between theoretical research and the industrial application of TCM techniques in industrial production. Prospective research and further development of TCM systems will provide the groundwork for establishing smart factories.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"202 ","pages":"Article 104209"},"PeriodicalIF":14.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal milling cutter helix selection for period doubling chatter suppression 优化铣刀螺旋选择,抑制周期加倍颤振
IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-09-10 DOI: 10.1016/j.ijmachtools.2024.104211
M. Sanz-Calle , A. Iglesias , L.N. López de Lacalle , Z. Dombovari , J. Munoa

In high speed milling, interrupted cutting conditions can lead to period doubling chatter vibrations. While many studies have already confirmed that the use of helical tools can effectively shrink or remove these regions of unstable cutting, none of them has provided clear guidance to select the minimum helix that completely cancels the period doubling lobes. This study addresses this gap by introducing a novel analytical formula for a critical tool helix pitch: if the helix pitch is below the critical flip depth of cut of the straight helix cutter multiplied by π, the flip lobes will totally vanish. This rule is not only valuable for chatter-free process planning purposes, but it also establishes exact limit below which the fast and simple zeroth order stability algorithm can provide exact stability boundaries for helical tools. The effectiveness of the formula is numerically corroborated over three different milling scenarios: thin wall milling, slender tool and machine tool structure chatter cases. Finally, the findings are validated through experimental cutting tests.

在高速铣削中,断续切削条件会导致周期倍频颤振。虽然许多研究已经证实,使用螺旋刀具可以有效地缩小或消除这些不稳定的切削区域,但没有一项研究为选择能完全消除周期倍频振叶的最小螺旋度提供了明确的指导。本研究针对这一缺陷,提出了一个新颖的临界刀具螺旋间距分析公式:如果螺旋间距低于直螺旋刀具的临界翻转切削深度乘以 π,翻转裂片将完全消失。该规则不仅对无颤振工艺规划很有价值,而且还建立了精确的极限,在该极限以下,快速简单的零阶稳定性算法可以为螺旋刀具提供精确的稳定性边界。该公式的有效性通过三种不同的铣削情况进行了数值验证:薄壁铣削、细长刀具和机床结构颤振情况。最后,通过切削实验验证了上述结论。
{"title":"Optimal milling cutter helix selection for period doubling chatter suppression","authors":"M. Sanz-Calle ,&nbsp;A. Iglesias ,&nbsp;L.N. López de Lacalle ,&nbsp;Z. Dombovari ,&nbsp;J. Munoa","doi":"10.1016/j.ijmachtools.2024.104211","DOIUrl":"10.1016/j.ijmachtools.2024.104211","url":null,"abstract":"<div><p>In high speed milling, interrupted cutting conditions can lead to period doubling chatter vibrations. While many studies have already confirmed that the use of helical tools can effectively shrink or remove these regions of unstable cutting, none of them has provided clear guidance to select the minimum helix that completely cancels the period doubling lobes. This study addresses this gap by introducing a novel analytical formula for a critical tool helix pitch: if the helix pitch is below the critical flip depth of cut of the straight helix cutter multiplied by <span><math><mi>π</mi></math></span>, the flip lobes will totally vanish. This rule is not only valuable for chatter-free process planning purposes, but it also establishes exact limit below which the fast and simple zeroth order stability algorithm can provide exact stability boundaries for helical tools. The effectiveness of the formula is numerically corroborated over three different milling scenarios: thin wall milling, slender tool and machine tool structure chatter cases. Finally, the findings are validated through experimental cutting tests.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"202 ","pages":"Article 104211"},"PeriodicalIF":14.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S089069552400097X/pdfft?md5=ceae5b4ea8c38d066d97e82e41a17883&pid=1-s2.0-S089069552400097X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving fine tailoring of elastocaloric properties of laser powder bed-fused NiTi alloy via laser beam manipulation 通过激光束操纵实现激光粉末床熔融镍钛合金弹性特性的微调
IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-09-10 DOI: 10.1016/j.ijmachtools.2024.104210
Jianbin Zhan , Kun Li , Ruijin Ma , Liang Zhu , Jiahui Fang , Huajun Cao , David Z. Zhang , Lawrence E. Murr

Laser powder bed fusion (LPBF) technology enables the development of NiTi alloys with complex geometries and tunable phase-transformation temperatures (PTTs). This technology is increasingly acknowledged as promising in the field of elastocaloric (eC) refrigeration. However, the mechanisms governing the manner in which this technology tunes the eC performance remain ambiguous. This study evaluated the fine-tuning of the eC properties by regulating Ni evaporation through laser manipulation. Our results demonstrate that although adjusting Ni loss via laser heat input can effectively control the PTTs, inappropriate combinations of laser parameters may result in lower than anticipated cooling capacity (ΔTad) and coefficient of performance (COPmat) of produced samples. An excessive heat input results in Ni evaporation and in grain coarsening through the remelting and combination of fine grains owing to overlapping molten pools. Lower Ni enhances the phase-transformation enthalpy (ΔHtr). However, larger grains increase the energy dissipation and thereby, counteracting ΔTad improvements. Theoretical analysis and experiments revealed that finer grains increase the misorientation angles. This hinders the dislocation motion and thereby, enhances the mechanical properties. Meanwhile, coarser grains can more conveniently promote PT and thereby, increase ΔHtr. Thus, based on the naturally controllable grain size heterogeneity in LPBF-manufactured NiTi alloys, we propose optimizing the eC properties by controlling the morphology of the molten pool. Thermal-history simulations could balance this relationship. Ultimately, we developed two NiTi alloys for both high-temperature (70 °C) and room-temperature (25 °C) refrigeration. This study has provided effective insights for customizing high-performance eC components such as multistage caloric cascade regenerators, using additive manufacturing.

激光粉末床熔融(LPBF)技术能够开发出具有复杂几何形状和可调相变温度(PTT)的镍钛合金。这项技术在弹性制冷(eC)领域的前景日益广阔。然而,该技术调整 eC 性能的机制仍不明确。本研究评估了通过激光操作调节镍蒸发来微调 eC 性能的情况。我们的结果表明,虽然通过激光热输入调节镍损耗可以有效控制 PTT,但激光参数组合不当可能会导致生产的样品冷却能力()和性能系数()低于预期。过多的热量输入会导致镍蒸发,并由于熔池重叠导致细小晶粒的重熔和组合而使晶粒变粗。镍含量越低,相变焓()越高。然而,较大的晶粒会增加能量耗散,从而抵消改善作用。理论分析和实验表明,晶粒越细,错向角越大。这阻碍了位错运动,从而提高了机械性能。同时,较粗的晶粒可以更方便地促进位错运动,从而提高机械性能。因此,基于 LPBF 制造的镍钛合金中自然可控的晶粒尺寸异质性,我们建议通过控制熔池的形态来优化 eC 性能。热历史模拟可以平衡这种关系。最终,我们开发出了两种适用于高温(70 °C)和室温(25 °C)制冷的镍钛合金。这项研究为利用增材制造技术定制高性能 eC 组件(如多级热量级联再生器)提供了有效的启示。
{"title":"Achieving fine tailoring of elastocaloric properties of laser powder bed-fused NiTi alloy via laser beam manipulation","authors":"Jianbin Zhan ,&nbsp;Kun Li ,&nbsp;Ruijin Ma ,&nbsp;Liang Zhu ,&nbsp;Jiahui Fang ,&nbsp;Huajun Cao ,&nbsp;David Z. Zhang ,&nbsp;Lawrence E. Murr","doi":"10.1016/j.ijmachtools.2024.104210","DOIUrl":"10.1016/j.ijmachtools.2024.104210","url":null,"abstract":"<div><p>Laser powder bed fusion (LPBF) technology enables the development of NiTi alloys with complex geometries and tunable phase-transformation temperatures (PTTs). This technology is increasingly acknowledged as promising in the field of elastocaloric (eC) refrigeration. However, the mechanisms governing the manner in which this technology tunes the eC performance remain ambiguous. This study evaluated the fine-tuning of the eC properties by regulating Ni evaporation through laser manipulation. Our results demonstrate that although adjusting Ni loss via laser heat input can effectively control the PTTs, inappropriate combinations of laser parameters may result in lower than anticipated cooling capacity (<em>ΔT</em><sub><em>ad</em></sub>) and coefficient of performance (<em>COP</em><sub><em>mat</em></sub>) of produced samples. An excessive heat input results in Ni evaporation and in grain coarsening through the remelting and combination of fine grains owing to overlapping molten pools. Lower Ni enhances the phase-transformation enthalpy (<em>ΔH</em><sub><em>tr</em></sub>). However, larger grains increase the energy dissipation and thereby, counteracting <em>ΔT</em><sub><em>ad</em></sub> improvements. Theoretical analysis and experiments revealed that finer grains increase the misorientation angles. This hinders the dislocation motion and thereby, enhances the mechanical properties. Meanwhile, coarser grains can more conveniently promote PT and thereby, increase <em>ΔH</em><sub><em>tr</em></sub>. Thus, based on the naturally controllable grain size heterogeneity in LPBF-manufactured NiTi alloys, we propose optimizing the eC properties by controlling the morphology of the molten pool. Thermal-history simulations could balance this relationship. Ultimately, we developed two NiTi alloys for both high-temperature (70 °C) and room-temperature (25 °C) refrigeration. This study has provided effective insights for customizing high-performance eC components such as multistage caloric cascade regenerators, using additive manufacturing.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"202 ","pages":"Article 104210"},"PeriodicalIF":14.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic and ultrasonic vibration dual-field assisted ultra-precision diamond cutting of high-entropy alloys 磁场和超声波振动双场辅助超精密金刚石切割高熵合金
IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-09-03 DOI: 10.1016/j.ijmachtools.2024.104208
Yintian Xing , Yue Liu , Tengfei Yin , Denghui Li , Zhanwen Sun , Changxi Xue , Wai Sze Yip , Suet To

Despite the remarkable achievements in single-energy field-assisted diamond cutting technology, its performance remains unsatisfactory for processing high-entropy alloys (HEAs), targeted for next-generation large-scale industrial applications due to their exceptional properties. The challenge lies in overcoming the limitations of current single-energy field-assisted processing to achieve ultra-precision manufacturing of these advanced materials. This study proposes a multi-energy field-assisted ultra-precision machining technology, the magnetic and ultrasonic vibration dual-field assisted diamond cutting (MUVFDC), to address the current challenges. The phenomenological aspects of the dual-field coupling effect on HEAs are explored and investigated through comprehensive characterization of the workpiece material, ranging from macroscopic surface morphology to microscopic structural features. These analyses are performed based on experimental results from four different processing technologies: non-energy field, magnetic field, ultrasonic vibration field, and dual-field assisted machining. Research results demonstrate that MUVFDC technology effectively combines the advantages of a vibration field, which enhances cutting stability, and a magnetic field, which improves the machinability of materials. Additionally, this coupling technology addresses the challenges associated with single-energy field machining: it mitigates the difficulty of controlling surface scratches caused by tiny hard particles in a vibration field and suppresses the rapid tool wear encountered in a magnetic field. Furthermore, the gradient evolution of the subsurface microstructure reveals that the vibration field suppresses the severe matrix deformation induced by magnetic excitation. Simultaneously, the magnetic field reduces the size inhomogeneity of recrystallized grains caused by intermittent cutting. Overall, MUVFDC technology enhances surface quality, suppresses tool wear, smooths chip morphology, and reduces subsurface damage compared to single-energy field or non-energy-assisted machining. This work breaks through the performance limitations of traditional single-energy field-assisted processing and advances the understanding of the dual-field coupling effects in HEAs machining. It also presents a promising processing technology for the future ultra-precision manufacturing of advanced materials.

尽管单能场辅助金刚石切割技术取得了令人瞩目的成就,但在加工高熵合金(HEAs)时,其性能仍不尽如人意。如何克服当前单能量场辅助加工的局限性,实现这些先进材料的超精密制造,是一项挑战。本研究提出了一种多能量场辅助超精密加工技术--磁场和超声波振动双场辅助金刚石切割(MUVFDC),以应对当前的挑战。通过对工件材料从宏观表面形态到微观结构特征的全面表征,探索和研究了双场耦合效应对 HEA 的现象学影响。这些分析基于四种不同加工技术的实验结果:非能量场、磁场、超声振动场和双场辅助加工。研究结果表明,MUVFDC 技术有效地结合了振动场和磁场的优势,前者可提高切削稳定性,后者可改善材料的可加工性。此外,这种耦合技术还解决了与单能场加工相关的难题:它减轻了控制振动场中微小硬质颗粒造成的表面划痕的难度,并抑制了磁场中刀具的快速磨损。此外,表面下微观结构的梯度演变表明,振动场抑制了磁激励引起的严重基体变形。同时,磁场减少了间歇切削造成的再结晶晶粒尺寸不均匀性。总体而言,与单能量场或非能量辅助加工相比,MUVFDC 技术可提高表面质量、抑制刀具磨损、平滑切屑形态并减少表面下损伤。这项工作突破了传统单能量场辅助加工的性能限制,加深了人们对 HEAs 加工中双场耦合效应的理解。它还为未来先进材料的超精密制造提供了一种前景广阔的加工技术。
{"title":"Magnetic and ultrasonic vibration dual-field assisted ultra-precision diamond cutting of high-entropy alloys","authors":"Yintian Xing ,&nbsp;Yue Liu ,&nbsp;Tengfei Yin ,&nbsp;Denghui Li ,&nbsp;Zhanwen Sun ,&nbsp;Changxi Xue ,&nbsp;Wai Sze Yip ,&nbsp;Suet To","doi":"10.1016/j.ijmachtools.2024.104208","DOIUrl":"10.1016/j.ijmachtools.2024.104208","url":null,"abstract":"<div><p>Despite the remarkable achievements in single-energy field-assisted diamond cutting technology, its performance remains unsatisfactory for processing high-entropy alloys (HEAs), targeted for next-generation large-scale industrial applications due to their exceptional properties. The challenge lies in overcoming the limitations of current single-energy field-assisted processing to achieve ultra-precision manufacturing of these advanced materials. This study proposes a multi-energy field-assisted ultra-precision machining technology, the magnetic and ultrasonic vibration dual-field assisted diamond cutting (MUVFDC), to address the current challenges. The phenomenological aspects of the dual-field coupling effect on HEAs are explored and investigated through comprehensive characterization of the workpiece material, ranging from macroscopic surface morphology to microscopic structural features. These analyses are performed based on experimental results from four different processing technologies: non-energy field, magnetic field, ultrasonic vibration field, and dual-field assisted machining. Research results demonstrate that MUVFDC technology effectively combines the advantages of a vibration field, which enhances cutting stability, and a magnetic field, which improves the machinability of materials. Additionally, this coupling technology addresses the challenges associated with single-energy field machining: it mitigates the difficulty of controlling surface scratches caused by tiny hard particles in a vibration field and suppresses the rapid tool wear encountered in a magnetic field. Furthermore, the gradient evolution of the subsurface microstructure reveals that the vibration field suppresses the severe matrix deformation induced by magnetic excitation. Simultaneously, the magnetic field reduces the size inhomogeneity of recrystallized grains caused by intermittent cutting. Overall, MUVFDC technology enhances surface quality, suppresses tool wear, smooths chip morphology, and reduces subsurface damage compared to single-energy field or non-energy-assisted machining. This work breaks through the performance limitations of traditional single-energy field-assisted processing and advances the understanding of the dual-field coupling effects in HEAs machining. It also presents a promising processing technology for the future ultra-precision manufacturing of advanced materials.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"202 ","pages":"Article 104208"},"PeriodicalIF":14.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring macrostructure and texture in bobbin-tool friction stir weld via manipulation of deformation behaviour of plasticised metal during welding enabled by modifying tool profile 通过改变工具轮廓,操纵塑化金属在焊接过程中的变形行为,定制线盘工具搅拌摩擦焊缝的宏观结构和纹理
IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-19 DOI: 10.1016/j.ijmachtools.2024.104198
Gaohui Li , Shikang Gao , Sanfeng Luo , Li Zhou , Xinmeng Zhang , Fan Cui , Huihui Zhao , Xiaosong Feng

Bobbin-tool friction stir welding is a variant of friction stir welding with high process flexibility that has garnered considerable attention from the community. The reliability of the weld is sensitive to the macrostructure and texture of the stir zone, which must be carefully tailored. The macrostructure of the stir zone is governed by the refill behaviour of the plasticised metal associated with the bobbin-tool; refill occurs preferentially near the upper and lower shoulders, creating a triangular gap at the mid-thickness level that is subsequently closed by the confluence of the layered refilling plasticised metal from the upper and lower levels. Volumetric defects easily develop in this triangular confluence region because the symmetrical confluence of the layered refilling metal has the inherent characteristic of limited intermixing. The visual appearance of the triangular region, featuring limited voiding, was improved by tapering the stirring probe. This modification reduced the volume of displaced metal, leaving a smaller gap to be refilled during welding. Concurrently, the symmetrical confluence pattern was altered to an asymmetrical pattern, which enhanced the intermixing of the layered refilling metal from the upper and lower levels and promoted gap closure. For defect-free welds, macroscopic deformation inhomogeneity under tensile loading was observed due to the presence of a strong basal texture in the stir zone. The texture was scattered by disrupting the regular shear deformation pattern in the stir zone, which was achieved by modifying the tool profile. The activation capability of both basal slip and extension twinning among various local regions across the stir zone was substantially reduced through texture tailoring, resulting in more homogeneous tensile deformation. Consequently, elongation was enhanced by 66 %. This study highlights an easy-to-perform and generic strategy that can improve the quality of bobbin-tool friction stir welds.

线圈工具搅拌摩擦焊是搅拌摩擦焊的一种变体,具有很高的工艺灵活性,受到了社会各界的广泛关注。焊接的可靠性对搅拌区的宏观结构和质地非常敏感,必须对其进行精心调整。搅拌区的宏观结构取决于与线盘工具相关的塑化金属的回填行为;回填优先发生在上肩和下肩附近,在中间厚度处形成一个三角形间隙,随后由来自上层和下层的分层回填塑化金属汇合封闭。由于分层填充金属的对称汇合具有有限混合的固有特性,因此在这个三角形汇合区域很容易产生体积缺陷。通过将搅拌探针变细,可以改善三角形区域的视觉外观,使其具有有限的空隙。这种改进减少了移位金属的体积,使焊接过程中需要填充的空隙更小。同时,对称的汇流模式也被改为非对称模式,从而加强了上下两层的分层填充金属的混合,促进了间隙的闭合。对于无缺陷焊缝,由于搅拌区存在强烈的基底纹理,因此在拉伸载荷下观察到宏观变形不均匀性。这种纹理是通过改变工具轮廓破坏搅拌区的规则剪切变形模式而产生的。通过纹理裁剪,整个搅拌区各局部区域的基底滑移和延伸孪生的激活能力大大降低,从而使拉伸变形更加均匀。因此,伸长率提高了 66%。这项研究强调了一种易于操作的通用策略,可以提高线盘工具搅拌摩擦焊缝的质量。
{"title":"Tailoring macrostructure and texture in bobbin-tool friction stir weld via manipulation of deformation behaviour of plasticised metal during welding enabled by modifying tool profile","authors":"Gaohui Li ,&nbsp;Shikang Gao ,&nbsp;Sanfeng Luo ,&nbsp;Li Zhou ,&nbsp;Xinmeng Zhang ,&nbsp;Fan Cui ,&nbsp;Huihui Zhao ,&nbsp;Xiaosong Feng","doi":"10.1016/j.ijmachtools.2024.104198","DOIUrl":"10.1016/j.ijmachtools.2024.104198","url":null,"abstract":"<div><p>Bobbin-tool friction stir welding is a variant of friction stir welding with high process flexibility that has garnered considerable attention from the community. The reliability of the weld is sensitive to the macrostructure and texture of the stir zone, which must be carefully tailored. The macrostructure of the stir zone is governed by the refill behaviour of the plasticised metal associated with the bobbin-tool; refill occurs preferentially near the upper and lower shoulders, creating a triangular gap at the mid-thickness level that is subsequently closed by the confluence of the layered refilling plasticised metal from the upper and lower levels. Volumetric defects easily develop in this triangular confluence region because the symmetrical confluence of the layered refilling metal has the inherent characteristic of limited intermixing. The visual appearance of the triangular region, featuring limited voiding, was improved by tapering the stirring probe. This modification reduced the volume of displaced metal, leaving a smaller gap to be refilled during welding. Concurrently, the symmetrical confluence pattern was altered to an asymmetrical pattern, which enhanced the intermixing of the layered refilling metal from the upper and lower levels and promoted gap closure. For defect-free welds, macroscopic deformation inhomogeneity under tensile loading was observed due to the presence of a strong basal texture in the stir zone. The texture was scattered by disrupting the regular shear deformation pattern in the stir zone, which was achieved by modifying the tool profile. The activation capability of both basal slip and extension twinning among various local regions across the stir zone was substantially reduced through texture tailoring, resulting in more homogeneous tensile deformation. Consequently, elongation was enhanced by 66 %. This study highlights an easy-to-perform and generic strategy that can improve the quality of bobbin-tool friction stir welds.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"201 ","pages":"Article 104198"},"PeriodicalIF":14.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing mechanical properties of additively manufactured voronoi-based architected metamaterials via a lattice-inspired design strategy 通过晶格启发设计策略增强基于添加制造的 voronoi 架构超材料的机械性能
IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-16 DOI: 10.1016/j.ijmachtools.2024.104199
Changjun Han , Yunhui Wang , Zaichi Wang , Zhi Dong , Kai Li , Changhui Song , Chao Cai , Xingchen Yan , Yongqiang Yang , Di Wang

Voronoi-based architected metamaterials have gained significant recognition as promising candidates for bone defect repair implants. However, the demanding requirements for reliable and adjustable load-bearing capacity pose challenges in applying irregular Voronoi-based architected metamaterials in implant applications. In this study, we propose a lattice-inspired design methodology for these metamaterials, enabling precise control over topologies and porosities to enhance their mechanical properties. We demonstrate the influence of unit cell topology on the printability, mechanical properties, and permeability of lattice-inspired Voronoi-based metamaterials (LIVMs) fabricated via laser powder bed fusion (LPBF) additive manufacturing. The LPBF-printed LIVMs exhibited yield strengths ranging from 3.35 to 17.59 MPa and specific energy absorption ranging from 3.81 to 14.29 J/g. Through finite element modeling and experimentation, we show that the deformation behavior of LIVMs with various topologies plays a crucial role in enhancing mechanical performance through mechanisms such as homogeneous load transfer between unit cells and multistage-contact strengthening within a unit cell. Additionally, we analyze the impact of unit cell type and porosity on the mass-transport behavior of LIVMs using computational fluid dynamics simulations. The LIVMs achieved experimental permeability values ranging from 3.88 × 10−9 to 16.83 × 10−9 m2 (consistent with trabecular bones), indicating that multiple fluid flow channels can be utilized to enhance mass transport by distributing flow pressure and increasing fluid mobility. The proposed design method effectively achieves a favorable combination of superior mechanical properties and tunable permeability in Voronoi-based architected metamaterials. These findings provide valuable theoretical guidance for the development of architected metamaterials for bone implant applications.

基于 Voronoi 架构的超材料作为骨缺损修复植入物的理想候选材料已获得广泛认可。然而,对可靠和可调承重能力的苛刻要求给不规则 Voronoi 架构超材料在植入应用中的应用带来了挑战。在本研究中,我们提出了一种受晶格启发的超材料设计方法,可精确控制拓扑结构和孔隙率,从而增强其机械性能。我们展示了单元拓扑结构对通过激光粉末床熔融(LPBF)快速成型制造的基于晶格启发的 Voronoi 超材料(LIVMs)的可印刷性、机械性能和渗透性的影响。LPBF 打印的 LIVMs 具有 3.35 至 17.59 兆帕的屈服强度和 3.81 至 14.29 焦耳/克的比能量吸收。通过有限元建模和实验,我们发现具有不同拓扑结构的 LIVM 的变形行为通过单元格之间的均质载荷传递和单元格内的多级接触强化等机制,在提高机械性能方面发挥着至关重要的作用。此外,我们还利用计算流体动力学模拟分析了单胞类型和孔隙率对 LIVMs 质量传输行为的影响。LIVM 的实验渗透率值从 3.88 × 10-9 到 16.83 × 10-9 m2 不等(与骨小梁一致),这表明可以利用多个流体流动通道来分散流动压力和增加流体流动性,从而提高质量传输性能。在基于 Voronoi 架构的超材料中,所提出的设计方法有效地实现了优异机械性能和可调渗透性的良好结合。这些发现为开发用于骨植入应用的结构超材料提供了宝贵的理论指导。
{"title":"Enhancing mechanical properties of additively manufactured voronoi-based architected metamaterials via a lattice-inspired design strategy","authors":"Changjun Han ,&nbsp;Yunhui Wang ,&nbsp;Zaichi Wang ,&nbsp;Zhi Dong ,&nbsp;Kai Li ,&nbsp;Changhui Song ,&nbsp;Chao Cai ,&nbsp;Xingchen Yan ,&nbsp;Yongqiang Yang ,&nbsp;Di Wang","doi":"10.1016/j.ijmachtools.2024.104199","DOIUrl":"10.1016/j.ijmachtools.2024.104199","url":null,"abstract":"<div><p>Voronoi-based architected metamaterials have gained significant recognition as promising candidates for bone defect repair implants. However, the demanding requirements for reliable and adjustable load-bearing capacity pose challenges in applying irregular Voronoi-based architected metamaterials in implant applications. In this study, we propose a lattice-inspired design methodology for these metamaterials, enabling precise control over topologies and porosities to enhance their mechanical properties. We demonstrate the influence of unit cell topology on the printability, mechanical properties, and permeability of lattice-inspired Voronoi-based metamaterials (LIVMs) fabricated via laser powder bed fusion (LPBF) additive manufacturing. The LPBF-printed LIVMs exhibited yield strengths ranging from 3.35 to 17.59 MPa and specific energy absorption ranging from 3.81 to 14.29 J/g. Through finite element modeling and experimentation, we show that the deformation behavior of LIVMs with various topologies plays a crucial role in enhancing mechanical performance through mechanisms such as homogeneous load transfer between unit cells and multistage-contact strengthening within a unit cell. Additionally, we analyze the impact of unit cell type and porosity on the mass-transport behavior of LIVMs using computational fluid dynamics simulations. The LIVMs achieved experimental permeability values ranging from 3.88 × 10<sup>−9</sup> to 16.83 × 10<sup>−9</sup> m<sup>2</sup> (consistent with trabecular bones), indicating that multiple fluid flow channels can be utilized to enhance mass transport by distributing flow pressure and increasing fluid mobility. The proposed design method effectively achieves a favorable combination of superior mechanical properties and tunable permeability in Voronoi-based architected metamaterials. These findings provide valuable theoretical guidance for the development of architected metamaterials for bone implant applications.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"202 ","pages":"Article 104199"},"PeriodicalIF":14.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface micro-morphology model involved in grinding of GaN crystals driven by strain-rate and abrasive coupling effects 应变速率和磨料耦合效应驱动的氮化镓晶体研磨过程中涉及的表面微观形态模型
IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-03 DOI: 10.1016/j.ijmachtools.2024.104197
Chen Li , Kechong Wang , Yinchuan Piao , Hailong Cui , Oleg Zakharov , Zhiyu Duan , Feihu Zhang , Yongda Yan , Yanquan Geng

The complexity of the interaction between the workpiece and abrasives, the characterisation difficulty of the strain-rate effect, and the analytical difficulty of brittle-ductile coexistence removal pose significant challenges in surface micro-morphology modelling of brittle-solid grinding. To overcome these bottlenecks, a theoretical model of the normal scratching force driven by the strain-rate effect was developed to verify the strain-rate sensitivity coefficients of gallium nitride (GaN) crystals. Impact scratching tests with a single grit further emphasised that the brittle-to-ductile transition and subsurface damage behaviour of GaN crystals exhibited a distinct strain-rate dependence. Subsequently, a theoretical model of the surface micro-morphology involved in the grinding of GaN crystals was developed by comprehensively considering the strain rate, abrasive coupling effect, time evolution, abrasive randomness, and elastic-to-plastic and brittle-to-ductile transition depths. The simulated results of the model agreed well with the experimental results, with an average error of <10 %. The model indicated that the ground surface micro-morphology and roughness were insensitive to variations in the grinding depth. Under the allowable conditions of the grinder stiffness and dynamic balance, appropriately increasing the wheel speed and grinding depth, decreasing the feed speed, and refining the abrasive size could effectively improve the proportion of ductile removal during the grinding of brittle solids. The results not only enhance the understanding of the abrasive coupling effect on surface micro-morphological evolution, material removal, and damage accumulation, but also provide theoretical guidance for the parameter optimisation involved in the grinding of brittle solids.

工件与磨料之间相互作用的复杂性、应变速率效应的表征难度以及脆性与韧性共存去除的分析难度给脆固磨削的表面微观形态建模带来了巨大挑战。为了克服这些瓶颈,我们建立了应变速率效应驱动的法向划痕力理论模型,以验证氮化镓(GaN)晶体的应变速率敏感系数。使用单粒砂砾进行的冲击划痕测试进一步强调了氮化镓晶体的脆性到韧性转变和表面下损伤行为表现出明显的应变速率依赖性。随后,通过综合考虑应变率、磨料耦合效应、时间演化、磨料随机性以及弹性到塑性和脆性到韧性转变深度,建立了氮化镓晶体磨削过程中表面微观形貌的理论模型。模型的模拟结果与实验结果吻合良好,平均误差小于 10%。模型表明,磨削表面的微观形态和粗糙度对磨削深度的变化不敏感。在磨床刚度和动平衡允许的条件下,适当提高砂轮转速和磨削深度,降低进给速度,细化磨料粒度,可以有效提高脆性固体磨削过程中的韧性去除比例。研究结果不仅加深了对磨料耦合效应对表面微观形貌演变、材料去除和损伤积累的理解,而且为脆性固体磨削过程中的参数优化提供了理论指导。
{"title":"Surface micro-morphology model involved in grinding of GaN crystals driven by strain-rate and abrasive coupling effects","authors":"Chen Li ,&nbsp;Kechong Wang ,&nbsp;Yinchuan Piao ,&nbsp;Hailong Cui ,&nbsp;Oleg Zakharov ,&nbsp;Zhiyu Duan ,&nbsp;Feihu Zhang ,&nbsp;Yongda Yan ,&nbsp;Yanquan Geng","doi":"10.1016/j.ijmachtools.2024.104197","DOIUrl":"10.1016/j.ijmachtools.2024.104197","url":null,"abstract":"<div><p>The complexity of the interaction between the workpiece and abrasives, the characterisation difficulty of the strain-rate effect, and the analytical difficulty of brittle-ductile coexistence removal pose significant challenges in surface micro-morphology modelling of brittle-solid grinding. To overcome these bottlenecks, a theoretical model of the normal scratching force driven by the strain-rate effect was developed to verify the strain-rate sensitivity coefficients of gallium nitride (GaN) crystals. Impact scratching tests with a single grit further emphasised that the brittle-to-ductile transition and subsurface damage behaviour of GaN crystals exhibited a distinct strain-rate dependence. Subsequently, a theoretical model of the surface micro-morphology involved in the grinding of GaN crystals was developed by comprehensively considering the strain rate, abrasive coupling effect, time evolution, abrasive randomness, and elastic-to-plastic and brittle-to-ductile transition depths. The simulated results of the model agreed well with the experimental results, with an average error of &lt;10 %. The model indicated that the ground surface micro-morphology and roughness were insensitive to variations in the grinding depth. Under the allowable conditions of the grinder stiffness and dynamic balance, appropriately increasing the wheel speed and grinding depth, decreasing the feed speed, and refining the abrasive size could effectively improve the proportion of ductile removal during the grinding of brittle solids. The results not only enhance the understanding of the abrasive coupling effect on surface micro-morphological evolution, material removal, and damage accumulation, but also provide theoretical guidance for the parameter optimisation involved in the grinding of brittle solids.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"201 ","pages":"Article 104197"},"PeriodicalIF":14.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual skin effect and deep heterostructure of titanium alloy subjected to high-frequency electropulsing-assisted laser shock peening 高频电脉冲辅助激光冲击强化钛合金的双皮效应和深层异质结构
IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-02 DOI: 10.1016/j.ijmachtools.2024.104196
Weiwei Deng, Haifei Lu, Changyu Wang, Yuchen Liang, Hongmei Zhang, Kaiyu Luo, Jinzhong Lu

Laser shock peening, an advanced technology for severe surface plasticity peening, encounters challenges such as shallow hardened layers and surface spalling when dealing with difficult-to-machine materials. In this study, we introduced a high-frequency electropulsing-assisted laser shock peening (HFEP-LSP) technique that coupled laser shock peening with high-frequency electric pulses to achieve a significant and deeper plastic deformation layer. In the HFEP-LSP technique, we first considered the dual “skin effect”, which coupled the skin effect of high-frequency electric pulses with the “skin effect” of the mechanical effect induced by the laser shock wave. An integrated experimental platform comprising an electric pulse generator, laser shock peening equipment, and a control system was built. A >1.6 mm deep compressive residual stress layer was obtained, and the depth of the plastic deformation layer increased by 83.3 %. Furthermore, we elucidated the dual “skin effect”-induced complex heterostructure and βm phase transition. A comprehensive analysis revealed the factors contributing to the deeper strengthening layer induced by HFEP-LSP, including the compressive residual stress and plastic deformation layers. In addition, the effects of laser shock peening and HFEP-LSP on the mechanical properties were investigated. Compared to the annealed samples, the ultimate tensile strength and elongation of the HFEP-LSP-treated samples were increased by 12.3 % and 57.1 %, respectively, with a fatigue life improvement of 176.4 %. The mechanism of synergistic improvement in strength and ductility was demonstrated.

激光冲击强化作为一种先进的表面塑性强化技术,在处理难加工材料时会遇到硬化层过浅、表面剥落等难题。在这项研究中,我们介绍了一种高频电脉冲辅助激光冲击强化(HFEP-LSP)技术,该技术将激光冲击强化与高频电脉冲耦合在一起,以获得显著且更深的塑性变形层。在 HFEP-LSP 技术中,我们首先考虑了双重 "趋肤效应",即高频电脉冲的趋肤效应与激光冲击波诱导的机械效应的 "趋肤效应"。我们建立了一个由电脉冲发生器、激光冲击强化设备和控制系统组成的综合实验平台。我们获得了深度大于 1.6 毫米的压缩残余应力层,塑性变形层的深度增加了 83.3%。此外,我们还阐明了双重 "趋肤效应 "诱导的复杂异质结构和 β 相变。综合分析揭示了 HFEP-LSP 诱导的深层强化层的成因,包括压缩残余应力层和塑性变形层。此外,还研究了激光冲击强化和 HFEP-LSP 对力学性能的影响。与退火样品相比,经 HFEP-LSP 处理的样品的极限拉伸强度和伸长率分别提高了 12.3% 和 57.1%,疲劳寿命提高了 176.4%。证明了强度和延展性协同改善的机理。
{"title":"Dual skin effect and deep heterostructure of titanium alloy subjected to high-frequency electropulsing-assisted laser shock peening","authors":"Weiwei Deng,&nbsp;Haifei Lu,&nbsp;Changyu Wang,&nbsp;Yuchen Liang,&nbsp;Hongmei Zhang,&nbsp;Kaiyu Luo,&nbsp;Jinzhong Lu","doi":"10.1016/j.ijmachtools.2024.104196","DOIUrl":"10.1016/j.ijmachtools.2024.104196","url":null,"abstract":"<div><p>Laser shock peening, an advanced technology for severe surface plasticity peening, encounters challenges such as shallow hardened layers and surface spalling when dealing with difficult-to-machine materials. In this study, we introduced a high-frequency electropulsing-assisted laser shock peening (HFEP-LSP) technique that coupled laser shock peening with high-frequency electric pulses to achieve a significant and deeper plastic deformation layer. In the HFEP-LSP technique, we first considered the dual “skin effect”, which coupled the skin effect of high-frequency electric pulses with the “skin effect” of the mechanical effect induced by the laser shock wave. An integrated experimental platform comprising an electric pulse generator, laser shock peening equipment, and a control system was built. A &gt;1.6 mm deep compressive residual stress layer was obtained, and the depth of the plastic deformation layer increased by 83.3 %. Furthermore, we elucidated the dual “skin effect”-induced complex heterostructure and β<sub>m</sub> phase transition. A comprehensive analysis revealed the factors contributing to the deeper strengthening layer induced by HFEP-LSP, including the compressive residual stress and plastic deformation layers. In addition, the effects of laser shock peening and HFEP-LSP on the mechanical properties were investigated. Compared to the annealed samples, the ultimate tensile strength and elongation of the HFEP-LSP-treated samples were increased by 12.3 % and 57.1 %, respectively, with a fatigue life improvement of 176.4 %. The mechanism of synergistic improvement in strength and ductility was demonstrated.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"201 ","pages":"Article 104196"},"PeriodicalIF":14.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Machine Tools & Manufacture
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1