In this study, a numerical model of the Active Magnetic Regenerator (AMR) cycle, implemented in the reciprocal demonstrator, was developed using COMSOL Multiphysics. A nested Halbach cylinder (NHC) array served as the magnetic field source. Additional simulation of an operation of the NHC array was carried out. To eliminate the discrepancies between the heat exchange duration of the heat transfer medium (HTM) and the hot and cold ends of the regenerator, an adequate time dependence of the inner cylinder rotation angle was calculated. The latter provides the symmetrical sinusoidal form of time dependence of the magnetic flux density in the gap of NHC array, which is important for enhancing the performance of a magnetic refrigerator. It was established that in order to achieve a maximal temperature span, it is necessary to shift the phases of the magnetic field insertion/removal and heat transfer fluid pumping processes by nearly half of the operating cycle period. The latter brings the simulated cycle closer to the ideal AMR cycle.
The mixtures of R290 (propane) and R1234yf (2,3,3,3-tetrafluoroprop-1-ene), R1243zf (3,3,3-trifluoropropene), or R1234ze(E) (trans-1,3,3,3-tetrafluoropropene) could be potential alternatives for high global warming potential (GWP) refrigerants hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs). Obtaining the critical parameters of mixtures is crucial for establishing thermodynamic models, evaluating the highest operating temperature of refrigerants, determining the phase envelope, and confirming the starting point of the Widom line. However, few studies have been made on their critical properties. In this work, the critical properties of three binary systems containing R290 + R1234yf / R1243zf / R1234ze(E) are obtained experimentally with a metal-bellows volume apparatus. The critical state is judged by direct visual observation of critical opalescence and the recurrence of the vapor-liquid phase interface. The extended total uncertainties for the mole fraction, critical pressure, critical temperature, and critical density were below 0.004, 21 kPa, 50 mK, and 0.6 % (k = 2, 0.95 confidence coefficient), respectively. Experimentally obtained critical data are correlated by the Modified Wilson method and the Redlich–Kister method. The critical parameters of the R290 + R1234yf, R290 + R1243zf, and R290 + R1234ze(E) mixtures are predicted using the Correlated Modified Wilson (CMW) method, He et al.’s method, and the Modified Extended Chueh–Prausnitz (MECP) method. The correlated curve and predicted outcomes are employed for comparison with this work's experimental results. Meanwhile, the critical parameters data obtained experimentally are contrasted with the value of REFPROP 10.0 and other open literature. The fitting and prediction curves somewhat agree with the experimental results.