首页 > 最新文献

J. Univers. Comput. Sci.最新文献

英文 中文
Kontributi i Institutit Shqiptar të Mendimit dhe Qytetërimit Islam (AIITC) në promovimin e kulturës islame, arsimit dhe shkencës shqiptare përgjatë 1996-2022 Kontributi i Institutit Shqiptar të Mendimit dhe Qytetërimit Islam (AIITC) në promovimin e kulturës islame, arsimit dhe shkencës shqiptare përgjatë 1996-2022 1996-2022
Pub Date : 2023-08-25 DOI: 10.59164/univers.v24i24.2862
Assoc. Prof. Dr. Ramiz Zekaj
Instituti Shqiptar i Mendimit dhe Qytetërimit Islam (AIITC) është një ndër institucionet pionierë në promovimin e kulturës, letërsisë dhe shkencave islame në Shqipërinë e pas viteve 90’. I themeluar në vitin 1996, ai ka qenë një urë e rëndësishme e ndërlidhjes së shqiptarëve të Shqipërisë dhe vendeve të tjera fqinje me kulturës islame, e cila dëshmoi goditje të ashpra frontale përgjatë shek. XX, veçanërisht gjatë periudhës së sistemit totalitar komunist, që kulmoi me ndalimin e praktikimin e fesë në vitin 1996. Në këtë studim do të përpiqemi që të hedhim dritë mbi kontributin e Institutit në ringjalljen e Islamit në Shqipëri, nëpërmjet aktiviteteve të tij botuese, që kanë rezultuar në prezantimin e myslimanëve të Shqipërisë dhe jo vetëm me disa prej veprave bazike të traditës islame. Megjithatë, është përtej mundësive të këtij studime që të trajtohen dhe përfshihen të gjitha librat e botuara nga Instituti për shkak se volumit të madh të tyre, që arrin në mbi dyqind tituj të botuar.
伊斯兰教祈祷团和伊斯兰教祈祷研究所(AIITC)是 90 年代后促进文化、宗教和伊斯兰教发展的先驱机构。在 1996 年,我们开始了对西伯利亚文化的宣传和销售,并将其作为文化的一部分。XX, veçanërisht gjatë periudhës së sistemit totalitar komunist, që kulmoi me ndalimin e praktikimin e fesë n'vitin 1996.该研究为什叶派伊斯兰教研究所的活动做出了贡献、我们将在西藏伊斯兰教祈祷团和传统伊斯兰教祈祷团之间建立联系。该研究所的研究成果将为您的学习和工作提供帮助。
{"title":"Kontributi i Institutit Shqiptar të Mendimit dhe Qytetërimit Islam (AIITC) në promovimin e kulturës islame, arsimit dhe shkencës shqiptare përgjatë 1996-2022","authors":"Assoc. Prof. Dr. Ramiz Zekaj","doi":"10.59164/univers.v24i24.2862","DOIUrl":"https://doi.org/10.59164/univers.v24i24.2862","url":null,"abstract":"Instituti Shqiptar i Mendimit dhe Qytetërimit Islam (AIITC) është një ndër institucionet pionierë në promovimin e kulturës, letërsisë dhe shkencave islame në Shqipërinë e pas viteve 90’. I themeluar në vitin 1996, ai ka qenë një urë e rëndësishme e ndërlidhjes së shqiptarëve të Shqipërisë dhe vendeve të tjera fqinje me kulturës islame, e cila dëshmoi goditje të ashpra frontale përgjatë shek. XX, veçanërisht gjatë periudhës së sistemit totalitar komunist, që kulmoi me ndalimin e praktikimin e fesë në vitin 1996. Në këtë studim do të përpiqemi që të hedhim dritë mbi kontributin e Institutit në ringjalljen e Islamit në Shqipëri, nëpërmjet aktiviteteve të tij botuese, që kanë rezultuar në prezantimin e myslimanëve të Shqipërisë dhe jo vetëm me disa prej veprave bazike të traditës islame. Megjithatë, është përtej mundësive të këtij studime që të trajtohen dhe përfshihen të gjitha librat e botuara nga Instituti për shkak se volumit të madh të tyre, që arrin në mbi dyqind tituj të botuar.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"165 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134982980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Botimi dhe përkthimi i librave e teksteve më të rëndësishme të sires në gjuhën shqipe 在技术人员图书馆工作的教师们的心声
Pub Date : 2023-08-25 DOI: 10.59164/univers.v24i24.2870
Prof. dr. Fahrush Rexhepi
Gjatë përhapjes dhe zhvillimit të kulturës islame ndër shqiptarët, ulemaja shqiptare ka dhënë kontribut të çmuar në kultivimin dhe ruajtjen e kulturës dhe traditës fetare islame te shqiptarët. Ata, përveç aktiviteteve të ndryshme fetare, kontribut të veçantë kanë dhënë duke përkthyer fillimisht e pastaj duke shkruar libra e tekste të ndryshme islame në gjuhën shqipe. Në fillim këta krijues kanë shkruar dhe krijuar vepra në gjuhën shqipe, me alfabet arab –osman (nga fundi i shek. XVII deri në shek. XIX). Ndërsa gjatë shekullit që kemi lënë pas, veçmas nga vitet e 50-ta e deri në ditët e sotme, panë dritën e botimit një numër i konsiderueshëm i librave të fushës së Sires (jetëshkrimit të Pejgamberit a.s.). Ata duke parë rëndësinë që ka biografia e Muhamedit a.s. për besimtarët shqiptar islam si dhe shëmbëlltyra e tij, si model për mbarë botën dhe njerëzimin, me zell të madh kanë shkruar e botuar libra e shkrime për figurën dhe personalitetin e tij. Duke qenë se nga viti 1996, e ligjëroj dhe e mbulojë këtë fushë në Fakultetin e Studimeve Islame, dhe duke qenë se për këtë lëmi kam filluar të publikoj nëpër revista të ndryshme qysh herët, e pashë të arsyeshme që për këtë konferencë shkencore të paraqitem, me temën: Literatura Islame në Gjuhën Shqipe 1945 - 2022, pikërisht t’i rrekem kësaj teme por me një trajtim dhe qasje tjetër. Mendojmë se pozita dhe niveli i sotëm arsimor dhe intelektual i besimtarëve myslimanë shqiptar, e sheh të nevojshme njohjen direkte të historisë së lindjes dhe shtrirjes së fesë islame, njohjen me jetën dhe predikimet e profetit Muhamed a.s., me botimet e autorëve të shquar lindorë e perëndimorë kushtuar biografisë së Pejgamberit a.s.. Por, mbi të gjitha për shqiptarët e besimit islam kanë interes të veçantë botimet në gjuhën amtare kushtuar jetës dhe historisë së Pejgamberit a.s.
作为对伊斯兰教文化和传统的限制,伊斯兰教祈祷团为伊斯兰教文化和传统的传承做出了贡献。作为一项文化教育活动,Ata 为公爵的文化教育活动做出了贡献。阿拉伯语是阿拉伯语的简称(从第 XVII 册到第 XIX 册)。在过去的 50 年中,该书在《西塞罗》(Pejgamberit et Pejgamberit a.s.)一书中被广泛使用。公爵是《穆罕默德传》的作者,也是伊斯兰教和宗教的典范,他的作品既有人物形象,也有个性特征。Duke 于 1996 年毕业于伊斯兰研究学院、在《伊斯兰文学》杂志出版前,该公爵还参加了在纽约举行的学术会议:Literatura Islame në Gjuhën Shqipe 1945 - 2022, pikërisht t'i rrekem kësaj teme por me një trajtim dhe qasje tjetër.该书从历史学和宗教学的角度,对穆斯林的历史和宗教信仰进行了深入探讨、我也是作者之一,但我不知道他是谁。在伊斯兰教的影响下,我也想成为一名传记作家。
{"title":"Botimi dhe përkthimi i librave e teksteve më të rëndësishme të sires në gjuhën shqipe","authors":"Prof. dr. Fahrush Rexhepi","doi":"10.59164/univers.v24i24.2870","DOIUrl":"https://doi.org/10.59164/univers.v24i24.2870","url":null,"abstract":"Gjatë përhapjes dhe zhvillimit të kulturës islame ndër shqiptarët, ulemaja shqiptare ka dhënë kontribut të çmuar në kultivimin dhe ruajtjen e kulturës dhe traditës fetare islame te shqiptarët. Ata, përveç aktiviteteve të ndryshme fetare, kontribut të veçantë kanë dhënë duke përkthyer fillimisht e pastaj duke shkruar libra e tekste të ndryshme islame në gjuhën shqipe. Në fillim këta krijues kanë shkruar dhe krijuar vepra në gjuhën shqipe, me alfabet arab –osman (nga fundi i shek. XVII deri në shek. XIX). Ndërsa gjatë shekullit që kemi lënë pas, veçmas nga vitet e 50-ta e deri në ditët e sotme, panë dritën e botimit një numër i konsiderueshëm i librave të fushës së Sires (jetëshkrimit të Pejgamberit a.s.). Ata duke parë rëndësinë që ka biografia e Muhamedit a.s. për besimtarët shqiptar islam si dhe shëmbëlltyra e tij, si model për mbarë botën dhe njerëzimin, me zell të madh kanë shkruar e botuar libra e shkrime për figurën dhe personalitetin e tij. Duke qenë se nga viti 1996, e ligjëroj dhe e mbulojë këtë fushë në Fakultetin e Studimeve Islame, dhe duke qenë se për këtë lëmi kam filluar të publikoj nëpër revista të ndryshme qysh herët, e pashë të arsyeshme që për këtë konferencë shkencore të paraqitem, me temën: Literatura Islame në Gjuhën Shqipe 1945 - 2022, pikërisht t’i rrekem kësaj teme por me një trajtim dhe qasje tjetër. Mendojmë se pozita dhe niveli i sotëm arsimor dhe intelektual i besimtarëve myslimanë shqiptar, e sheh të nevojshme njohjen direkte të historisë së lindjes dhe shtrirjes së fesë islame, njohjen me jetën dhe predikimet e profetit Muhamed a.s., me botimet e autorëve të shquar lindorë e perëndimorë kushtuar biografisë së Pejgamberit a.s.. Por, mbi të gjitha për shqiptarët e besimit islam kanë interes të veçantë botimet në gjuhën amtare kushtuar jetës dhe historisë së Pejgamberit a.s.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"820 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134984281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aggregating Users' Online Opinions Attributes and News Influence for Cryptocurrencies Reputation Generation 聚合用户在线意见属性和新闻影响力的加密货币声誉生成
Pub Date : 2023-06-28 DOI: 10.3897/jucs.85610
Achraf Boumhidi, Abdessamad Benlahbib, E. Nfaoui
Reputation generation systems are decision-making tools used in different domains including e-commerce, tourism, social media events, etc. Such systems generate a numerical reputation score by analyzing and mining massive amounts of various types of user data, including textual opinions, social interactions, shared images, etc. Over the past few years, users have been sharing millions of tweets related to cryptocurrencies. Yet, no system in the literature was designed to handle the unique features of this domain with the goal of automatically generating reputation and supporting investors’ and users’ decision-making. Therefore, we propose the first financially oriented reputation system that generates a single numerical value from user-generated content on Twitter toward cryptocurrencies. The system processes the textual opinions by applying a sentiment polarity extractor based on the fine-tuned auto-regressive language model named XLNet. Also, the system proposes a technique to enhance sentiment identification by detecting sarcastic opinions through examining the contrast of sentiment between the textual content, images, and emojis. Furthermore, other features are considered, such as the popularity of the opinions based on the social network interactions (likes and shares), the intensity of the entity’s demand within the opinions, and news influence on the entity. A survey experiment has been conducted by gathering numerical scores from 827 Twitter users interested in cryptocurrencies. Each selected user assigns 3 numerical assessment scores toward three cryptocurrencies. The average of those scores is considered ground truth. The experiment results show the efficacy of our model in generating a reliable numerical reputation value compared with the ground truth, which proves that the proposed system may be applied in practice as a trusted decision-making tool.
声誉生成系统是用于不同领域的决策工具,包括电子商务、旅游、社交媒体事件等。这样的系统通过分析和挖掘大量不同类型的用户数据,包括文本观点、社交互动、共享图像等,生成一个数字声誉评分。在过去的几年里,用户已经分享了数百万条与加密货币相关的推文。然而,文献中没有一个系统被设计来处理这个领域的独特特征,以自动生成声誉和支持投资者和用户的决策。因此,我们提出了第一个以财务为导向的声誉系统,该系统可以从Twitter上的用户生成内容到加密货币生成单个数值。该系统采用基于微调自回归语言模型XLNet的情感极性提取器对文本观点进行处理。此外,该系统还提出了一种通过检查文本内容、图像和表情符号之间的情感对比来检测讽刺观点的技术,以增强情感识别。此外,还考虑了其他特征,例如基于社交网络交互(点赞和分享)的观点的受欢迎程度,观点内实体需求的强度以及新闻对实体的影响。一项调查实验收集了827名对加密货币感兴趣的推特用户的数字分数。每个选定的用户为三种加密货币分配3个数字评估分数。这些分数的平均值被认为是基本事实。实验结果表明,与真实值相比,该模型能够有效地生成可靠的数值信誉值,证明该系统可以作为可信的决策工具在实践中应用。
{"title":"Aggregating Users' Online Opinions Attributes and News Influence for Cryptocurrencies Reputation Generation","authors":"Achraf Boumhidi, Abdessamad Benlahbib, E. Nfaoui","doi":"10.3897/jucs.85610","DOIUrl":"https://doi.org/10.3897/jucs.85610","url":null,"abstract":"Reputation generation systems are decision-making tools used in different domains including e-commerce, tourism, social media events, etc. Such systems generate a numerical reputation score by analyzing and mining massive amounts of various types of user data, including textual opinions, social interactions, shared images, etc. Over the past few years, users have been sharing millions of tweets related to cryptocurrencies. Yet, no system in the literature was designed to handle the unique features of this domain with the goal of automatically generating reputation and supporting investors’ and users’ decision-making. Therefore, we propose the first financially oriented reputation system that generates a single numerical value from user-generated content on Twitter toward cryptocurrencies. The system processes the textual opinions by applying a sentiment polarity extractor based on the fine-tuned auto-regressive language model named XLNet. Also, the system proposes a technique to enhance sentiment identification by detecting sarcastic opinions through examining the contrast of sentiment between the textual content, images, and emojis. Furthermore, other features are considered, such as the popularity of the opinions based on the social network interactions (likes and shares), the intensity of the entity’s demand within the opinions, and news influence on the entity. A survey experiment has been conducted by gathering numerical scores from 827 Twitter users interested in cryptocurrencies. Each selected user assigns 3 numerical assessment scores toward three cryptocurrencies. The average of those scores is considered ground truth. The experiment results show the efficacy of our model in generating a reliable numerical reputation value compared with the ground truth, which proves that the proposed system may be applied in practice as a trusted decision-making tool.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"1 1","pages":"546-568"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90142466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OBLEA: A New Methodology to Optimise Bluetooth Low Energy Anchors in Multi-occupancy Location Systems OBLEA:一种优化多占用定位系统中蓝牙低能量锚的新方法
Pub Date : 2023-06-28 DOI: 10.3897/jucs.96878
J. Ruiz, María Ángeles Verdejo-Espinosa, Alicia Montoro-Lendínez, M. Espinilla
Nowadays, it is becoming increasingly important to understand the multiple configuration factors of BLE anchors in indoor location systems. This task becomes particularly crucial in the context of activity recognition in multi-occupancy smart environments. Knowing the impact of the configuration of BLE anchors in an indoor location system allows us to distinguish the interactions performed by each inhabitant in a smart environment according to their proximity to each sensor. This paper proposes a new methodology, OBLEA, that determines the optimisation of Bluetooth Low Energy (BLE) anchors in indoor location systems, considering multiple BLE variables to increase flexibility and facilitate transferability to other environments. Concretely, we present a model based on a data-driven approach that considers configurations to obtain the best performing configuration with a minimum number of anchors. This methodology includes a flexible framework for the indoor space, the architecture to be deployed, which considers the RSSI value of the BLE anchors, and finally, optimisation and inference for indoor location. As a case study, OBLEA is applied to determine the location of ageing inhabitants in a nursing home in Alcaudete, Jaén (Spain). Results show the extracted knowledge related to the optimisation of BLE anchors involved in the case study.
目前,了解室内定位系统中BLE锚点的多种配置因素变得越来越重要。这项任务在多占用智能环境下的活动识别中变得尤为重要。了解室内定位系统中BLE锚点配置的影响,使我们能够根据每个居民与每个传感器的距离来区分智能环境中每个居民所进行的交互。本文提出了一种新的方法OBLEA,该方法确定了室内定位系统中蓝牙低功耗(BLE)锚点的优化,考虑了多个BLE变量,以增加灵活性并促进可转移到其他环境。具体来说,我们提出了一个基于数据驱动方法的模型,该模型考虑配置以获得具有最少锚点数量的最佳性能配置。这种方法包括室内空间的灵活框架,要部署的架构,考虑BLE锚点的RSSI值,最后是室内位置的优化和推断。作为一个案例研究,OBLEA被应用于确定jasaman(西班牙)Alcaudete养老院老年居民的位置。结果显示,提取的知识与案例研究中涉及的BLE锚的优化有关。
{"title":"OBLEA: A New Methodology to Optimise Bluetooth Low Energy Anchors in Multi-occupancy Location Systems","authors":"J. Ruiz, María Ángeles Verdejo-Espinosa, Alicia Montoro-Lendínez, M. Espinilla","doi":"10.3897/jucs.96878","DOIUrl":"https://doi.org/10.3897/jucs.96878","url":null,"abstract":"Nowadays, it is becoming increasingly important to understand the multiple configuration factors of BLE anchors in indoor location systems. This task becomes particularly crucial in the context of activity recognition in multi-occupancy smart environments. Knowing the impact of the configuration of BLE anchors in an indoor location system allows us to distinguish the interactions performed by each inhabitant in a smart environment according to their proximity to each sensor. This paper proposes a new methodology, OBLEA, that determines the optimisation of Bluetooth Low Energy (BLE) anchors in indoor location systems, considering multiple BLE variables to increase flexibility and facilitate transferability to other environments. Concretely, we present a model based on a data-driven approach that considers configurations to obtain the best performing configuration with a minimum number of anchors. This methodology includes a flexible framework for the indoor space, the architecture to be deployed, which considers the RSSI value of the BLE anchors, and finally, optimisation and inference for indoor location. As a case study, OBLEA is applied to determine the location of ageing inhabitants in a nursing home in Alcaudete, Jaén (Spain). Results show the extracted knowledge related to the optimisation of BLE anchors involved in the case study.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"30 1","pages":"627-646"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77127462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bibliometric Study on E-Learning Software Engineering Education E-Learning软件工程教育的文献计量学研究
Pub Date : 2023-06-28 DOI: 10.3897/jucs.87550
Soukaina Benabdelouahab, José A. García-Berná, Chaimae Moumouh, J. M. C. D. Gea, J. E. Bouhdidi, Yacine El Younoussi, J. Alemán
Due to the substantial development of information and communications technology, the use of E-learning in higher education has become essential to boost teaching methods and enhance students' learning skills and competencies. E-learning in Software Engineering turns out to be increasingly interesting for scholars. In fact, researchers have worked to enhance modern Software Engineering education techniques to meet the required educational objectives. The aim of this article is to analyse the scientific production on E-learning Software Engineering education by conducting a bibliometric analysis of 10,603 publications, dating from 1954 to 2020 and available in the Scopus database. The results reveal some scientific production information, such as the temporal evolution of the publications, the most prolific authors, institutions and countries, as well as the languages used. Besides, the paper evaluates additional bibliometric parameters, including the authors' production, journal productivity, and scientific cooperation, among other bibliometric parameters. The subject of the current study has not been treated by any previous bibliometric studies. Our research is deeper and more specific; it covers a long period of 66 years and a large number of publications, thanks to the chosen search string containing the different spellings of the used terms. In addition, the literature is analysed using several tools such as Microsoft Excel, VOSviewer, and Python. The research findings can be used to identify the current state of E-learning Software Engineering Education, as well as to identify various research trends and the general direction of E-learning research. 
随着信息和通信技术的飞速发展,在高等教育中使用电子学习已成为改进教学方法和提高学生学习技能和能力的必要条件。软件工程中的电子学习越来越引起学者们的兴趣。事实上,研究人员已经致力于提高现代软件工程教育技术,以满足所需的教育目标。本文的目的是通过对Scopus数据库中从1954年到2020年的10,603份出版物进行文献计量分析,来分析电子学习软件工程教育的科学成果。结果揭示了一些科学生产信息,如出版物的时间演变,最多产的作者,机构和国家,以及使用的语言。此外,本文还对其他文献计量参数进行了评价,包括作者产出、期刊生产力、科研合作等。当前研究的主题还没有被任何以前的文献计量学研究处理过。我们的研究更深入、更具体;它涵盖了长达66年的时间和大量的出版物,这要归功于所选择的搜索字符串包含使用术语的不同拼写。此外,使用Microsoft Excel、VOSviewer和Python等工具对文献进行分析。研究结果可以用于识别E-learning软件工程教育的现状,以及识别E-learning研究的各种研究趋势和总体方向。
{"title":"A Bibliometric Study on E-Learning Software Engineering Education","authors":"Soukaina Benabdelouahab, José A. García-Berná, Chaimae Moumouh, J. M. C. D. Gea, J. E. Bouhdidi, Yacine El Younoussi, J. Alemán","doi":"10.3897/jucs.87550","DOIUrl":"https://doi.org/10.3897/jucs.87550","url":null,"abstract":"Due to the substantial development of information and communications technology, the use of E-learning in higher education has become essential to boost teaching methods and enhance students' learning skills and competencies. E-learning in Software Engineering turns out to be increasingly interesting for scholars. In fact, researchers have worked to enhance modern Software Engineering education techniques to meet the required educational objectives. The aim of this article is to analyse the scientific production on E-learning Software Engineering education by conducting a bibliometric analysis of 10,603 publications, dating from 1954 to 2020 and available in the Scopus database. The results reveal some scientific production information, such as the temporal evolution of the publications, the most prolific authors, institutions and countries, as well as the languages used. Besides, the paper evaluates additional bibliometric parameters, including the authors' production, journal productivity, and scientific cooperation, among other bibliometric parameters. The subject of the current study has not been treated by any previous bibliometric studies. Our research is deeper and more specific; it covers a long period of 66 years and a large number of publications, thanks to the chosen search string containing the different spellings of the used terms. In addition, the literature is analysed using several tools such as Microsoft Excel, VOSviewer, and Python. The research findings can be used to identify the current state of E-learning Software Engineering Education, as well as to identify various research trends and the general direction of E-learning research. ","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"20 1","pages":"510-545"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85281768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel deep learning model with the Grey Wolf Optimization algorithm for cotton disease detection 基于灰狼优化算法的棉花病害检测深度学习模型
Pub Date : 2023-06-28 DOI: 10.3897/jucs.94183
Burak Gülmez
 Plants are a big part of the ecosystem. Plants are also used by humans for various purposes. Cotton is one of these important plants and is very critical for humans. Cotton production is one of the most important sources of income for many countries and farmers in the world. Cotton can get diseases like other plants and living things. Detecting these diseases is critical. In this study, a model is developed for disease detection from leaves of cotton. This model determines whether the cotton is healthy or diseased through the photograph. It is a deep convolutional neural network model. While establishing the model, care is taken to ensure that it is a problem-specific model. The grey wolf optimization algorithm is used to ensure that the model architecture is optimal. So, this algorithm will find the most efficient architecture. The proposed model has been compared with the ResNet50, VGG19, and InceptionV3 models that are frequently used in the literature. According to the results obtained, the proposed model has an accuracy value of 1.0. Other models had accuracy values of 0.726, 0.934, and 0.943, respectively. The proposed model is more successful than other models. 
植物是生态系统的重要组成部分。植物也被人类用于各种目的。棉花是这些重要的植物之一,对人类非常重要。棉花生产是世界上许多国家和农民最重要的收入来源之一。棉花会像其他植物和生物一样感染疾病。检测这些疾病至关重要。本研究建立了棉花叶片病害检测模型。该模型通过照片判断棉花是健康的还是患病的。它是一个深度卷积神经网络模型。在建立模型时,要注意确保它是一个特定于问题的模型。采用灰狼优化算法保证模型结构的最优性。所以,这个算法会找到最有效的架构。所提出的模型已经与文献中经常使用的ResNet50、VGG19和InceptionV3模型进行了比较。根据得到的结果,该模型的精度值为1.0。其他模型的准确率分别为0.726、0.934和0.943。所提出的模型比其他模型更成功。
{"title":"A novel deep learning model with the Grey Wolf Optimization algorithm for cotton disease detection","authors":"Burak Gülmez","doi":"10.3897/jucs.94183","DOIUrl":"https://doi.org/10.3897/jucs.94183","url":null,"abstract":" Plants are a big part of the ecosystem. Plants are also used by humans for various purposes. Cotton is one of these important plants and is very critical for humans. Cotton production is one of the most important sources of income for many countries and farmers in the world. Cotton can get diseases like other plants and living things. Detecting these diseases is critical. In this study, a model is developed for disease detection from leaves of cotton. This model determines whether the cotton is healthy or diseased through the photograph. It is a deep convolutional neural network model. While establishing the model, care is taken to ensure that it is a problem-specific model. The grey wolf optimization algorithm is used to ensure that the model architecture is optimal. So, this algorithm will find the most efficient architecture. The proposed model has been compared with the ResNet50, VGG19, and InceptionV3 models that are frequently used in the literature. According to the results obtained, the proposed model has an accuracy value of 1.0. Other models had accuracy values of 0.726, 0.934, and 0.943, respectively. The proposed model is more successful than other models. ","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"7 1","pages":"595-626"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85354519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Politically-oriented information inference from text 文本政治导向信息推理
Pub Date : 2023-06-28 DOI: 10.3897/jucs.96652
S. C. D. Silva, Ivandré Paraboni
The inference of politically-oriented information from text data is a popular research topic in Natural Language Processing (NLP) at both text- and author-level. In recent years, studies of this kind have been implemented with the aid of text representations ranging from simple count-based models (e.g., bag-of-words) to sequence-based models built from transformers (e.g., BERT). Despite considerable success, however, we may still ask whether results may be improved further by combining these models with additional text representations. To shed light on this issue, the present work describes a series of experiments to compare a number of strategies for political bias and ideology inference from text data using sequence-based BERT models, syntax-and semantics-driven features, and examines which of these representations (or their combinations) improve overall model accuracy. Results suggest that one particular strategy - namely, the combination of BERT language models with syntactic dependencies - significantly outperforms well-known count- and sequence-based text classifiers alike. In particular, the combined model has been found to improve accuracy across all tasks under consideration, outperforming the SemEval hyperpartisan news detection top-performing system by up to 6%, and outperforming the use of BERT alone by up to 21%, making a potentially strong case for the use of heterogeneous text representations in the present tasks.
从文本数据中推断政治导向信息是自然语言处理(NLP)在文本和作者层面上的一个热门研究课题。近年来,这类研究已经在文本表示的帮助下实现,从简单的基于计数的模型(例如,词袋)到基于序列的模型(例如,BERT)。然而,尽管取得了相当大的成功,我们仍然可能会问,通过将这些模型与其他文本表示相结合,结果是否可以进一步改善。为了阐明这个问题,本研究描述了一系列实验,使用基于序列的BERT模型、语法和语义驱动的特征,比较了一些从文本数据中推断政治偏见和意识形态的策略,并检查了哪些表示(或它们的组合)提高了整体模型的准确性。结果表明,一种特定的策略——即BERT语言模型与句法依赖关系的组合——显著优于众所周知的基于计数和基于序列的文本分类器。特别是,已经发现组合模型可以提高所有正在考虑的任务的准确性,比SemEval超党派新闻检测性能最高的系统高出6%,比单独使用BERT的系统高出21%,这为在当前任务中使用异构文本表示提供了潜在的强有力的案例。
{"title":"Politically-oriented information inference from text","authors":"S. C. D. Silva, Ivandré Paraboni","doi":"10.3897/jucs.96652","DOIUrl":"https://doi.org/10.3897/jucs.96652","url":null,"abstract":"The inference of politically-oriented information from text data is a popular research topic in Natural Language Processing (NLP) at both text- and author-level. In recent years, studies of this kind have been implemented with the aid of text representations ranging from simple count-based models (e.g., bag-of-words) to sequence-based models built from transformers (e.g., BERT). Despite considerable success, however, we may still ask whether results may be improved further by combining these models with additional text representations. To shed light on this issue, the present work describes a series of experiments to compare a number of strategies for political bias and ideology inference from text data using sequence-based BERT models, syntax-and semantics-driven features, and examines which of these representations (or their combinations) improve overall model accuracy. Results suggest that one particular strategy - namely, the combination of BERT language models with syntactic dependencies - significantly outperforms well-known count- and sequence-based text classifiers alike. In particular, the combined model has been found to improve accuracy across all tasks under consideration, outperforming the SemEval hyperpartisan news detection top-performing system by up to 6%, and outperforming the use of BERT alone by up to 21%, making a potentially strong case for the use of heterogeneous text representations in the present tasks.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"32 1","pages":"569-594"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79000515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Semi-Supervised Semantic Segmentation for Identification of Irrelevant Objects in a Waste Recycling Plant 基于半监督语义分割的垃圾回收厂无关目标识别
Pub Date : 2023-05-28 DOI: 10.2139/ssrn.4116055
C. Domínguez, Jónathan Heras, Eloy J. Mata, Vico Pascual, Lucas Fernández-Cedrón, Marcos Martínez-Lanchares, Jon Pellejero-Espinosa, Antonio Rubio-Loscertales, C. Tarragona-Pérez
In waste recycling plants, measuring the waste volume and weight at the beginning of the treatment process is key for a better management of resources. This task can be conducted by using orthophoto images, but it is necessary to remove from those images the objects, such as containers or trucks, that are not involved in the measurement process. This work proposes the application of deep learning for the semantic segmentation of those irrelevant objects. Several deep architectures are trained and compared, while three semi-supervised learning methods (PseudoLabeling, Distillation and Model Distillation) are proposed to take advantage of non-annotated images. In these experiments, the U-net++ architecture with an EfficientNetB3 backbone, trained with the set of labelled images, achieves the best overall multi Dice score of 91.23%. The application of semi-supervised learning methods further boosts the segmentation accuracy in a range between 1.31% and 2.59%, on average.
在废物回收厂,在处理过程开始时测量废物体积和重量是更好地管理资源的关键。这项任务可以通过使用正射影像来完成,但有必要从这些图像中去除不涉及测量过程的物体,如集装箱或卡车。这项工作提出了将深度学习应用于这些不相关对象的语义分割。对几种深度架构进行了训练和比较,同时提出了三种半监督学习方法(伪标记、蒸馏和模型蒸馏)来利用未注释的图像。在这些实验中,采用高效率netb3主干的unet++架构,在标记图像集的训练下,获得了91.23%的最佳整体多Dice分数。半监督学习方法的应用进一步提高了分割准确率,平均在1.31% ~ 2.59%之间。
{"title":"Semi-Supervised Semantic Segmentation for Identification of Irrelevant Objects in a Waste Recycling Plant","authors":"C. Domínguez, Jónathan Heras, Eloy J. Mata, Vico Pascual, Lucas Fernández-Cedrón, Marcos Martínez-Lanchares, Jon Pellejero-Espinosa, Antonio Rubio-Loscertales, C. Tarragona-Pérez","doi":"10.2139/ssrn.4116055","DOIUrl":"https://doi.org/10.2139/ssrn.4116055","url":null,"abstract":"In waste recycling plants, measuring the waste volume and weight at the beginning of the treatment process is key for a better management of resources. This task can be conducted by using orthophoto images, but it is necessary to remove from those images the objects, such as containers or trucks, that are not involved in the measurement process. This work proposes the application of deep learning for the semantic segmentation of those irrelevant objects. Several deep architectures are trained and compared, while three semi-supervised learning methods (PseudoLabeling, Distillation and Model Distillation) are proposed to take advantage of non-annotated images. In these experiments, the U-net++ architecture with an EfficientNetB3 backbone, trained with the set of labelled images, achieves the best overall multi Dice score of 91.23%. The application of semi-supervised learning methods further boosts the segmentation accuracy in a range between 1.31% and 2.59%, on average.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"25 1","pages":"419-431"},"PeriodicalIF":0.0,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89578506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developed Models Based on Transfer Learning for Improving Fake News Predictions 基于迁移学习的假新闻预测模型
Pub Date : 2023-05-28 DOI: 10.3897/jucs.94081
Tahseen A. Wotaifi, B. N. Dhannoon
 In conjunction with the global concern regarding the spread of fake news on social media, there is a large flow of research to address this phenomenon. The wide growth in social media and online forums has made it easy for legitimate news to merge with comprehensive misleading news, negatively affecting people’s perceptions and misleading them. As such, this study aims to use deep learning, pre-trained models, and machine learning to predict Arabic and English fake news based on three public and available datasets: the Fake-or-Real dataset, the AraNews dataset, and the Sentimental LIAR dataset. Based on GloVe (Global Vectors) and FastText pre-trained models, A hybrid network has been proposed to improve the prediction of fake news. In this proposed network, CNN (Convolution Neural Network) was used to identify the most important features. In contrast, BiGRU (Bidirectional Gated Recurrent Unit) was used to measure the long-term dependency of sequences. Finally, multi-layer perceptron (MLP) is applied to classify the article news as fake or real. On the other hand, an Improved Random Forest Model is built based on the embedding values extracted from BERT (Bidirectional Encoder Representations from Transformers) pre-trained model and the relevant speaker-based features. These relevant features are identified by a fuzzy model based on feature selection methods. Accuracy was used as a measure of the quality of our proposed models, whereby the prediction accuracy reached 0.9935, 0.9473, and 0.7481 for the Fake-or-Real dataset, AraNews dataset, and Sentimental LAIR dataset respectively. The proposed models showed a significant improvement in the accuracy of predicting Arabic and English fake news compared to previous studies that used the same datasets. 
随着全球对社交媒体上假新闻传播的关注,有大量的研究来解决这一现象。社交媒体和网络论坛的广泛发展,使得合法的新闻很容易与全面的误导性新闻融合在一起,对人们的认知产生负面影响,误导人们。因此,本研究旨在使用深度学习、预训练模型和机器学习来预测基于三个公开和可用数据集的阿拉伯语和英语假新闻:假或真数据集、AraNews数据集和感伤骗子数据集。基于GloVe (Global Vectors)和FastText预训练模型,提出了一种改进假新闻预测的混合网络。在该网络中,使用CNN(卷积神经网络)来识别最重要的特征。相比之下,BiGRU(双向门控循环单元)用于测量序列的长期依赖性。最后,应用多层感知器(MLP)对文章新闻进行真假分类。另一方面,基于BERT (Bidirectional Encoder Representations from Transformers)预训练模型提取的嵌入值和相关的基于说话人的特征,构建改进的随机森林模型。通过基于特征选择方法的模糊模型识别这些相关特征。准确度被用来衡量我们提出的模型的质量,其中,Fake-or-Real数据集、AraNews数据集和Sentimental LAIR数据集的预测准确度分别达到0.9935、0.9473和0.7481。与之前使用相同数据集的研究相比,所提出的模型在预测阿拉伯语和英语假新闻的准确性方面有显著提高。
{"title":"Developed Models Based on Transfer Learning for Improving Fake News Predictions","authors":"Tahseen A. Wotaifi, B. N. Dhannoon","doi":"10.3897/jucs.94081","DOIUrl":"https://doi.org/10.3897/jucs.94081","url":null,"abstract":" In conjunction with the global concern regarding the spread of fake news on social media, there is a large flow of research to address this phenomenon. The wide growth in social media and online forums has made it easy for legitimate news to merge with comprehensive misleading news, negatively affecting people’s perceptions and misleading them. As such, this study aims to use deep learning, pre-trained models, and machine learning to predict Arabic and English fake news based on three public and available datasets: the Fake-or-Real dataset, the AraNews dataset, and the Sentimental LIAR dataset. Based on GloVe (Global Vectors) and FastText pre-trained models, A hybrid network has been proposed to improve the prediction of fake news. In this proposed network, CNN (Convolution Neural Network) was used to identify the most important features. In contrast, BiGRU (Bidirectional Gated Recurrent Unit) was used to measure the long-term dependency of sequences. Finally, multi-layer perceptron (MLP) is applied to classify the article news as fake or real. On the other hand, an Improved Random Forest Model is built based on the embedding values extracted from BERT (Bidirectional Encoder Representations from Transformers) pre-trained model and the relevant speaker-based features. These relevant features are identified by a fuzzy model based on feature selection methods. Accuracy was used as a measure of the quality of our proposed models, whereby the prediction accuracy reached 0.9935, 0.9473, and 0.7481 for the Fake-or-Real dataset, AraNews dataset, and Sentimental LAIR dataset respectively. The proposed models showed a significant improvement in the accuracy of predicting Arabic and English fake news compared to previous studies that used the same datasets. ","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"25 1","pages":"491-507"},"PeriodicalIF":0.0,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85927923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Classification of Cell Level of HEp-2 Microscopic Images Using Deep Convolutional Neural Networks-Based Diameter Distance Features 基于深度卷积神经网络直径距离特征的HEp-2显微图像细胞水平自动分类
Pub Date : 2023-05-28 DOI: 10.3897/jucs.96293
Mitchell Jensen, Khamael Al-Dulaimi, Khairiyah Saeed Abduljabbar, Jasmine Banks
Abstract: To identify autoimmune diseases in humans, analysis of HEp-2 staining patterns at cell level is the gold standard for clinical practice research communities. An automated procedure is a complicated task due to variations in cell densities, sizes, shapes and patterns, overfitting of features, large-scale data volume, stained cells and poor quality of images. Several machine learning methods that analyse and classify HEp-2 cell microscope images currently exist. However, accuracy is still not at the level required for medical applications and computer aided diagnosis due to those challenges. The purpose of this work to automate classification procedure of HEp-2 stained cells from microscopic images and improve the accuracy of computer aided diagnosis. This work proposes Deep Convolutional Neural Networks (DCNNs) technique to classify HEp-2 cell patterns at cell level into six classes based on employing the level-set method via edge detection technique to segment HEp-2 cell shape. The DCNNs are designed to identify cell-shape and fundamental distance features related with HEp-2 cell types. This paper is investigated the effectiveness of our proposed method over benchmarked dataset. The result shows that the proposed method is highly superior comparing with other methods in benchmarked dataset and state-of-the-art methods. The result demonstrates that the proposed method has an excellent adaptability across variations in cell densities, sizes, shapes and patterns, overfitting features, large-scale data volume, and stained cells under different lab environments. The accurate classification of HEp-2 staining pattern at cell level helps increasing the accuracy of computer aided diagnosis for diagnosis process in the future.
摘要:为了识别人类自身免疫性疾病,在细胞水平上分析HEp-2染色模式是临床实践研究界的金标准。由于细胞密度、大小、形状和模式的变化、特征的过拟合、大规模数据量、细胞染色和图像质量差,自动化过程是一项复杂的任务。目前存在几种分析和分类HEp-2细胞显微镜图像的机器学习方法。然而,由于这些挑战,准确性仍未达到医疗应用和计算机辅助诊断所需的水平。本研究旨在实现HEp-2染色细胞显微图像的自动分类,提高计算机辅助诊断的准确性。本文提出了基于边缘检测技术的水平集方法对HEp-2细胞形状进行分割的深度卷积神经网络(Deep Convolutional Neural Networks, DCNNs)技术,在细胞水平上将HEp-2细胞模式分为6类。DCNNs被设计用于识别与HEp-2细胞类型相关的细胞形状和基本距离特征。本文研究了我们提出的方法在基准数据集上的有效性。结果表明,该方法在基准数据集和最先进的方法中具有很高的优越性。结果表明,该方法对细胞密度、大小、形状和模式、过拟合特征、大规模数据量以及不同实验室环境下染色细胞的变化具有良好的适应性。在细胞水平上对HEp-2染色模式的准确分类有助于提高未来诊断过程中计算机辅助诊断的准确性。
{"title":"Automated Classification of Cell Level of HEp-2 Microscopic Images Using Deep Convolutional Neural Networks-Based Diameter Distance Features","authors":"Mitchell Jensen, Khamael Al-Dulaimi, Khairiyah Saeed Abduljabbar, Jasmine Banks","doi":"10.3897/jucs.96293","DOIUrl":"https://doi.org/10.3897/jucs.96293","url":null,"abstract":"Abstract: To identify autoimmune diseases in humans, analysis of HEp-2 staining patterns at cell level is the gold standard for clinical practice research communities. An automated procedure is a complicated task due to variations in cell densities, sizes, shapes and patterns, overfitting of features, large-scale data volume, stained cells and poor quality of images. Several machine learning methods that analyse and classify HEp-2 cell microscope images currently exist. However, accuracy is still not at the level required for medical applications and computer aided diagnosis due to those challenges. The purpose of this work to automate classification procedure of HEp-2 stained cells from microscopic images and improve the accuracy of computer aided diagnosis. This work proposes Deep Convolutional Neural Networks (DCNNs) technique to classify HEp-2 cell patterns at cell level into six classes based on employing the level-set method via edge detection technique to segment HEp-2 cell shape. The DCNNs are designed to identify cell-shape and fundamental distance features related with HEp-2 cell types. This paper is investigated the effectiveness of our proposed method over benchmarked dataset. The result shows that the proposed method is highly superior comparing with other methods in benchmarked dataset and state-of-the-art methods. The result demonstrates that the proposed method has an excellent adaptability across variations in cell densities, sizes, shapes and patterns, overfitting features, large-scale data volume, and stained cells under different lab environments. The accurate classification of HEp-2 staining pattern at cell level helps increasing the accuracy of computer aided diagnosis for diagnosis process in the future.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"12 1","pages":"432-445"},"PeriodicalIF":0.0,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73943486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
J. Univers. Comput. Sci.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1