Pub Date : 2024-09-30DOI: 10.1016/j.ijrefrig.2024.09.027
Maldistribution seriously impacts the heat transfer performance of the microchannel heat exchanger (MCHX). Fully understanding the two-phase distribution in the heat exchanger is important for advancing academic research and engineering applications. This study introduces a novel method for quantifying two-phase distribution in a microchannel heat exchanger. An experimental setup was developed to measure the local vapor mass fraction in the heat exchanger header. Capacitance signals were measured under inlet vapor mass fractions from 0 to 1, and inlet flow rates of 10, 15, and 25 g s−1 corresponding to a mass flux of 17.47, 26.2, and 43.66 kg m−2s−1, respectively. The local vapor mass fraction in the header was estimated using the capacitance measurements. The mass flow rate in the header, the microchannel tube, and the vapor mass fraction in the tube were calculated using the proposed model. The calculation model was validated against literature data, and the results were analyzed. The analysis reveals the characteristics of vapor mass fraction and mass flow rate distribution in the MCHX and further elaborates on the effects of phase separation, entrainment ratio, and pressure drop balance on the distribution. The proposed method can evaluate distribution in the header and tubes of microchannel heat exchangers, and it is also applicable to other types of two-phase flow devices.
分布不良严重影响了微通道换热器(MCHX)的传热性能。充分了解热交换器中的两相分布对于推进学术研究和工程应用非常重要。本研究介绍了一种量化微通道热交换器中两相分布的新方法。研究人员开发了一种实验装置,用于测量热交换器集管中的局部蒸汽质量分数。在入口蒸汽质量分数为 0 至 1,入口流速为 10、15 和 25 g s-1 的情况下测量电容信号,对应的质量通量分别为 17.47、26.2 和 43.66 kg m-2s-1。集管中的局部蒸汽质量分数是通过电容测量值估算出来的。利用提出的模型计算了集管、微通道管中的质量流量和管中的蒸汽质量分数。计算模型与文献数据进行了验证,并对结果进行了分析。分析揭示了 MCHX 中蒸汽质量分数和质量流量分布的特点,并进一步阐述了相分离、夹带比和压降平衡对分布的影响。所提出的方法可以评估微通道热交换器集管和管道中的分布,也适用于其他类型的两相流设备。
{"title":"A method to calculate the two-phase distribution in a microchannel heat exchanger","authors":"","doi":"10.1016/j.ijrefrig.2024.09.027","DOIUrl":"10.1016/j.ijrefrig.2024.09.027","url":null,"abstract":"<div><div>Maldistribution seriously impacts the heat transfer performance of the microchannel heat exchanger (MCHX). Fully understanding the two-phase distribution in the heat exchanger is important for advancing academic research and engineering applications. This study introduces a novel method for quantifying two-phase distribution in a microchannel heat exchanger. An experimental setup was developed to measure the local vapor mass fraction in the heat exchanger header. Capacitance signals were measured under inlet vapor mass fractions from 0 to 1, and inlet flow rates of 10, 15, and 25 g s<sup>−1</sup> corresponding to a mass flux of 17.47, 26.2, and 43.66 kg m<sup>−2</sup>s<sup>−1</sup>, respectively. The local vapor mass fraction in the header was estimated using the capacitance measurements. The mass flow rate in the header, the microchannel tube, and the vapor mass fraction in the tube were calculated using the proposed model. The calculation model was validated against literature data, and the results were analyzed. The analysis reveals the characteristics of vapor mass fraction and mass flow rate distribution in the MCHX and further elaborates on the effects of phase separation, entrainment ratio, and pressure drop balance on the distribution. The proposed method can evaluate distribution in the header and tubes of microchannel heat exchangers, and it is also applicable to other types of two-phase flow devices.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-29DOI: 10.1016/j.ijrefrig.2024.09.025
Ammonia boilers are commonly used as expendable radiators during the return phase of spacecraft. The aim of this study is to investigate the bubble behavior and heat transfer characteristics within a vertical rectangular microchannel of a plate-fin ammonia boiler under gravity at an absolute pressure of 354–615 kPa. In order to achieve this, a single rectangular microchannel unit was intercepted from the ammonia boiler structure to construct a simulation model, and the high-pressure boiling process of ammonia in the rectangular microchannel was numerically investigated using the VOF model. Good agreement was obtained by comparing the numerical results with the experimental data with the error within 8 %. The results show that the wake flow at the lower end of the primary bubbles has an enhanced effect on the heat transfer, which is about 50–60 %. The maximum horizontal dimension of primary bubbles increases with increasing superheat, and significant bubble coalescence occurs when 45 % of the rectangular microchannel spacing is exceeded. In addition, the effect of different saturation temperatures on the heat transfer performance on the hot high temperature wall was investigated. Significant heat transfer deterioration was found to occur at saturation temperatures below 4 °C (superheat above 15 °C). The reason found in this study was that bubble coalescence significantly increases the percentage of gas-phase contact area on the high-temperature wall (from 25 % to 54 %) and weakens the wake enhancement effect.
{"title":"Numerical investigation of ammonia boiling heat transfer in rectangular microchannel under high pressure","authors":"","doi":"10.1016/j.ijrefrig.2024.09.025","DOIUrl":"10.1016/j.ijrefrig.2024.09.025","url":null,"abstract":"<div><div>Ammonia boilers are commonly used as expendable radiators during the return phase of spacecraft. The aim of this study is to investigate the bubble behavior and heat transfer characteristics within a vertical rectangular microchannel of a plate-fin ammonia boiler under gravity at an absolute pressure of 354–615 kPa. In order to achieve this, a single rectangular microchannel unit was intercepted from the ammonia boiler structure to construct a simulation model, and the high-pressure boiling process of ammonia in the rectangular microchannel was numerically investigated using the VOF model. Good agreement was obtained by comparing the numerical results with the experimental data with the error within 8 %. The results show that the wake flow at the lower end of the primary bubbles has an enhanced effect on the heat transfer, which is about 50–60 %. The maximum horizontal dimension of primary bubbles increases with increasing superheat, and significant bubble coalescence occurs when 45 % of the rectangular microchannel spacing is exceeded. In addition, the effect of different saturation temperatures on the heat transfer performance on the hot high temperature wall was investigated. Significant heat transfer deterioration was found to occur at saturation temperatures below 4 °C (superheat above 15 °C). The reason found in this study was that bubble coalescence significantly increases the percentage of gas-phase contact area on the high-temperature wall (from 25 % to 54 %) and weakens the wake enhancement effect.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.ijrefrig.2024.09.024
In cold, moisture-rich winter environments, window fogging represents a substantial safety hazard for drivers. Electric vehicles often incorporate heat pump systems to address challenges such as dehumidification and heating specific to cold weather. Therefore, it is essential to evaluate the dehumidification and heating efficiency of these systems through focused research. This study presents a dual-evaporator heat pump system designed specifically for electric vehicles, equipped with two distinct modes for dehumidification and heating. The research examines how factors such as inlet air volume and the degree of opening of the electronic expansion valve affect the system's dehumidification and heating performance. Experimental analyses were conducted to explore the system's response under various conditions of inlet air humidity and compressor speed in both modes. Results suggest that increasing inlet air volume improves dehumidification effectiveness but may reduce heating performance. Likewise, a wider opening of the electronic expansion valve enhances heating but could decrease dehumidification efficiency. Importantly, the study indicates that when the relative humidity of the inlet air exceeds 70 %, a single evaporator mode is more effective for dehumidification. However, when the relative humidity is below 70 %, the dual evaporator mode is more advantageous, showing better heating performance.
{"title":"Investigating dehumidification and heating performance in a dual evaporator heat pump system for electric vehicles","authors":"","doi":"10.1016/j.ijrefrig.2024.09.024","DOIUrl":"10.1016/j.ijrefrig.2024.09.024","url":null,"abstract":"<div><div>In cold, moisture-rich winter environments, window fogging represents a substantial safety hazard for drivers. Electric vehicles often incorporate heat pump systems to address challenges such as dehumidification and heating specific to cold weather. Therefore, it is essential to evaluate the dehumidification and heating efficiency of these systems through focused research. This study presents a dual-evaporator heat pump system designed specifically for electric vehicles, equipped with two distinct modes for dehumidification and heating. The research examines how factors such as inlet air volume and the degree of opening of the electronic expansion valve affect the system's dehumidification and heating performance. Experimental analyses were conducted to explore the system's response under various conditions of inlet air humidity and compressor speed in both modes. Results suggest that increasing inlet air volume improves dehumidification effectiveness but may reduce heating performance. Likewise, a wider opening of the electronic expansion valve enhances heating but could decrease dehumidification efficiency. Importantly, the study indicates that when the relative humidity of the inlet air exceeds 70 %, a single evaporator mode is more effective for dehumidification. However, when the relative humidity is below 70 %, the dual evaporator mode is more advantageous, showing better heating performance.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.ijrefrig.2024.09.015
The target of this study is to experimentally compare the performance of three different expansion devices for small-capacity subcritical R744 vapour-compression refrigeration units. The first considered expansion device was the conventional high-pressure expansion valve, which was selected as the baseline. The second assessed expansion device was a two-phase ejector for expansion work recovery whose refrigerant flow was modulated via the pulse-width modulation (PWM) strategy. Finally, the PWM approach was employed for controlling the refrigerant flow of the ejector motive nozzle while the refrigerant was not permitted to be drawn by the ejector suction nozzle. The results showed that the motive nozzle controlled via PWM effect offers similar effectiveness to a conventional high-pressure expansion valve in the subcritical regime. Furthermore, it was observed that the PWM ejector is able to control the high pressure effectively while increasing the coefficient of performance (COP) by up to 5.3 % without and by up to 7.9 % with overfed evaporator compared to the baseline in the transition regime. The results also showed that the installation of the conventional high-pressure expansion valve is not necessary. Finally, the yearly performance of the aforementioned expansion devices was assessed in five different locations, i.e., Athens (Greece), Phoenix (USA), New Delhi (India), Riyadh (Saudi Arabia) and Bangkok (Thailand). The outcomes revealed that the PWM ejector allows for a higher in yearly average COP (COPyearly avg) from 4.9 % (in Athens) to 11.8 % (in Bangkok) over the baseline.
{"title":"Experimental performance comparison of various expansion devices for small-capacity subcritical R744 vapour-compression refrigeration units","authors":"","doi":"10.1016/j.ijrefrig.2024.09.015","DOIUrl":"10.1016/j.ijrefrig.2024.09.015","url":null,"abstract":"<div><div>The target of this study is to experimentally compare the performance of three different expansion devices for small-capacity subcritical R744 vapour-compression refrigeration units. The first considered expansion device was the conventional high-pressure expansion valve, which was selected as the baseline. The second assessed expansion device was a two-phase ejector for expansion work recovery whose refrigerant flow was modulated via the pulse-width modulation (PWM) strategy. Finally, the PWM approach was employed for controlling the refrigerant flow of the ejector motive nozzle while the refrigerant was not permitted to be drawn by the ejector suction nozzle. The results showed that the motive nozzle controlled via PWM effect offers similar effectiveness to a conventional high-pressure expansion valve in the subcritical regime. Furthermore, it was observed that the PWM ejector is able to control the high pressure effectively while increasing the coefficient of performance (COP) by up to 5.3 % without and by up to 7.9 % with overfed evaporator compared to the baseline in the transition regime. The results also showed that the installation of the conventional high-pressure expansion valve is not necessary. Finally, the yearly performance of the aforementioned expansion devices was assessed in five different locations, i.e., Athens (Greece), Phoenix (USA), New Delhi (India), Riyadh (Saudi Arabia) and Bangkok (Thailand). The outcomes revealed that the PWM ejector allows for a higher in yearly average COP (COP<sub>yearly avg</sub>) from 4.9 % (in Athens) to 11.8 % (in Bangkok) over the baseline.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.ijrefrig.2024.09.020
Optimal operation and design of ejectors are the subject of recent concerns, especially for the enhancement of refrigeration and heat pump cycles based on natural refrigerants like carbon dioxide. In this study, a thermodynamic analysis of an ejector-based refrigeration cycle is performed to determine both what operating pressures lead to the highest physically possible performance depending on the ambient conditions, and what are the main dimensions of the ejector leading to the best performance at a given ambient temperature. A state-of-the-art thermodynamic model for the prediction of the ejector performance is for the first time utilized to generate reliable operation and performance maps of the ejector cycle. Most notably, it is found that the optimal coefficient of performance is not necessarily found when the ejector operates at critical conditions but mostly when the device is under off-design regime, depending on the ejector internal efficiency and the hot side temperature. In addition, the analysis reveals that the performance of the cycle is not highly sensitive to the throat area ratio of the ejector given that the latter lies within an acceptable range. Those findings contribute to getting a better understanding of how the cycle benefits from the ejector and define design and control strategies for the cycle.
{"title":"Theoretical analysis of the optimal ejector operation and design within an ejector-based refrigeration system","authors":"","doi":"10.1016/j.ijrefrig.2024.09.020","DOIUrl":"10.1016/j.ijrefrig.2024.09.020","url":null,"abstract":"<div><div>Optimal operation and design of ejectors are the subject of recent concerns, especially for the enhancement of refrigeration and heat pump cycles based on natural refrigerants like carbon dioxide. In this study, a thermodynamic analysis of an ejector-based refrigeration cycle is performed to determine both what operating pressures lead to the highest physically possible performance depending on the ambient conditions, and what are the main dimensions of the ejector leading to the best performance at a given ambient temperature. A state-of-the-art thermodynamic model for the prediction of the ejector performance is for the first time utilized to generate reliable operation and performance maps of the ejector cycle. Most notably, it is found that the optimal coefficient of performance is not necessarily found when the ejector operates at critical conditions but mostly when the device is under off-design regime, depending on the ejector internal efficiency and the hot side temperature. In addition, the analysis reveals that the performance of the cycle is not highly sensitive to the throat area ratio of the ejector given that the latter lies within an acceptable range. Those findings contribute to getting a better understanding of how the cycle benefits from the ejector and define design and control strategies for the cycle.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.ijrefrig.2024.09.023
Solid desiccant-assisted dew-point indirect evaporative cooling (SD-DPIEC) systems have gained considerable attention as a potential eco-friendly alternative to vapour-compression cooling systems in building cooling applications. However, one major drawback of these systems is their substantial water consumption during evaporative cooling. To tackle this issue, this study aims to improve the cooling efficiency and water utilisation of an SD-DPIEC system using response surface methodology (RSM). This research focuses on optimising four key parameters: supply air temperature, humidity ratio, water consumption rate and coefficient of performance (COP). The independent variables encompass the ambient temperature, relative humidity, regeneration temperature, and recirculation air ratio. Employing a multi-objective optimisation approach via the desirability function, the optimised SD-DPIEC system is subsequently tested in two prevalent weather patterns in Australia. The results demonstrated that the regression models derived from RSM exhibited commendable predictive capability, with the determination coefficient and Adequate Precision exceeding 0.97 and 40.46, respectively. The outcomes revealed that the system attained its optimal performance with a supply air temperature of 20.36 °C, humidity ratio of 12.56 g kg-1, a water consumption rate of 3.11 kg/hr, and COP of 2.03 under the ambient temperature of 33.79 °C, relative humidity of 68.48 %, regeneration temperature of 51.78 °C, and recirculation air ratio of 60 %. Based on the optimisation results, a case study was undertaken to evaluate the system's applicability in representative Australian climates. The results demonstrated that the system could uphold air conditions with the supply air temperature below 19 °C and humidity ratio below 11.51 g kg-1 under the studied Australian climates.
{"title":"Optimisation of cooling performance and water consumption of a solid desiccant-assisted indirect evaporative cooling system using response surface methodology","authors":"","doi":"10.1016/j.ijrefrig.2024.09.023","DOIUrl":"10.1016/j.ijrefrig.2024.09.023","url":null,"abstract":"<div><div>Solid desiccant-assisted dew-point indirect evaporative cooling (SD-DPIEC) systems have gained considerable attention as a potential eco-friendly alternative to vapour-compression cooling systems in building cooling applications. However, one major drawback of these systems is their substantial water consumption during evaporative cooling. To tackle this issue, this study aims to improve the cooling efficiency and water utilisation of an SD-DPIEC system using response surface methodology (RSM). This research focuses on optimising four key parameters: supply air temperature, humidity ratio, water consumption rate and coefficient of performance (COP). The independent variables encompass the ambient temperature, relative humidity, regeneration temperature, and recirculation air ratio. Employing a multi-objective optimisation approach via the desirability function, the optimised SD-DPIEC system is subsequently tested in two prevalent weather patterns in Australia. The results demonstrated that the regression models derived from RSM exhibited commendable predictive capability, with the determination coefficient <span><math><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></math></span> and Adequate Precision exceeding 0.97 and 40.46, respectively. The outcomes revealed that the system attained its optimal performance with a supply air temperature of 20.36 °C, humidity ratio of 12.56 g kg<sup>-1</sup>, a water consumption rate of 3.11 kg/hr, and COP of 2.03 under the ambient temperature of 33.79 °C, relative humidity of 68.48 %, regeneration temperature of 51.78 °C, and recirculation air ratio of 60 %. Based on the optimisation results, a case study was undertaken to evaluate the system's applicability in representative Australian climates. The results demonstrated that the system could uphold air conditions with the supply air temperature below 19 °C and humidity ratio below 11.51 g kg<sup>-1</sup> under the studied Australian climates.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.ijrefrig.2024.09.021
In evaporators and condensers of refrigeration and air conditioning systems, various straight tubes are joined via U-bends. These U-bends result in higher pressure drops due to flow disturbances and centrifugal effects. Accurate prediction of pressure drops in these bends is essential for reliable design and operation. This study investigates the two-phase flow pressure-drop in horizontal U-bends with ammonia under wide range of experimental conditions. Three pipes with nominal outer diameter between 22.2, 15.9, and 9.5 mm were used, each with three bend radii (R/do ratio) between 1.2 and 2.5 in horizontal configuration. Tests were conducted at saturation temperature of +10 and -15 °C, with mass flux varying between 10 and 50 kg m−2 s−1, and vapor quality between 0.1 and 0.9. The pressure-drop increased with mass flux and vapor quality while decreased with saturation temperature, pipe diameter and R/do ratio of the bend.
Large tubes exhibited a greater increase in pressure drop with rising mass flux and decreasing bend ratio compared to small tubes, which showed higher absolute values and more consistent performance across the vapor quality range at both saturation temperatures. The tube diameter had a less significant effect at high saturation temperature and high mass flux, while the bend curvature ratio predominantly influenced the pressure drop performance for large diameter tubes. One correlation from the literature predicted the data well only if the vapor quality was below 0.5. For wider range of quality, the existing models in the literature were not well-suited for predicting pressure drops in ammonia U-bends.
在制冷和空调系统的蒸发器和冷凝器中,各种直管通过 U 形弯管连接在一起。由于流动干扰和离心效应,这些 U 形弯管会产生较高的压降。准确预测这些弯管中的压降对于可靠的设计和运行至关重要。本研究调查了水平 U 形弯管中氨水在各种实验条件下的两相流压降。使用了三根公称外径在 22.2、15.9 和 9.5 毫米之间的管道,每根管道都有三个弯曲半径(R/do 比),水平配置的弯曲半径在 1.2 和 2.5 之间。试验在 +10 和 -15 °C 饱和温度下进行,质量通量在 10 和 50 kg m-2 s-1 之间变化,蒸汽质量在 0.1 和 0.9 之间变化。与小管子相比,大管子的压降随着质量通量的增加和弯曲率的减小而增大,而小管子的绝对值更高,在两个饱和温度下的整个蒸汽质量范围内的性能更稳定。在高饱和温度和高质量通量下,管子直径的影响较小,而弯曲曲率比则主要影响大直径管子的压降性能。只有当蒸汽质量低于 0.5 时,文献中的一种相关性才能很好地预测数据。对于更宽的质量范围,文献中的现有模型并不适合预测氨 U 形弯管的压降。
{"title":"Experimental study of two-phase pressure-drop in horizontal return bends with ammonia","authors":"","doi":"10.1016/j.ijrefrig.2024.09.021","DOIUrl":"10.1016/j.ijrefrig.2024.09.021","url":null,"abstract":"<div><div>In evaporators and condensers of refrigeration and air conditioning systems, various straight tubes are joined via U-bends. These U-bends result in higher pressure drops due to flow disturbances and centrifugal effects. Accurate prediction of pressure drops in these bends is essential for reliable design and operation. This study investigates the two-phase flow pressure-drop in horizontal U-bends with ammonia under wide range of experimental conditions. Three pipes with nominal outer diameter between 22.2, 15.9, and 9.5 mm were used, each with three bend radii (<em>R/d<sub>o</sub></em> ratio) between 1.2 and 2.5 in horizontal configuration. Tests were conducted at saturation temperature of +10 and -15 °C, with mass flux varying between 10 and 50 kg m<sup>−2</sup> s<sup>−1</sup>, and vapor quality between 0.1 and 0.9. The pressure-drop increased with mass flux and vapor quality while decreased with saturation temperature, pipe diameter and <em>R/d<sub>o</sub></em> ratio of the bend.</div><div>Large tubes exhibited a greater increase in pressure drop with rising mass flux and decreasing bend ratio compared to small tubes, which showed higher absolute values and more consistent performance across the vapor quality range at both saturation temperatures. The tube diameter had a less significant effect at high saturation temperature and high mass flux, while the bend curvature ratio predominantly influenced the pressure drop performance for large diameter tubes. One correlation from the literature predicted the data well only if the vapor quality was below 0.5. For wider range of quality, the existing models in the literature were not well-suited for predicting pressure drops in ammonia U-bends.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1016/j.ijrefrig.2024.09.010
Development and calibration of first-principles dynamic models of vapor compression cycles (VCCs) is of critical importance for applications that include control design and fault detection and diagnostics. Nevertheless, the inherent complexity of models that are represented by large systems of differential–algebraic equations leads to significant challenges for model calibration processes that utilize classical gradient-based methods. Bayesian optimization (BO) is a sample-efficient and gradient-free approach using a probabilistic surrogate model and optimal search over a feasible parameter space. Despite the benefits of BO in reducing computational costs, challenges remain in dealing with a high-dimensional calibration task resulting from a large set of parameters that have significant impacts on system behavior and need to be calibrated simultaneously. This paper presents a reduced-dimension BO framework for calibrating transient VCCs models where the calibration space is projected to a low-dimensional subspace for accelerating convergence of the solution algorithm and consequently reducing the number of transient simulations. The proposed approach was demonstrated via two case studies associated with different VCC applications where 10 parameters were calibrated in each case using laboratory measurements. The reduced-dimension BO framework only required of the iterations associated with a standard BO method that deals with high-dimensional calibration parameters for converged solutions and yielded comparable accuracy. Furthermore, both calibrated models revealed significant accuracy improvements compared to uncalibrated models.
蒸汽压缩循环(VCC)第一原理动态模型的开发和校准对于控制设计、故障检测和诊断等应用至关重要。然而,由大型微分代数方程系统表示的模型固有的复杂性给利用经典梯度法进行模型校准的过程带来了巨大挑战。贝叶斯优化(BO)是一种样本效率高、无梯度的方法,它使用概率代理模型和在可行参数空间上的最优搜索。尽管贝叶斯优化法具有降低计算成本的优势,但在处理高维校准任务时仍面临挑战,因为大量参数会对系统行为产生重大影响,而且需要同时进行校准。本文提出了一种用于校准瞬态 VCC 模型的降维 BO 框架,将校准空间投影到低维子空间,以加速求解算法的收敛,从而减少瞬态模拟的次数。我们通过两个与不同 VCC 应用相关的案例研究对所提出的方法进行了演示,每个案例都使用实验室测量结果对 10 个参数进行了校准。缩小维度的 BO 框架所需的迭代次数仅为处理高维度校准参数的标准 BO 方法的 1/8,并获得了相当的精度。此外,与未经校准的模型相比,两种校准模型的精度都有显著提高。
{"title":"Reduced-dimension Bayesian optimization for model calibration of transient vapor compression cycles","authors":"","doi":"10.1016/j.ijrefrig.2024.09.010","DOIUrl":"10.1016/j.ijrefrig.2024.09.010","url":null,"abstract":"<div><div>Development and calibration of first-principles dynamic models of vapor compression cycles (VCCs) is of critical importance for applications that include control design and fault detection and diagnostics. Nevertheless, the inherent complexity of models that are represented by large systems of differential–algebraic equations leads to significant challenges for model calibration processes that utilize classical gradient-based methods. Bayesian optimization (BO) is a sample-efficient and gradient-free approach using a probabilistic surrogate model and optimal search over a feasible parameter space. Despite the benefits of BO in reducing computational costs, challenges remain in dealing with a high-dimensional calibration task resulting from a large set of parameters that have significant impacts on system behavior and need to be calibrated simultaneously. This paper presents a reduced-dimension BO framework for calibrating transient VCCs models where the calibration space is projected to a low-dimensional subspace for accelerating convergence of the solution algorithm and consequently reducing the number of transient simulations. The proposed approach was demonstrated via two case studies associated with different VCC applications where 10 parameters were calibrated in each case using laboratory measurements. The reduced-dimension BO framework only required <span><math><mrow><mn>1</mn><mo>/</mo><msup><mrow><mn>8</mn></mrow><mrow><mi>th</mi></mrow></msup></mrow></math></span> of the iterations associated with a standard BO method that deals with high-dimensional calibration parameters for converged solutions and yielded comparable accuracy. Furthermore, both calibrated models revealed significant accuracy improvements compared to uncalibrated models.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.ijrefrig.2024.08.006
Due to long lifetime, low level vibration and negligible electromagnetic interference, the Joule-Thomson (JT) cryocooler working at liquid helium temperature has been used in space. However, its cooling capacity and thermodynamic efficiency still need to be further improved under a certain mass limit, which is an essential improvement for space-efficient application of the JT cryocooler. Therefore, in this study, optimization design is carried out for a JT cryocooler working at liquid helium temperature. Based on the modification of Stirling cryocooler, pulse tube cryocooler and JT compressor, the developed JT cryocooler can provide a cooling capacity of 0.36 W at 4.18 K while the total input power and the total mass (without cryostat) are 1157 W and 26.8 kg, respectively. Compared with the literature research, it can be found that the developed JT cryocooler is suitable for space applications.
在液氦温度下工作的焦耳-汤姆逊(JT)低温冷却器具有寿命长、振动小和电磁干扰小等优点,已被用于太空。然而,在一定的质量限制下,其冷却能力和热力学效率仍需进一步提高,这是 JT 低温冷却器在太空高效应用的必要改进。因此,本研究对在液氦温度下工作的 JT 低温冷却器进行了优化设计。在对斯特林低温冷却器、脉冲管低温冷却器和 JT 压缩机进行改进的基础上,所开发的 JT 低温冷却器在 4.18 K 时可提供 0.36 W 的冷却能力,而总输入功率和总质量(不含低温恒温器)分别为 1157 W 和 26.8 kg。与文献研究相比,可以发现所开发的 JT 低温冷却器适用于空间应用。
{"title":"Essential improvement of the JT cryocooler working at liquid helium temperature for space: Efficient and lightweight","authors":"","doi":"10.1016/j.ijrefrig.2024.08.006","DOIUrl":"10.1016/j.ijrefrig.2024.08.006","url":null,"abstract":"<div><p>Due to long lifetime, low level vibration and negligible electromagnetic interference, the Joule-Thomson (JT) cryocooler working at liquid helium temperature has been used in space. However, its cooling capacity and thermodynamic efficiency still need to be further improved under a certain mass limit, which is an essential improvement for space-efficient application of the JT cryocooler. Therefore, in this study, optimization design is carried out for a JT cryocooler working at liquid helium temperature. Based on the modification of Stirling cryocooler, pulse tube cryocooler and JT compressor, the developed JT cryocooler can provide a cooling capacity of 0.36 W at 4.18 K while the total input power and the total mass (without cryostat) are 1157 W and 26.8 kg, respectively. Compared with the literature research, it can be found that the developed JT cryocooler is suitable for space applications.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.ijrefrig.2024.09.008
The escalating threat of global warming has highlighted the imperative to address the greenhouse effect. R513A is recognized as a viable substitute for R134a, providing a lower global warming potential (GWP) while preserving similar thermodynamic properties. However, refrigerant leakage is one of the common faults in heat pump equipment. For industrial heat pumps, refrigerant leakage can make the system less stable and affect normal industrial production, while long-term leakage can also affect the carbon emissions of the industry. When substituting refrigerants, it is crucial to consider not only their distinct properties under typical operating conditions but also the stability and environmental impact of the alternative refrigerant in cases of leakage. This paper focuses on experimentally evaluating the impact of using R513A to replace R134a on the performance of refrigeration systems under the condition of rapid refrigerant leakage. Then the life cycle climate performance evaluation (LCCP) theory is used to assist experimental results in evaluating the carbon footprints of R513A and R134a systems at different annual leakage rates. The results show that R513A has better stability than R134a when responding to rapid refrigerant leakage. This paper determines the changes in annual electricity consumption and indirect emissions under several annual leakage rates and finds that the impact of leakage on indirect emissions is also not negligible. During the utilization phase of the equipment, when leakage was taken into account, the carbon emissions of the R134a system were higher.
{"title":"Study on the impacts of refrigerant leakage on the performance and environmental benefits of heat pumps using R513A as replacement of R134a","authors":"","doi":"10.1016/j.ijrefrig.2024.09.008","DOIUrl":"10.1016/j.ijrefrig.2024.09.008","url":null,"abstract":"<div><div>The escalating threat of global warming has highlighted the imperative to address the greenhouse effect. R513A is recognized as a viable substitute for R134a, providing a lower global warming potential (GWP) while preserving similar thermodynamic properties. However, refrigerant leakage is one of the common faults in heat pump equipment. For industrial heat pumps, refrigerant leakage can make the system less stable and affect normal industrial production, while long-term leakage can also affect the carbon emissions of the industry. When substituting refrigerants, it is crucial to consider not only their distinct properties under typical operating conditions but also the stability and environmental impact of the alternative refrigerant in cases of leakage. This paper focuses on experimentally evaluating the impact of using R513A to replace R134a on the performance of refrigeration systems under the condition of rapid refrigerant leakage. Then the life cycle climate performance evaluation (LCCP) theory is used to assist experimental results in evaluating the carbon footprints of R513A and R134a systems at different annual leakage rates. The results show that R513A has better stability than R134a when responding to rapid refrigerant leakage. This paper determines the changes in annual electricity consumption and indirect emissions under several annual leakage rates and finds that the impact of leakage on indirect emissions is also not negligible. During the utilization phase of the equipment, when leakage was taken into account, the carbon emissions of the R134a system were higher.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}