首页 > 最新文献

International Journal of Engineering Science最新文献

英文 中文
Non-standard interface conditions in flexure of mixture unified gradient Nanobeams 混合物统一梯度纳米梁弯曲时的非标准界面条件
IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-14 DOI: 10.1016/j.ijengsci.2024.104127
S. Ali Faghidian , Hossein Darban

Structural schemes of applicative interests in Engineering Science frequently encounter the intricate phenomenon of discontinuity. The present study intends to address the discontinuity in the flexure of elastic nanobeam by adopting an abstract variational scheme. The mixture unified gradient theory of elasticity is invoked to realize the size-effects at the ultra-small scale. The consistent form of the interface conditions, stemming from the established stationary variational principle, is meticulously set forth. The boundary-value problem of equilibrium is properly closed and the analytical solution of the transverse displacement field of the elastic nanobeam is addressed. As an alternative approach, the eigenfunction expansion method is also utilized to scrutinize the efficacy of the presented variational formulation in tackling the flexure of elastic nanobeams with discontinuity. The flexural characteristic of mixture unified gradient beams with diverse kinematic constraints is numerically illustrated and thoroughly discussed. The anticipated nanoscopic features of the characteristic length-scale parameters are confirmed. The demonstrated numerical results can advantageously serve as a benchmark for the analysis and design of pioneering ultra-sensitive nano-sensors. The established variationally consistent size-dependent framework paves the way ahead in nanomechanics and inspires further research contributing to fracture mechanics of ultra-small scale elastic beams.

工程科学中具有应用价值的结构方案经常会遇到错综复杂的不连续性现象。本研究拟采用一种抽象的变分方案来解决弹性纳米梁弯曲过程中的不连续性问题。引用弹性的混合统一梯度理论来实现超小尺度的尺寸效应。从已建立的静态变分原理出发,细致地提出了界面条件的一致形式。适当封闭了平衡的边界值问题,并对弹性纳米梁的横向位移场进行了分析求解。作为一种替代方法,还利用特征函数展开法仔细研究了所提出的变分公式在解决具有不连续的弹性纳米梁弯曲问题中的有效性。对具有不同运动学约束的混合统一梯度梁的弯曲特性进行了数值说明和深入讨论。长度尺度特征参数的预期纳米特征得到了证实。所展示的数值结果可作为分析和设计开创性超灵敏纳米传感器的基准。所建立的与尺寸相关的变异一致性框架为纳米力学的发展铺平了道路,并激发了对超小尺度弹性梁断裂力学的进一步研究。
{"title":"Non-standard interface conditions in flexure of mixture unified gradient Nanobeams","authors":"S. Ali Faghidian ,&nbsp;Hossein Darban","doi":"10.1016/j.ijengsci.2024.104127","DOIUrl":"10.1016/j.ijengsci.2024.104127","url":null,"abstract":"<div><p>Structural schemes of applicative interests in Engineering Science frequently encounter the intricate phenomenon of discontinuity. The present study intends to address the discontinuity in the flexure of elastic nanobeam by adopting an abstract variational scheme. The mixture unified gradient theory of elasticity is invoked to realize the size-effects at the ultra-small scale. The consistent form of the interface conditions, stemming from the established stationary variational principle, is meticulously set forth. The boundary-value problem of equilibrium is properly closed and the analytical solution of the transverse displacement field of the elastic nanobeam is addressed. As an alternative approach, the eigenfunction expansion method is also utilized to scrutinize the efficacy of the presented variational formulation in tackling the flexure of elastic nanobeams with discontinuity. The flexural characteristic of mixture unified gradient beams with diverse kinematic constraints is numerically illustrated and thoroughly discussed. The anticipated nanoscopic features of the characteristic length-scale parameters are confirmed. The demonstrated numerical results can advantageously serve as a benchmark for the analysis and design of pioneering ultra-sensitive nano-sensors. The established variationally consistent size-dependent framework paves the way ahead in nanomechanics and inspires further research contributing to fracture mechanics of ultra-small scale elastic beams.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"204 ","pages":"Article 104127"},"PeriodicalIF":5.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524001113/pdfft?md5=a656c71a5c74865742beba0627bbd601&pid=1-s2.0-S0020722524001113-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A digital-twin for rapid simulation modular Direct Air Capture systems 用于快速模拟模块化直接空气捕获系统的数字孪生系统
IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-08 DOI: 10.1016/j.ijengsci.2024.104120
T.I. Zohdi

There has been tremendous recent interest in Direct Air Capture (DAC) systems. A key part of any DAC system are the multiple air intake units. In particular, the arrangement of such units for optimal capture and sequestration is critical. Accordingly, this work develops an easy to use model for a modular unit system, where an approximate flow field is computed for each unit and the aggregate flow field is developed by summing the fields from each unit. This allows for a modular framework that can be used for rapid simulation and design of an overall DAC system. The rapid rate at which these simulations can be completed enables the ability to explore inverse problems seeking to determine which parameter combinations can deliver the maximum sequestration of tracer plume particles for the minimum amount of energy input. In order to cast the objective mathematically, we set up an inverse as a Machine Learning Algorithm (MLA); specifically a Genetic MLA (G-MLA) variant, which is well-suited for nonconvex optimization. Numerical examples are provided to illustrate the framework.

最近,人们对直接空气捕获(DAC)系统产生了极大的兴趣。任何 DAC 系统的关键部分都是多个进气装置。特别是,如何安排这些装置以实现最佳的捕获和封存效果至关重要。因此,这项工作为模块化单元系统开发了一个易于使用的模型,在该模型中,每个单元的近似流场都会被计算出来,而总流场则是通过将每个单元的流场相加而形成的。这样就形成了一个模块化框架,可用于快速模拟和设计整个 DAC 系统。这些模拟的快速完成使我们有能力探索逆问题,以确定哪些参数组合能以最小的能量输入实现最大的示踪羽流粒子封存。为了在数学上确定目标,我们将反演设置为机器学习算法(MLA),特别是遗传 MLA(G-MLA)变体,它非常适合非凸优化。我们提供了数值示例来说明该框架。
{"title":"A digital-twin for rapid simulation modular Direct Air Capture systems","authors":"T.I. Zohdi","doi":"10.1016/j.ijengsci.2024.104120","DOIUrl":"10.1016/j.ijengsci.2024.104120","url":null,"abstract":"<div><p>There has been tremendous recent interest in Direct Air Capture (DAC) systems. A key part of any DAC system are the multiple air intake units. In particular, the arrangement of such units for optimal capture and sequestration is critical. Accordingly, this work develops an easy to use model for a modular unit system, where an approximate flow field is computed for each unit and the aggregate flow field is developed by summing the fields from each unit. This allows for a modular framework that can be used for rapid simulation and design of an overall DAC system. The rapid rate at which these simulations can be completed enables the ability to explore inverse problems seeking to determine which parameter combinations can deliver the maximum sequestration of tracer plume particles for the minimum amount of energy input. In order to cast the objective mathematically, we set up an inverse as a Machine Learning Algorithm (MLA); specifically a Genetic MLA (G-MLA) variant, which is well-suited for nonconvex optimization. Numerical examples are provided to illustrate the framework.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104120"},"PeriodicalIF":5.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocomposites with cylindrical/rectangular/spherical/ellipsoidal reinforcements: Generalized continuum mechanics 带有圆柱形/矩形/球形/椭圆形增强体的纳米复合材料:广义连续介质力学
IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-08 DOI: 10.1016/j.ijengsci.2024.104125
Maziar Janghorban

Nanocomposites can show different properties according to the type of reinforcements they have. In this article, a model for the study of nanocomposites is examined, which is able to examine all nanocomposites with elliptical, cylindrical, spherical and rectangular reinforcements. Also, in this model, unlike some other models, the effects of interphase section are included. The results obtained from this model are compared with the results of experimental tests. Also, in present research, instead of classical continuum theories, generalized continuum mechanics is used and combined with above model to present more accurate model for studying nanocomposites. After estimating the material properties of nanocomposites, the static and dynamics behaviors of them are also studied and the influences of various parameters such as volume fraction of interphase section, geometrical shapes of reinforcements, volume fraction of fibers, gradient parameter, nonlocality and magnetic field are investigated on the results.

纳米复合材料可根据其增强材料的类型显示出不同的特性。本文研究了一种用于研究纳米复合材料的模型,该模型能够研究带有椭圆形、圆柱形、球形和矩形增强体的所有纳米复合材料。此外,与其他一些模型不同,该模型还包括相间截面的影响。该模型得出的结果与实验测试结果进行了比较。此外,在本研究中,使用了广义连续介质力学来代替经典连续介质理论,并与上述模型相结合,从而提出了更精确的纳米复合材料研究模型。在估算了纳米复合材料的材料特性后,还研究了其静态和动态行为,并探讨了相间部分的体积分数、增强体的几何形状、纤维的体积分数、梯度参数、非局部性和磁场等各种参数对结果的影响。
{"title":"Nanocomposites with cylindrical/rectangular/spherical/ellipsoidal reinforcements: Generalized continuum mechanics","authors":"Maziar Janghorban","doi":"10.1016/j.ijengsci.2024.104125","DOIUrl":"10.1016/j.ijengsci.2024.104125","url":null,"abstract":"<div><p>Nanocomposites can show different properties according to the type of reinforcements they have. In this article, a model for the study of nanocomposites is examined, which is able to examine all nanocomposites with elliptical, cylindrical, spherical and rectangular reinforcements. Also, in this model, unlike some other models, the effects of interphase section are included. The results obtained from this model are compared with the results of experimental tests. Also, in present research, instead of classical continuum theories, generalized continuum mechanics is used and combined with above model to present more accurate model for studying nanocomposites. After estimating the material properties of nanocomposites, the static and dynamics behaviors of them are also studied and the influences of various parameters such as volume fraction of interphase section, geometrical shapes of reinforcements, volume fraction of fibers, gradient parameter, nonlocality and magnetic field are investigated on the results.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104125"},"PeriodicalIF":5.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphase thermo-hydro-mechanical coupled soil drying model with phase-exchange based on mixture coupling theory 基于混合物耦合理论的带相交换的多相热-水-机械耦合土壤干燥模型
IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-03 DOI: 10.1016/j.ijengsci.2024.104119
Andrea Sendula , Kai Wang , Shashank B. Subramanyam , Jake Cray , Matthew Oram , Xiaohui Chen , Ana Heitor , David Harbottle , Kenny Brown

The drying phenomenon in soils involves complex interactions between thermal, hydrological, and mechanical effects within a multiphase system. While several researches (both mechanics and mixture theory approach) has been applied to study various thermo-hydro-mechanical (THM) coupled processes in porous media, incorporating both multiphase flow and phase change in soil drying remains limited. This work addresses this research gap by deriving new governing equations for a two-phase flow model suitable for soil drying by extending the mixture coupling approach. The derived model is implemented in COMSOL Multiphysics and validated against experimental data, demonstrating good agreement between the model predictions and the ob- served results. A sensitivity analysis is performed to investigate the impact of critical parameters on the drying process. The findings reveal that volumetric strain is most sensitive to Young’s modulus, while the saturation of liquid water is most affected by intrinsic permeability. Additionally, preliminary results for a kaolinite clay sample during the drying process are presented, extending the applicability of the derived model to specific soil types. This research provides a comprehensive framework for fully THM coupled modelling of soil drying, which can serve as a basis for future investigations.

土壤干燥现象涉及多相系统中热效应、水文效应和机械效应之间复杂的相互作用。虽然已有多项研究(包括力学和混合物理论方法)用于研究多孔介质中的各种热-水-力学(THM)耦合过程,但将多相流和相变同时纳入土壤干燥的研究仍然有限。针对这一研究空白,本研究通过扩展混合物耦合方法,为适合土壤干燥的两相流模型推导出新的控制方程。推导出的模型在 COMSOL Multiphysics 中实现,并根据实验数据进行了验证,结果表明模型预测与实验结果之间具有良好的一致性。进行了敏感性分析,以研究关键参数对干燥过程的影响。研究结果表明,体积应变对杨氏模量最为敏感,而液态水的饱和度受内在渗透性的影响最大。此外,研究还展示了高岭石粘土样本在干燥过程中的初步结果,从而将衍生模型的适用范围扩展到特定类型的土壤。这项研究为土壤干燥的全 THM 耦合建模提供了一个全面的框架,可作为未来研究的基础。
{"title":"Multiphase thermo-hydro-mechanical coupled soil drying model with phase-exchange based on mixture coupling theory","authors":"Andrea Sendula ,&nbsp;Kai Wang ,&nbsp;Shashank B. Subramanyam ,&nbsp;Jake Cray ,&nbsp;Matthew Oram ,&nbsp;Xiaohui Chen ,&nbsp;Ana Heitor ,&nbsp;David Harbottle ,&nbsp;Kenny Brown","doi":"10.1016/j.ijengsci.2024.104119","DOIUrl":"10.1016/j.ijengsci.2024.104119","url":null,"abstract":"<div><p>The drying phenomenon in soils involves complex interactions between thermal, hydrological, and mechanical effects within a multiphase system. While several researches (both mechanics and mixture theory approach) has been applied to study various thermo-hydro-mechanical (THM) coupled processes in porous media, incorporating both multiphase flow and phase change in soil drying remains limited. This work addresses this research gap by deriving new governing equations for a two-phase flow model suitable for soil drying by extending the mixture coupling approach. The derived model is implemented in COMSOL Multiphysics and validated against experimental data, demonstrating good agreement between the model predictions and the ob- served results. A sensitivity analysis is performed to investigate the impact of critical parameters on the drying process. The findings reveal that volumetric strain is most sensitive to Young’s modulus, while the saturation of liquid water is most affected by intrinsic permeability. Additionally, preliminary results for a kaolinite clay sample during the drying process are presented, extending the applicability of the derived model to specific soil types. This research provides a comprehensive framework for fully THM coupled modelling of soil drying, which can serve as a basis for future investigations.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104119"},"PeriodicalIF":5.7,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524001034/pdfft?md5=7b9579150cd6c77652885e8ef3a57b3f&pid=1-s2.0-S0020722524001034-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended Stroh formalism for plane problems of thermoelasticity of quasicrystals with applications to Green’s functions and fracture mechanics 准晶体热弹性平面问题的扩展斯特罗形式主义及其在格林函数和断裂力学中的应用
IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1016/j.ijengsci.2024.104124
Viktoriya Pasternak , Heorhiy Sulym , Iaroslav M. Pasternak , Ihor Hotsyk

The paper proposes a transparent and compact form of constitutive and equilibrium relations for the plane thermoelasticity of quasicrystal solids. The symmetry and positive definiteness of the obtained extended tensors of material constants are studied. An extension of the Stroh formalism is proposed for solving plane problems of thermoelasticity for quasicrystals. It is proved that the eigenvalues of the Stroh eigenvalue problem in the most general case of 3D quasicrystal materials do are purely complex. The relations between the matrices and vectors of phonon–phason elastic and thermoelastic coefficients of the proposed extended Stroh formalism are obtained. A fundamental solution to the plane problem of thermoelasticity of a quasicrystal medium is derived. The asymptotic behavior of physical and mechanical fields near the vertices of objects whose geometry can be modeled by a discontinuity line (cracks, thin inclusions) is studied, and the concepts of the corresponding generalized field (heat flux and phonon–phason stress) intensity factors are introduced. Examples of the influence of heat sources and sinks on an infinite quasicrystal medium containing a rectilinear heated crack are considered.

本文提出了一种透明、紧凑的准晶体固体平面热弹性的构成和平衡关系形式。对所获得的材料常数扩展张量的对称性和正定性进行了研究。为解决准晶体的平面热弹性问题,提出了斯特罗形式主义的扩展。研究证明,在三维准晶体材料的最一般情况下,斯特罗特征值问题的特征值是纯复数。获得了所提出的扩展斯特罗形式的声波弹性和热弹性系数矩阵和向量之间的关系。推导出了准晶体介质热弹性平面问题的基本解。研究了几何形状可由不连续线(裂缝、薄夹杂物)建模的物体顶点附近的物理和机械场的渐近行为,并引入了相应的广义场(热通量和声波应力)强度因子的概念。研究还考虑了热源和热汇对含有直线受热裂缝的无限准晶体介质的影响实例。
{"title":"Extended Stroh formalism for plane problems of thermoelasticity of quasicrystals with applications to Green’s functions and fracture mechanics","authors":"Viktoriya Pasternak ,&nbsp;Heorhiy Sulym ,&nbsp;Iaroslav M. Pasternak ,&nbsp;Ihor Hotsyk","doi":"10.1016/j.ijengsci.2024.104124","DOIUrl":"10.1016/j.ijengsci.2024.104124","url":null,"abstract":"<div><p>The paper proposes a transparent and compact form of constitutive and equilibrium relations for the plane thermoelasticity of quasicrystal solids. The symmetry and positive definiteness of the obtained extended tensors of material constants are studied. An extension of the Stroh formalism is proposed for solving plane problems of thermoelasticity for quasicrystals. It is proved that the eigenvalues of the Stroh eigenvalue problem in the most general case of 3D quasicrystal materials do are purely complex. The relations between the matrices and vectors of phonon–phason elastic and thermoelastic coefficients of the proposed extended Stroh formalism are obtained. A fundamental solution to the plane problem of thermoelasticity of a quasicrystal medium is derived. The asymptotic behavior of physical and mechanical fields near the vertices of objects whose geometry can be modeled by a discontinuity line (cracks, thin inclusions) is studied, and the concepts of the corresponding generalized field (heat flux and phonon–phason stress) intensity factors are introduced. Examples of the influence of heat sources and sinks on an infinite quasicrystal medium containing a rectilinear heated crack are considered.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104124"},"PeriodicalIF":5.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic effect of regular particle distribution in elastic–plastic composites: The modified tangent cluster model and numerical homogenization 弹性塑料复合材料中规则颗粒分布的各向异性效应:修正的正切簇模型和数值均质化
IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1016/j.ijengsci.2024.104118
K. Bieniek , M. Majewski , P. Hołobut , K. Kowalczyk-Gajewska

Estimation of macroscopic properties of heterogeneous materials has always posed significant problems. Procedures based on numerical homogenization, although very flexible, consume a lot of time and computing power. Thus, many attempts have been made to develop analytical models that could provide robust and computationally efficient tools for this purpose. The goal of this paper is to develop a reliable analytical approach to finding the effective elastic–plastic response of metal matrix composites (MMC) and porous metals (PM) with a predefined particle or void distribution, as well as to examine the anisotropy induced by regular inhomogeneity arrangements. The proposed framework is based on the idea of Molinari & El Mouden (1996) to improve classical mean-field models of thermoelastic media by taking into account the interactions between each pair of inhomogeneities within the material volume, known as a cluster model. Both elastic and elasto-plastic regimes are examined. A new extension of the original formulation, aimed to account for the non-linear plastic regime, is performed with the use of the modified tangent linearization of the metal matrix constitutive law. The model uses the second stress moment to track the accumulated plastic strain in the matrix. In the examples, arrangements of spherical inhomogeneities in three Bravais lattices of cubic symmetry (Regular Cubic, Body-Centered Cubic and Face-Centered Cubic) are considered for two basic material scenarios: “hard-in-soft” (MMC) and “soft-in-hard” (PM). As a means of verification, the results of micromechanical mean-field modeling are compared with those of numerical homogenization performed using the Finite Element Method (FEM). In the elastic regime, a comparison is also made with several other micromechanical models dedicated to periodic composites. Within both regimes, the results obtained by the cluster model are qualitatively and quantitatively consistent with FEM calculations, especially for volume fractions of inclusions up to 40%.

异质材料宏观特性的估算一直是个大问题。基于数值均质化的程序虽然非常灵活,但却耗费大量时间和计算能力。因此,人们多次尝试开发分析模型,以便为此提供稳健且计算效率高的工具。本文的目标是开发一种可靠的分析方法,以找到具有预定颗粒或空隙分布的金属基复合材料(MMC)和多孔金属(PM)的有效弹塑性响应,并研究规则不均匀排列引起的各向异性。所提出的框架基于 Molinari & El Mouden(1996 年)的想法,即通过考虑材料体积内每对非均质物之间的相互作用(即群集模型)来改进热弹性介质的经典均场模型。对弹性和弹塑性状态都进行了研究。为了考虑非线性塑性状态,对原始公式进行了新的扩展,使用了金属基体构成定律的修正切线线性化。该模型使用第二应力矩来跟踪基体中的累积塑性应变。在示例中,考虑了三种立方对称布拉维晶格(常规立方、体心立方和面心立方)中球形非均质体的排列,以及两种基本材料情况:"软中硬"(MMC)和 "硬中软"(PM)。作为验证手段,将微机械平均场建模结果与使用有限元法(FEM)进行数值均质化的结果进行了比较。在弹性状态下,还与其他几种专门用于周期性复合材料的微机械模型进行了比较。在这两种情况下,群集模型得到的结果在质量和数量上都与有限元法的计算结果一致,尤其是当夹杂物的体积分数达到 40% 时。
{"title":"Anisotropic effect of regular particle distribution in elastic–plastic composites: The modified tangent cluster model and numerical homogenization","authors":"K. Bieniek ,&nbsp;M. Majewski ,&nbsp;P. Hołobut ,&nbsp;K. Kowalczyk-Gajewska","doi":"10.1016/j.ijengsci.2024.104118","DOIUrl":"10.1016/j.ijengsci.2024.104118","url":null,"abstract":"<div><p>Estimation of macroscopic properties of heterogeneous materials has always posed significant problems. Procedures based on numerical homogenization, although very flexible, consume a lot of time and computing power. Thus, many attempts have been made to develop analytical models that could provide robust and computationally efficient tools for this purpose. The goal of this paper is to develop a reliable analytical approach to finding the effective elastic–plastic response of metal matrix composites (MMC) and porous metals (PM) with a predefined particle or void distribution, as well as to examine the anisotropy induced by regular inhomogeneity arrangements. The proposed framework is based on the idea of Molinari &amp; El Mouden (1996) to improve classical mean-field models of thermoelastic media by taking into account the interactions between each pair of inhomogeneities within the material volume, known as a cluster model. Both elastic and elasto-plastic regimes are examined. A new extension of the original formulation, aimed to account for the non-linear plastic regime, is performed with the use of the modified tangent linearization of the metal matrix constitutive law. The model uses the second stress moment to track the accumulated plastic strain in the matrix. In the examples, arrangements of spherical inhomogeneities in three Bravais lattices of cubic symmetry (Regular Cubic, Body-Centered Cubic and Face-Centered Cubic) are considered for two basic material scenarios: “hard-in-soft” (MMC) and “soft-in-hard” (PM). As a means of verification, the results of micromechanical mean-field modeling are compared with those of numerical homogenization performed using the Finite Element Method (FEM). In the elastic regime, a comparison is also made with several other micromechanical models dedicated to periodic composites. Within both regimes, the results obtained by the cluster model are qualitatively and quantitatively consistent with FEM calculations, especially for volume fractions of inclusions up to 40%.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104118"},"PeriodicalIF":5.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524001022/pdfft?md5=fffcd209f2098f0e750d0b6d47991d7b&pid=1-s2.0-S0020722524001022-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On application of a surrogate model to numerical evaluation of effective elastic properties of composites with 3D rotationally symmetric particles 代用模型在三维旋转对称颗粒复合材料有效弹性特性数值评估中的应用
IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-07-29 DOI: 10.1016/j.ijengsci.2024.104121
Pascal Alexander Happ , Igor Tsukrov , Romana Piat

Micromechanical modelling of particulate composites with non-ellipsoidal particle shapes presents significant challenges because analytical approaches based on the fundamental results of Eshelby cannot be used. On the other side, direct numerical evaluations by finite element analysis can involve high computational cost in the case when particle features have small radius of curvature, sharp edges and require extremely fine meshes. This paper proposes substituting the exact particle shape with a surrogate model producing approximately the same contribution to the effective elastic moduli. We illustrate our approach by considering rotationally symmetric 3D particle shapes with the external surface defined by the Laplace's spherical harmonics. In this case, spherical layered surrogates offer good accuracy of approximation, especially when the material parameters of each layer are determined by the particle swarm optimization algorithm. The proposed approach is presented by considering several highly undulated particle shapes and comparing the surrogate model results with direct finite element simulations of the original microstructure.

由于无法使用基于 Eshelby 基本结果的分析方法,因此对非椭球形颗粒复合材料进行微观力学建模是一项重大挑战。另一方面,在颗粒特征曲率半径小、边缘锋利且需要极细网格的情况下,通过有限元分析进行直接数值评估会涉及高昂的计算成本。本文建议用对有效弹性模量的贡献大致相同的代用模型来替代精确的颗粒形状。我们考虑了旋转对称的三维粒子形状,其外表面由拉普拉斯球面谐波定义,以此说明我们的方法。在这种情况下,球形分层代型具有良好的近似精度,特别是当每层的材料参数由粒子群优化算法确定时。通过考虑几种高度起伏的粒子形状,并将代用模型结果与原始微结构的直接有限元模拟结果进行比较,介绍了所提出的方法。
{"title":"On application of a surrogate model to numerical evaluation of effective elastic properties of composites with 3D rotationally symmetric particles","authors":"Pascal Alexander Happ ,&nbsp;Igor Tsukrov ,&nbsp;Romana Piat","doi":"10.1016/j.ijengsci.2024.104121","DOIUrl":"10.1016/j.ijengsci.2024.104121","url":null,"abstract":"<div><p>Micromechanical modelling of particulate composites with non-ellipsoidal particle shapes presents significant challenges because analytical approaches based on the fundamental results of Eshelby cannot be used. On the other side, direct numerical evaluations by finite element analysis can involve high computational cost in the case when particle features have small radius of curvature, sharp edges and require extremely fine meshes. This paper proposes substituting the exact particle shape with a surrogate model producing approximately the same contribution to the effective elastic moduli. We illustrate our approach by considering rotationally symmetric 3D particle shapes with the external surface defined by the Laplace's spherical harmonics. In this case, spherical layered surrogates offer good accuracy of approximation, especially when the material parameters of each layer are determined by the particle swarm optimization algorithm. The proposed approach is presented by considering several highly undulated particle shapes and comparing the surrogate model results with direct finite element simulations of the original microstructure.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104121"},"PeriodicalIF":5.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524001058/pdfft?md5=66023d48eab1ff6dff99af2d7772af92&pid=1-s2.0-S0020722524001058-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141836789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The theory of scaled electromechanics 比例机电理论
IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-07-29 DOI: 10.1016/j.ijengsci.2024.104122
Keith Davey , Mohd Izzat Abd Malek , Zainab Ali , Hamed Sadeghi , Rooholamin Darvizeh

A new scaling theory called finite similitude has appeared in the open literature for the scaling of physical systems. The theory is founded on the metaphysical concept of space scaling and consequently can in principle be applied to all physics. With regard to the application of the theory to multi-physics however, an obstacle is dissimilar mathematical formulations, that are preferred and applied in practice. This paper looks to combine electrical and mechanical physics under the rules of the scaling theory for the analysis of scaled electromechanical systems. To facilitate this the physics of electromechanics is described using transport equations on a projected space termed the scaling space. It is shown that this approach unifies the mechanical and electrical descriptions and allows the scaling theory to be applied and for scaling identities to be established. Additionally, on confirming that the scaling space possesses all the attributes of a real physical space (despite being a mere projection), mathematical modelling (to great advantage) is performed directly and integrated with the scaling theory. To showcase the concepts, mathematical models for previously researched electromechanical systems are directly analysed in the new scaling space. It is demonstrated how such models automatically account for scale dependencies in the electromechanical systems they represent. The huge potential of the new approach is revealed providing the means for formulating (for the first time) realistic representative scaled-mathematical models.

公开文献中出现了一种新的缩放理论,称为 "有限相似性"(finite similitude),用于物理系统的缩放。该理论以 "有限相似性 "这一形而上学概念为基础,因此原则上可适用于所有物理学。然而,在将该理论应用于多物理场方面,一个障碍是不同的数学公式,而这些数学公式在实践中被优先考虑和应用。本文希望在缩放理论的规则下,将电子物理学和机械物理学结合起来,对缩放机电系统进行分析。为了便于分析,机电物理学在一个称为缩放空间的投影空间上使用传输方程进行描述。结果表明,这种方法统一了机械和电气描述,允许应用缩放理论并建立缩放特性。此外,在确认缩放空间具有真实物理空间的所有属性(尽管只是一个投影)后,数学建模(具有极大优势)可直接进行,并与缩放理论相结合。为了展示这些概念,我们在新的缩放空间中直接分析了以前研究过的机电系统的数学模型。模型展示了这些模型是如何自动考虑其所代表的机电系统的比例依赖性的。揭示了新方法的巨大潜力,为制定(首次)具有现实代表性的缩放数学模型提供了方法。
{"title":"The theory of scaled electromechanics","authors":"Keith Davey ,&nbsp;Mohd Izzat Abd Malek ,&nbsp;Zainab Ali ,&nbsp;Hamed Sadeghi ,&nbsp;Rooholamin Darvizeh","doi":"10.1016/j.ijengsci.2024.104122","DOIUrl":"10.1016/j.ijengsci.2024.104122","url":null,"abstract":"<div><p>A new scaling theory called finite similitude has appeared in the open literature for the scaling of physical systems. The theory is founded on the metaphysical concept of <em>space scaling</em> and consequently can in principle be applied to all physics. With regard to the application of the theory to multi-physics however, an obstacle is dissimilar mathematical formulations, that are preferred and applied in practice. This paper looks to combine electrical and mechanical physics under the rules of the scaling theory for the analysis of scaled electromechanical systems. To facilitate this the physics of electromechanics is described using transport equations on a projected space termed the scaling space. It is shown that this approach unifies the mechanical and electrical descriptions and allows the scaling theory to be applied and for scaling identities to be established. Additionally, on confirming that the scaling space possesses all the attributes of a real physical space (despite being a mere projection), mathematical modelling (to great advantage) is performed directly and integrated with the scaling theory. To showcase the concepts, mathematical models for previously researched electromechanical systems are directly analysed in the new scaling space. It is demonstrated how such models automatically account for scale dependencies in the electromechanical systems they represent. The huge potential of the new approach is revealed providing the means for formulating (for the first time) realistic representative scaled-mathematical models.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104122"},"PeriodicalIF":5.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of graphene origami-enabled auxetic metamaterial beams via various shear deformation theories 通过各种剪切变形理论研究石墨烯起源辅助超材料梁的动力学特性
IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-07-27 DOI: 10.1016/j.ijengsci.2024.104123
Behrouz Karami, Mergen H. Ghayesh

Although auxetic metamaterials exhibit unique and unusual mechanical properties, such as a negative Poisson's ratio, their mechanics remains poorly understood. In this study, we model a graded beam fabricated from graphene origami-enabled auxetic metamaterials and investigate its dynamics from the perspective of different shear deformation theories. The auxetic metamaterial beam is composed of multiple layers of graphene origami-enabled auxetic metamaterials, where the content of graphene origami varies through the layered thickness; both the auxetic property and other properties are varied in a graded manner, which are effectively be approximated via micromechanical models. The Euler-Bernoulli, third-order, and higher-order shear deformable refined beam theories are adopted to model the auxetic metamaterial beam as a continuous system. Following this, the governing motion equations are derived using the Hamiltonian principle and then are numerically solved using a weighted residual method. The obtained results provide a comprehensive understanding of how graphene origami content and its distribution pattern, graphene folding degree, and the utilisation of different shear deformation theories influence the dynamic behaviour of the beam.

虽然辅助超材料表现出独特而不寻常的力学特性,如负泊松比,但人们对其力学特性的了解仍然很少。在本研究中,我们建立了一个由石墨烯创始辅助超材料制成的梯度梁模型,并从不同剪切形变理论的角度研究了其动力学特性。辅助超材料梁由多层石墨烯折纸辅助超材料组成,其中石墨烯折纸的含量随着层厚的变化而变化;辅助特性和其他特性以分级的方式变化,可有效地通过微机械模型进行近似。采用欧拉-伯努利、三阶和高阶剪切变形精制梁理论,将辅助超材料梁作为一个连续系统建模。随后,利用哈密顿原理推导出支配运动方程,并采用加权残差法进行数值求解。所获得的结果让人们全面了解了石墨烯折纸含量及其分布模式、石墨烯折叠程度以及不同剪切变形理论的应用如何影响梁的动态行为。
{"title":"Dynamics of graphene origami-enabled auxetic metamaterial beams via various shear deformation theories","authors":"Behrouz Karami,&nbsp;Mergen H. Ghayesh","doi":"10.1016/j.ijengsci.2024.104123","DOIUrl":"10.1016/j.ijengsci.2024.104123","url":null,"abstract":"<div><p>Although auxetic metamaterials exhibit unique and unusual mechanical properties, such as a negative Poisson's ratio, their mechanics remains poorly understood. In this study, we model a graded beam fabricated from graphene origami-enabled auxetic metamaterials and investigate its dynamics from the perspective of different shear deformation theories. The auxetic metamaterial beam is composed of multiple layers of graphene origami-enabled auxetic metamaterials, where the content of graphene origami varies through the layered thickness; both the auxetic property and other properties are varied in a graded manner, which are effectively be approximated via micromechanical models. The Euler-Bernoulli, third-order, and higher-order shear deformable refined beam theories are adopted to model the auxetic metamaterial beam as a continuous system. Following this, the governing motion equations are derived using the Hamiltonian principle and then are numerically solved using a weighted residual method. The obtained results provide a comprehensive understanding of how graphene origami content and its distribution pattern, graphene folding degree, and the utilisation of different shear deformation theories influence the dynamic behaviour of the beam.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"203 ","pages":"Article 104123"},"PeriodicalIF":5.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524001071/pdfft?md5=958a71d96130175321189036b0346bd5&pid=1-s2.0-S0020722524001071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141836829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A neat flux-based weak formulation for thermal problems which develops Biot’s variational principle 基于通量的热问题弱公式,发展了毕奥特变分原理
IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-06-20 DOI: 10.1016/j.ijengsci.2024.104103
Ali Haydar , Laura Galuppi , Gianni Royer-Carfagni

We propose a weak form of the transient heat equations for solid bodies, as a time-dependent spatial variation of the heat displacement vector field, whose time derivative is the heat flux. This develops the variational principle originally proposed by Biot, inasmuch Fourier’s law is embedded as a holonomic constraint, while energy conservation results from the variation (the vice-versa from Biot). This is a neat formulation because only the heat displacement appears in the variational equations, whereas Biot’s form also involved the unknown temperature field: Fourier’s law is used only a posteriori to recover the temperature. Since the heat displacement is generally more regular than the temperature field, it represents a natural variable in problems with material inhomogeneities, uneven radiation, thermal shocks. The three-dimensional analytical set-up is presented in comparison with Biot’s, for boundary conditions accounting for radiation and convection. A mechanical analogy with the equilibrium of an elastic bar with viscous constraints is suggested for the one-dimensional case. The variational equations are implemented in a finite element code. Numerical experiments on benchmark problems, involving high temperature gradients, confirm the efficiency of the proposed approach in many structural problems.

我们提出了固体体瞬态热方程的弱形式,即热位移矢量场随时间的空间变化,其时间导数为热通量。这发展了最初由 Biot 提出的变分原理,因为傅里叶定律被嵌入为整体约束条件,而能量守恒则来自变分(Biot 则相反)。这是一种简洁的表述,因为只有热位移出现在变分方程中,而毕奥的表述还涉及未知温度场:傅里叶定律仅用于事后恢复温度。由于热位移通常比温度场更有规律,因此在材料不均匀、不均匀辐射、热冲击等问题中,热位移是一个自然变量。在考虑到辐射和对流的边界条件下,与 Biot 的三维分析设置进行了比较。对于一维情况,提出了与具有粘性约束的弹性杆平衡的力学类比。变分方程是在有限元代码中实现的。在涉及高温梯度的基准问题上进行的数值实验证实了所提出的方法在许多结构问题上的效率。
{"title":"A neat flux-based weak formulation for thermal problems which develops Biot’s variational principle","authors":"Ali Haydar ,&nbsp;Laura Galuppi ,&nbsp;Gianni Royer-Carfagni","doi":"10.1016/j.ijengsci.2024.104103","DOIUrl":"https://doi.org/10.1016/j.ijengsci.2024.104103","url":null,"abstract":"<div><p>We propose a weak form of the transient heat equations for solid bodies, as a time-dependent spatial variation of the heat displacement vector field, whose time derivative is the heat flux. This develops the variational principle originally proposed by Biot, inasmuch Fourier’s law is embedded as a holonomic constraint, while energy conservation results from the variation (the vice-versa from Biot). This is a neat formulation because only the heat displacement appears in the variational equations, whereas Biot’s form also involved the unknown temperature field: Fourier’s law is used only <em>a posteriori</em> to recover the temperature. Since the heat displacement is generally more regular than the temperature field, it represents a natural variable in problems with material inhomogeneities, uneven radiation, thermal shocks. The three-dimensional analytical set-up is presented in comparison with Biot’s, for boundary conditions accounting for radiation and convection. A mechanical analogy with the equilibrium of an elastic bar with viscous constraints is suggested for the one-dimensional case. The variational equations are implemented in a finite element code. Numerical experiments on benchmark problems, involving high temperature gradients, confirm the efficiency of the proposed approach in many structural problems.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"202 ","pages":"Article 104103"},"PeriodicalIF":5.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524000879/pdfft?md5=c4dc5d4819ef2895d9de89f4739566bd&pid=1-s2.0-S0020722524000879-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Engineering Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1