首页 > 最新文献

International Statistical Review最新文献

英文 中文
A Legacy of EM Algorithms EM算法的遗留问题
IF 2 3区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2022-10-12 DOI: 10.1111/insr.12526
Kenneth Lange, Hua Zhou

Nan Laird has an enormous and growing impact on computational statistics. Her paper with Dempster and Rubin on the expectation-maximisation (EM) algorithm is the second most cited paper in statistics. Her papers and book on longitudinal modelling are nearly as impressive. In this brief survey, we revisit the derivation of some of her most useful algorithms from the perspective of the minorisation-maximisation (MM) principle. The MM principle generalises the EM principle and frees it from the shackles of missing data and conditional expectations. Instead, the focus shifts to the construction of surrogate functions via standard mathematical inequalities. The MM principle can deliver a classical EM algorithm with less fuss or an entirely new algorithm with a faster rate of convergence. In any case, the MM principle enriches our understanding of the EM principle and suggests new algorithms of considerable potential in high-dimensional settings where standard algorithms such as Newton's method and Fisher scoring falter.

Nan Laird对计算统计学有着巨大且日益增长的影响。她与Dempster和Rubin合著的关于期望最大化(EM)算法的论文是统计学中被引用次数第二多的论文。她关于纵向建模的论文和书几乎同样令人印象深刻。在这个简短的调查中,我们从少数最大化(MM)原则的角度重新审视了她的一些最有用的算法的推导。MM原则概括了EM原则,并将其从缺失数据和条件预期的束缚中解放出来。相反,重点转移到通过标准数学不等式构造代理函数。MM原理可以提供更少麻烦的经典EM算法或具有更快收敛速度的全新算法。无论如何,MM原则丰富了我们对EM原则的理解,并提出了在高维环境中具有相当潜力的新算法,而牛顿方法和费舍尔评分等标准算法则会动摇。
{"title":"A Legacy of EM Algorithms","authors":"Kenneth Lange,&nbsp;Hua Zhou","doi":"10.1111/insr.12526","DOIUrl":"10.1111/insr.12526","url":null,"abstract":"<div>\u0000 \u0000 <p>Nan Laird has an enormous and growing impact on computational statistics. Her paper with Dempster and Rubin on the expectation-maximisation (EM) algorithm is the second most cited paper in statistics. Her papers and book on longitudinal modelling are nearly as impressive. In this brief survey, we revisit the derivation of some of her most useful algorithms from the perspective of the minorisation-maximisation (MM) principle. The MM principle generalises the EM principle and frees it from the shackles of missing data and conditional expectations. Instead, the focus shifts to the construction of surrogate functions via standard mathematical inequalities. The MM principle can deliver a classical EM algorithm with less fuss or an entirely new algorithm with a faster rate of convergence. In any case, the MM principle enriches our understanding of the EM principle and suggests new algorithms of considerable potential in high-dimensional settings where standard algorithms such as Newton's method and Fisher scoring falter.</p>\u0000 </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"90 S1","pages":"S52-S66"},"PeriodicalIF":2.0,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9550131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Simultaneous inference for linear mixed model parameters with an application to small area estimation 线性混合模型参数的同时推理及其在小区域估计中的应用
IF 2 3区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2022-09-18 DOI: 10.1111/insr.12519
Katarzyna Reluga, María-José Lombardía, Stefan Sperlich

Over the past decades, linear mixed models have attracted considerable attention in various fields of applied statistics. They are popular whenever clustered, hierarchical or longitudinal data are investigated. Nonetheless, statistical tools for valid simultaneous inference for mixed parameters are rare. This is surprising because one often faces inferential problems beyond the pointwise examination of fixed or mixed parameters. For example, there is an interest in a comparative analysis of cluster-level parameters or subject-specific estimates in studies with repeated measurements. We discuss methods for simultaneous inference assuming a linear mixed model. Specifically, we develop simultaneous prediction intervals as well as multiple testing procedures for mixed parameters. They are useful for joint considerations or comparisons of cluster-level parameters. We employ a consistent bootstrap approximation of the distribution of max-type statistic to construct our tools. The numerical performance of the developed methodology is studied in simulation experiments and illustrated in a data example on household incomes in small areas.

在过去的几十年里,线性混合模型在应用统计学的各个领域引起了相当大的关注。无论何时对集群、层次或纵向数据进行调查,它们都很受欢迎。尽管如此,用于混合参数的有效同时推断的统计工具很少。这是令人惊讶的,因为人们经常面临的推理问题超出了对固定或混合参数的逐点检查。例如,在重复测量的研究中,人们对集群级参数或受试者特定估计的比较分析感兴趣。我们讨论了假设线性混合模型的同时推理方法。具体来说,我们开发了同时预测区间以及混合参数的多个测试程序。它们对于集群级参数的联合考虑或比较非常有用。我们使用最大型统计量分布的一致自举近似来构建我们的工具。在模拟实验中研究了所开发方法的数值性能,并在小地区家庭收入的数据示例中进行了说明。
{"title":"Simultaneous inference for linear mixed model parameters with an application to small area estimation","authors":"Katarzyna Reluga,&nbsp;María-José Lombardía,&nbsp;Stefan Sperlich","doi":"10.1111/insr.12519","DOIUrl":"10.1111/insr.12519","url":null,"abstract":"<p>Over the past decades, linear mixed models have attracted considerable attention in various fields of applied statistics. They are popular whenever clustered, hierarchical or longitudinal data are investigated. Nonetheless, statistical tools for valid simultaneous inference for mixed parameters are rare. This is surprising because one often faces inferential problems beyond the pointwise examination of fixed or mixed parameters. For example, there is an interest in a comparative analysis of cluster-level parameters or subject-specific estimates in studies with repeated measurements. We discuss methods for simultaneous inference assuming a linear mixed model. Specifically, we develop simultaneous prediction intervals as well as multiple testing procedures for mixed parameters. They are useful for joint considerations or comparisons of cluster-level parameters. We employ a consistent bootstrap approximation of the distribution of max-type statistic to construct our tools. The numerical performance of the developed methodology is studied in simulation experiments and illustrated in a data example on household incomes in small areas.</p>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"91 2","pages":"193-217"},"PeriodicalIF":2.0,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12519","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49301545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Computational Perspective on Projection Pursuit in High Dimensions: Feasible or Infeasible Feature Extraction 高维投影寻踪的计算视角:可行或不可行特征提取
IF 2 3区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2022-08-19 DOI: 10.1111/insr.12517
Chunming Zhang, Jimin Ye, Xiaomei Wang

Finding a suitable representation of multivariate data is fundamental in many scientific disciplines. Projection pursuit (PP) aims to extract interesting ‘non-Gaussian’ features from multivariate data, and tends to be computationally intensive even when applied to data of low dimension. In high-dimensional settings, a recent work (Bickel et al., 2018) on PP addresses asymptotic characterization and conjectures of the feasible projections as the dimension grows with sample size. To gain practical utility of and learn theoretical insights into PP in an integral way, data analytic tools needed to evaluate the behaviour of PP in high dimensions become increasingly desirable but are less explored in the literature. This paper focuses on developing computationally fast and effective approaches central to finite sample studies for (i) visualizing the feasibility of PP in extracting features from high-dimensional data, as compared with alternative methods like PCA and ICA, and (ii) assessing the plausibility of PP in cases where asymptotic studies are lacking or unavailable, with the goal of better understanding the practicality, limitation and challenge of PP in the analysis of large data sets.

在许多科学学科中,找到一个合适的多元数据表示是至关重要的。投影寻踪(PP)旨在从多元数据中提取有趣的“非高斯”特征,即使应用于低维数据,也往往是计算密集型的。在高维环境中,最近一项关于PP的工作(Bickel等人,2018)阐述了随着维度随样本量的增长,可行投影的渐近特征和猜测。为了获得PP的实用性,并以整体的方式学习PP的理论见解,在高维度上评估PP行为所需的数据分析工具变得越来越可取,但在文献中很少探索。本文侧重于开发计算快速有效的方法,这些方法是有限样本研究的核心,用于(i)与PCA和ICA等替代方法相比,可视化PP在从高维数据中提取特征方面的可行性,以及(ii)在缺乏或不可用渐近研究的情况下评估PP的合理性,目的是更好地了解PP在分析大数据集方面的实用性、局限性和挑战性。
{"title":"A Computational Perspective on Projection Pursuit in High Dimensions: Feasible or Infeasible Feature Extraction","authors":"Chunming Zhang,&nbsp;Jimin Ye,&nbsp;Xiaomei Wang","doi":"10.1111/insr.12517","DOIUrl":"10.1111/insr.12517","url":null,"abstract":"<p>Finding a suitable representation of multivariate data is fundamental in many scientific disciplines. Projection pursuit (\u0000<math>\u0000 <mtext>PP</mtext></math>) aims to extract interesting ‘non-Gaussian’ features from multivariate data, and tends to be computationally intensive even when applied to data of low dimension. In high-dimensional settings, a recent work (Bickel et al., 2018) on \u0000<math>\u0000 <mtext>PP</mtext></math> addresses asymptotic characterization and conjectures of the feasible projections as the dimension grows with sample size. To gain practical utility of and learn theoretical insights into \u0000<math>\u0000 <mtext>PP</mtext></math> in an integral way, data analytic tools needed to evaluate the behaviour of \u0000<math>\u0000 <mtext>PP</mtext></math> in high dimensions become increasingly desirable but are less explored in the literature. This paper focuses on developing computationally fast and effective approaches central to finite sample studies for (i) visualizing the feasibility of \u0000<math>\u0000 <mtext>PP</mtext></math> in extracting features from high-dimensional data, as compared with alternative methods like \u0000<math>\u0000 <mtext>PCA</mtext></math> and \u0000<math>\u0000 <mtext>ICA</mtext></math>, and (ii) assessing the plausibility of \u0000<math>\u0000 <mtext>PP</mtext></math> in cases where asymptotic studies are lacking or unavailable, with the goal of better understanding the practicality, limitation and challenge of \u0000<math>\u0000 <mtext>PP</mtext></math> in the analysis of large data sets.</p>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"91 1","pages":"140-161"},"PeriodicalIF":2.0,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12517","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46111599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference 包含调查抽样、缺失数据分析和因果推断的校准技术
IF 2 3区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2022-08-11 DOI: 10.1111/insr.12518
Shixiao Zhang, Peisong Han, Changbao Wu

We provide a critical review on calibration methods developed in three different areas: survey sampling, missing data analysis and causal inference. We highlight the connections and variations of calibration techniques used in missing data analysis and causal inference to conventional calibration weighting and estimation in survey sampling and provide a common framework through model-calibration and empirical likelihood to unify different calibration methods proposed in recent literature. The goal is to demonstrate the success and effectiveness of calibration methods in achieving some highly desired properties for missing data analysis and causal inference.

我们提供了一个关键的审查校准方法开发在三个不同的领域:调查抽样,缺失数据分析和因果推理。我们强调了在缺失数据分析中使用的校准技术的联系和变化,以及对调查抽样中传统校准加权和估计的因果推理,并通过模型校准和经验似然提供了一个通用框架,以统一最近文献中提出的不同校准方法。目标是证明校准方法在实现缺失数据分析和因果推理的一些高度期望的特性方面的成功和有效性。
{"title":"Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference","authors":"Shixiao Zhang,&nbsp;Peisong Han,&nbsp;Changbao Wu","doi":"10.1111/insr.12518","DOIUrl":"10.1111/insr.12518","url":null,"abstract":"<div>\u0000 \u0000 <p>We provide a critical review on calibration methods developed in three different areas: survey sampling, missing data analysis and causal inference. We highlight the connections and variations of calibration techniques used in missing data analysis and causal inference to conventional calibration weighting and estimation in survey sampling and provide a common framework through model-calibration and empirical likelihood to unify different calibration methods proposed in recent literature. The goal is to demonstrate the success and effectiveness of calibration methods in achieving some highly desired properties for missing data analysis and causal inference.</p>\u0000 </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"91 2","pages":"165-192"},"PeriodicalIF":2.0,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44699065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Administrative Records for Survey Methodology Edited by Asaph Young Chun, Michael D. Larsen, Gabriele Durrant, Jerome P. ReiterJohn Wiley and Sons, 2021, 384 pages, $128.95 (hardcover) ISBN: 978-1-1192-7204-5 《调查方法管理记录》,Asaph Young Chun, Michael D. Larsen, Gabriele Durrant, Jerome P. ReiterJohn Wiley and Sons, 2021, 384页,128.95美元(精装)ISBN: 978-1-1192-7204-5
IF 2 3区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2022-07-18 DOI: 10.1111/insr.12516
Reijo Sund
{"title":"Administrative Records for Survey Methodology Edited by Asaph Young Chun, Michael D. Larsen, Gabriele Durrant, Jerome P. ReiterJohn Wiley and Sons, 2021, 384 pages, $128.95 (hardcover) ISBN: 978-1-1192-7204-5","authors":"Reijo Sund","doi":"10.1111/insr.12516","DOIUrl":"10.1111/insr.12516","url":null,"abstract":"","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"90 2","pages":"415-417"},"PeriodicalIF":2.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42392630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extreme Value Theory with Applications to Natural Hazards: From Statistical Theory to Industrial Practice Edited by Nicolas Bousquet and Pietro BernardaraSpringer Cham, 2021, xxii + 481 pages, $199.99 ISBN: 978-3-030-74941-5 极值理论及其在自然灾害中的应用:从统计理论到工业实践,Nicolas Bousquet和Pietro BernardaraSpringer Cham主编,2021,22 + 481页,199.99美元ISBN: 978-3-030- 74945 -5
IF 2 3区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2022-07-18 DOI: 10.1111/insr.12513
Fabrizio Durante
{"title":"Extreme Value Theory with Applications to Natural Hazards: From Statistical Theory to Industrial Practice Edited by Nicolas Bousquet and Pietro BernardaraSpringer Cham, 2021, xxii + 481 pages, $199.99 ISBN: 978-3-030-74941-5","authors":"Fabrizio Durante","doi":"10.1111/insr.12513","DOIUrl":"10.1111/insr.12513","url":null,"abstract":"","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"90 2","pages":"411-412"},"PeriodicalIF":2.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46430119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Game Data Science , Magy Seif El-Nasr, Truong-Huy D. Nguyen, Alessandro Canossa, Anders DrachenOxford University Press, 2022, xvi + 416 pages, $105 (hardback)/$55 (paperback) ISBN-10: 019289787X, ISBN-13: 978-0192897879 (hardback), 978–0192897886 (paperback) Game Data ScienceMagy SeifEl̴Nasr,Truong‐Huy D.Nguyen,AlessandroCanossa,AndersDrachenOxford University Press,2022,xvi+416页,$105(硬背)/$55(平装本),ISBN‐10:019289787X,ISBN‐13:978‐0192897879(硬背),978–0192897886(平装本)
IF 2 3区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2022-07-18 DOI: 10.1111/insr.12514
Shuangzhe Liu
{"title":"Game Data Science , Magy Seif El-Nasr, Truong-Huy D. Nguyen, Alessandro Canossa, Anders DrachenOxford University Press, 2022, xvi + 416 pages, $105 (hardback)/$55 (paperback) ISBN-10: 019289787X, ISBN-13: 978-0192897879 (hardback), 978–0192897886 (paperback)","authors":"Shuangzhe Liu","doi":"10.1111/insr.12514","DOIUrl":"10.1111/insr.12514","url":null,"abstract":"","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"90 2","pages":"412-414"},"PeriodicalIF":2.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45307795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelets from a Statistical Perspective Maarten Jansen Chapman and Hall/CRC, 2022, xix + 325 pages, $96 (hardcover) ISBN: 978-1-032-20067-5 (hardcover) Maarten Jansen Chapman and Hall/CRC, 2022, 19 + 325页,96美元(精装)ISBN: 978-1-032-20067-5(精装)
IF 2 3区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2022-07-18 DOI: 10.1111/insr.12515
Krzysztof Podgórski
{"title":"Wavelets from a Statistical Perspective Maarten Jansen Chapman and Hall/CRC, 2022, xix + 325 pages, $96 (hardcover) ISBN: 978-1-032-20067-5 (hardcover)","authors":"Krzysztof Podgórski","doi":"10.1111/insr.12515","DOIUrl":"10.1111/insr.12515","url":null,"abstract":"","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"90 2","pages":"414-415"},"PeriodicalIF":2.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44357863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are You All Normal? It Depends! 你一切正常吗?视情况而定!
IF 2 3区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2022-07-07 DOI: 10.1111/insr.12512
Wanfang Chen, Marc G. Genton

The assumption of normality has underlain much of the development of statistics, including spatial statistics, and many tests have been proposed. In this work, we focus on the multivariate setting and first review the recent advances in multivariate normality tests for i.i.d. data, with emphasis on the skewness and kurtosis approaches. We show through simulation studies that some of these tests cannot be used directly for testing normality of spatial data. We further review briefly the few existing univariate tests under dependence (time or space), and then propose a new multivariate normality test for spatial data by accounting for the spatial dependence. The new test utilises the union-intersection principle to decompose the null hypothesis into intersections of univariate normality hypotheses for projection data, and it rejects the multivariate normality if any individual hypothesis is rejected. The individual hypotheses for univariate normality are conducted using a Jarque–Bera type test statistic that accounts for the spatial dependence in the data. We also show in simulation studies that the new test has a good control of the type I error and a high empirical power, especially for large sample sizes. We further illustrate our test on bivariate wind data over the Arabian Peninsula.

正态性假设是包括空间统计在内的许多统计学发展的基础,并提出了许多检验。在这项工作中,我们关注多变量设置,并首先回顾了i.i.d数据的多变量正态性检验的最新进展,重点是偏度和峰度方法。我们通过模拟研究表明,其中一些测试不能直接用于测试空间数据的正态性。在此基础上,我们进一步回顾了现有的几种基于时间或空间相关性的单变量检验方法,并提出了一种考虑空间相关性的空间数据多元正态性检验方法。新的检验利用并交原理将零假设分解为投影数据的单变量正态性假设的交叉点,如果任何单个假设被拒绝,它会拒绝多元正态性。单变量正态性的个体假设使用Jarque-Bera型检验统计量进行,该统计量考虑了数据中的空间依赖性。我们还在仿真研究中表明,新的测试具有良好的I型误差控制和高经验功率,特别是对于大样本量。我们进一步说明了我们对阿拉伯半岛二元风数据的测试。
{"title":"Are You All Normal? It Depends!","authors":"Wanfang Chen,&nbsp;Marc G. Genton","doi":"10.1111/insr.12512","DOIUrl":"10.1111/insr.12512","url":null,"abstract":"<div>\u0000 \u0000 <p>The assumption of normality has underlain much of the development of statistics, including spatial statistics, and many tests have been proposed. In this work, we focus on the multivariate setting and first review the recent advances in multivariate normality tests for i.i.d. data, with emphasis on the skewness and kurtosis approaches. We show through simulation studies that some of these tests cannot be used directly for testing normality of spatial data. We further review briefly the few existing univariate tests under dependence (time or space), and then propose a new multivariate normality test for spatial data by accounting for the spatial dependence. The new test utilises the union-intersection principle to decompose the null hypothesis into intersections of univariate normality hypotheses for projection data, and it rejects the multivariate normality if any individual hypothesis is rejected. The individual hypotheses for univariate normality are conducted using a Jarque–Bera type test statistic that accounts for the spatial dependence in the data. We also show in simulation studies that the new test has a good control of the type I error and a high empirical power, especially for large sample sizes. We further illustrate our test on bivariate wind data over the Arabian Peninsula.</p>\u0000 </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"91 1","pages":"114-139"},"PeriodicalIF":2.0,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48771273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Survival Modelling for Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis Using Electronic Health Records 合并队列数据的生存建模:打开Meta生存分析和使用电子健康记录进行生存分析的大门
IF 2 3区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2022-06-16 DOI: 10.1111/insr.12510
James H. McVittie, Ana F. Best, David B. Wolfson, David A. Stephens, Julian Wolfson, David L. Buckeridge, Shahinaz M. Gadalla

Non-parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide range of estimators have been proposed and compared in the literature. Often, however, it may be possible, and indeed advantageous, to combine and then analyse survival data that have been collected under different study designs. We review non-parametric survival analysis for data obtained by combining the most common types of cohort. We have two main goals: (i) to clarify the differences in the model assumptions and (ii) to provide a single lens through which some of the proposed estimators may be viewed. Our discussion is relevant to the meta-analysis of survival data obtained from different types of study, and to the modern era of electronic health records.

使用观察到的故障时间数据对生存函数进行非参数估计取决于底层数据生成机制,包括数据可能被删节和/或截断的方式。对于来自单一来源或从单一队列收集的数据,文献中已经提出并比较了各种估计量。然而,通常情况下,将不同研究设计下收集到的生存数据进行合并和分析是可能的,而且确实是有利的。我们回顾了通过结合最常见的队列类型获得的数据的非参数生存分析。我们有两个主要目标:(i)澄清模型假设中的差异,(ii)提供一个单一的视角,通过这个视角可以查看一些建议的估计器。我们的讨论与从不同类型的研究中获得的生存数据的荟萃分析以及电子健康记录的现代时代有关。
{"title":"Survival Modelling for Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis Using Electronic Health Records","authors":"James H. McVittie,&nbsp;Ana F. Best,&nbsp;David B. Wolfson,&nbsp;David A. Stephens,&nbsp;Julian Wolfson,&nbsp;David L. Buckeridge,&nbsp;Shahinaz M. Gadalla","doi":"10.1111/insr.12510","DOIUrl":"10.1111/insr.12510","url":null,"abstract":"<div>\u0000 \u0000 <p>Non-parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide range of estimators have been proposed and compared in the literature. Often, however, it may be possible, and indeed advantageous, to combine and then analyse survival data that have been collected under different study designs. We review non-parametric survival analysis for data obtained by combining the most common types of cohort. We have two main goals: (i) to clarify the differences in the model assumptions and (ii) to provide a single lens through which some of the proposed estimators may be viewed. Our discussion is relevant to the meta-analysis of survival data obtained from different types of study, and to the modern era of electronic health records.</p>\u0000 </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"91 1","pages":"72-87"},"PeriodicalIF":2.0,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12510","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9490735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Statistical Review
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1