Pub Date : 2024-01-01DOI: 10.1177/22808000241235442
Ashraf Alemi, Mojtaba Haghi Karamallah, Mohamad Sabaghan, Seyed Ahmad Hosseini, Ali Veisi, Somayeh Haghi Karamallah, Mohammad Farokhifar
Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.
{"title":"Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma.","authors":"Ashraf Alemi, Mojtaba Haghi Karamallah, Mohamad Sabaghan, Seyed Ahmad Hosseini, Ali Veisi, Somayeh Haghi Karamallah, Mohammad Farokhifar","doi":"10.1177/22808000241235442","DOIUrl":"10.1177/22808000241235442","url":null,"abstract":"<p><p>Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241235442"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/22808000241303327
Ahmet Hazar, Ecehan Hazar
Objective: Non-carious cervical lesions (NCCLs) are commonly observed in clinical dentistry, leading to tooth fractures, sensitivity, and compromised pulp vitality. Therefore, their restoration is essential for both the aesthetic and structural integrity of teeth. This study aimed to compare the fracture resistance of NCCLs restored using different materials: an injectable universal composite, flowable bulk-fill composites with or without fiber-reinforcement.
Methods: Seventy-five double-rooted maxillary premolars were selected for the study. Fifteen teeth were left intact as a control. A wedge-shaped cavity was prepared in the cervical region of the remaining sixty teeth, which were then divided into four groups (n = 15): unrestored, restored with an injectable composite, restored with a flowable bulk-fill composite (SDR® flow+), and restored with a flowable short-fiber-reinforced composite (everX Flow™). All teeth underwent fracture testing under oblique static loading at a 30° angle using a universal testing machine. Fracture patterns were classified as repairable, possibly repairable, or unrepairable. Data were analyzed using one-way analysis of variance, Pearson chi-square, and Tukey HSD post hoc tests (p = 0.05).
Results: Intact teeth exhibited the highest fracture resistance (743.481 N), while unrestored teeth showed the lowest (371.49 N) (p < 0.001). There was no significant difference in fracture resistance between the injectable composite (553.289 N) and SDR® flow+ (497.368 N) (p = 0.055). The everX Flow™ group displayed significantly higher fracture resistance (673.787 N) (p < 0.001) and a repairability rate of 60% within the restored groups. Unrestored (60%), injectable composite (53.3%), and SDR® flow+ (53.3%) groups were mostly unrepairable.
Conclusion: The everX Flow™ demonstrated improved fracture resistance and favorable fracture pattern for maxillary premolars with wedge-shaped NCCLs.
{"title":"Effect of composite resins with and without fiber-reinforcement on the fracture resistance of teeth with non-carious cervical lesions.","authors":"Ahmet Hazar, Ecehan Hazar","doi":"10.1177/22808000241303327","DOIUrl":"https://doi.org/10.1177/22808000241303327","url":null,"abstract":"<p><strong>Objective: </strong>Non-carious cervical lesions (NCCLs) are commonly observed in clinical dentistry, leading to tooth fractures, sensitivity, and compromised pulp vitality. Therefore, their restoration is essential for both the aesthetic and structural integrity of teeth. This study aimed to compare the fracture resistance of NCCLs restored using different materials: an injectable universal composite, flowable bulk-fill composites with or without fiber-reinforcement.</p><p><strong>Methods: </strong>Seventy-five double-rooted maxillary premolars were selected for the study. Fifteen teeth were left intact as a control. A wedge-shaped cavity was prepared in the cervical region of the remaining sixty teeth, which were then divided into four groups (<i>n</i> = 15): unrestored, restored with an injectable composite, restored with a flowable bulk-fill composite (SDR<sup>®</sup> flow+), and restored with a flowable short-fiber-reinforced composite (everX Flow™). All teeth underwent fracture testing under oblique static loading at a 30° angle using a universal testing machine. Fracture patterns were classified as repairable, possibly repairable, or unrepairable. Data were analyzed using one-way analysis of variance, Pearson chi-square, and Tukey HSD post hoc tests (<i>p</i> = 0.05).</p><p><strong>Results: </strong>Intact teeth exhibited the highest fracture resistance (743.481 N), while unrestored teeth showed the lowest (371.49 N) (<i>p</i> < 0.001). There was no significant difference in fracture resistance between the injectable composite (553.289 N) and SDR<sup>®</sup> flow+ (497.368 N) (<i>p</i> = 0.055). The everX Flow™ group displayed significantly higher fracture resistance (673.787 N) (<i>p</i> < 0.001) and a repairability rate of 60% within the restored groups. Unrestored (60%), injectable composite (53.3%), and SDR<sup>®</sup> flow+ (53.3%) groups were mostly unrepairable.</p><p><strong>Conclusion: </strong>The everX Flow™ demonstrated improved fracture resistance and favorable fracture pattern for maxillary premolars with wedge-shaped NCCLs.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241303327"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/22808000241277383
Ivan Vito Ferrari, Micaela Castellino, Anissa Pisani, Giulia Giuntoli, Aida Cavallo, Tamer Al Kayal, Paola Mazzetti, Alfredo Rosellini, Maria Sidoti, Antonino Cataldo, Mauro Pistello, Giorgio Soldani, Paola Losi
In the past few years, due to the Covid-19 pandemic, the interest towards textiles with antimicrobial functionalities faced a significant boost. This study proposes a rapid and convenient method, in terms of reactants and equipment, for fabricating antimicrobial coatings on textiles. Through the electroless silver plating reaction, silver coatings were successfully applied on cotton and polyester, rapidly and at room temperature. Functionalized samples were characterized by morphological (optical and scanning electron microscopies) and chemical tests (X-ray photoelectron spectroscopy, XPS) to investigate the nature of the silver coating. Although distinct nanoparticles did not form, XPS analysis detected the presence of silver, which resulted in an increased surface roughness and hydrophobicity of both cotton and polyester textiles. Ag-coated samples exhibited approximately 80% biocompatibility with murine L929 fibroblasts or human HaCaT cells, and strong antibacterial properties against Escherichia coli in direct contact tests. In antiviral experiments with SARS-CoV-2 virus, treated cotton showed a 100% viral reduction in 30 min, while polyester achieved 100% reduction in 1 h. With a human norovirus surrogate, the Feline Calicivirus, both treated textiles have a faster antiviral response, with more than 60% viral reduction after 5 min, while achieving a 100% reduction in 1 h. In conclusion, this study presents a fast, efficient, and low-cost solution for producing antimicrobial textiles with broad applications in medical and healthcare scenarios.
{"title":"Electroless silver plating on fabrics for antimicrobial coating: comparison between cotton and polyester.","authors":"Ivan Vito Ferrari, Micaela Castellino, Anissa Pisani, Giulia Giuntoli, Aida Cavallo, Tamer Al Kayal, Paola Mazzetti, Alfredo Rosellini, Maria Sidoti, Antonino Cataldo, Mauro Pistello, Giorgio Soldani, Paola Losi","doi":"10.1177/22808000241277383","DOIUrl":"10.1177/22808000241277383","url":null,"abstract":"<p><p>In the past few years, due to the Covid-19 pandemic, the interest towards textiles with antimicrobial functionalities faced a significant boost. This study proposes a rapid and convenient method, in terms of reactants and equipment, for fabricating antimicrobial coatings on textiles. Through the electroless silver plating reaction, silver coatings were successfully applied on cotton and polyester, rapidly and at room temperature. Functionalized samples were characterized by morphological (optical and scanning electron microscopies) and chemical tests (X-ray photoelectron spectroscopy, XPS) to investigate the nature of the silver coating. Although distinct nanoparticles did not form, XPS analysis detected the presence of silver, which resulted in an increased surface roughness and hydrophobicity of both cotton and polyester textiles. Ag-coated samples exhibited approximately 80% biocompatibility with murine L929 fibroblasts or human HaCaT cells, and strong antibacterial properties against <i>Escherichia coli</i> in direct contact tests. In antiviral experiments with SARS-CoV-2 virus, treated cotton showed a 100% viral reduction in 30 min, while polyester achieved 100% reduction in 1 h. With a human norovirus surrogate, the Feline Calicivirus, both treated textiles have a faster antiviral response, with more than 60% viral reduction after 5 min, while achieving a 100% reduction in 1 h. In conclusion, this study presents a fast, efficient, and low-cost solution for producing antimicrobial textiles with broad applications in medical and healthcare scenarios.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241277383"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/22808000241266665
Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He
The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.
{"title":"Biomimetic HA-GO implant coating for enhanced osseointegration via macrophage M2 polarization-induced osteo-immunomodulation.","authors":"Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He","doi":"10.1177/22808000241266665","DOIUrl":"https://doi.org/10.1177/22808000241266665","url":null,"abstract":"<p><p>The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241266665"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/22808000241240296
Rema A Oliver, Tian Wang, Chris Christou, Alisa Buchman, Simha Sibony, William R Walsh
Joint replacements provide pain free movement for the injured or our aging population. Current prothesis mainly consist of hard metal on metal, or ceramic femoral head on ultra-high-molecular weight polyethylene (UHMWPE). In this study, a rodent fracture model was used to test the influence of wear debris from a high-performance polymer (polyimide MP-1™). Saline, MP-1™ Low Dose in Saline (1%), or MP-1 High Dose (2%) in Saline was injected directly into a standard closed unilateral femoral fracture in 12-week old Sprague Dawley rats (n = 25) for 1, 3 and 6 weeks. Endpoints included radiography, micro-computed tomography, mechanical testing and paraffin histology. No adverse effects from the wear particles were observed from the current study based on radiology, mechanical or histological data. Although the particles were present, histological analysis revealed a progression in healing between the Polyimide treated groups and the non-treated saline control groups over the duration of 1, 3, and 6 weeks, with no inhibition from the particles. The MP-1™ wear debris generated are larger than 1 µm thus are not able to be engulfed by macrophages and cause osteolysis. This family of polymers (polyimides) may be an ideal material to consider for articulating joints and other implants in the human body.
{"title":"The influence of polyimide MP-1™ wear particles on a rodent closed fracture healing model.","authors":"Rema A Oliver, Tian Wang, Chris Christou, Alisa Buchman, Simha Sibony, William R Walsh","doi":"10.1177/22808000241240296","DOIUrl":"10.1177/22808000241240296","url":null,"abstract":"<p><p>Joint replacements provide pain free movement for the injured or our aging population. Current prothesis mainly consist of hard metal on metal, or ceramic femoral head on ultra-high-molecular weight polyethylene (UHMWPE). In this study, a rodent fracture model was used to test the influence of wear debris from a high-performance polymer (polyimide MP-1™). Saline, MP-1™ Low Dose in Saline (1%), or MP-1 High Dose (2%) in Saline was injected directly into a standard closed unilateral femoral fracture in 12-week old Sprague Dawley rats (<i>n</i> = 25) for 1, 3 and 6 weeks. Endpoints included radiography, micro-computed tomography, mechanical testing and paraffin histology. No adverse effects from the wear particles were observed from the current study based on radiology, mechanical or histological data. Although the particles were present, histological analysis revealed a progression in healing between the Polyimide treated groups and the non-treated saline control groups over the duration of 1, 3, and 6 weeks, with no inhibition from the particles. The MP-1™ wear debris generated are larger than 1 µm thus are not able to be engulfed by macrophages and cause osteolysis. This family of polymers (polyimides) may be an ideal material to consider for articulating joints and other implants in the human body.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241240296"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanofibrous scaffolds have emerged as promising candidates for localized drug delivery systems in the treatment of cutaneous cancers. In this study, we prepared an electrospun nanofibrous scaffold incorporating 5-fluorouracil (5-FU) and etoposide (ETP) for chemotherapy targeting melanoma cutaneous cancer. The scaffold was composed of polyvinyl alcohol (PVA) and chitosan (CS), prepared via the electrospinning process and loaded with the chemotherapeutic agents. We conducted relevant physicochemical characterizations, assessed cytotoxicity, and evaluated apoptosis against melanoma A375 cells. The prepared 5-FU/ETP co-loaded PVA/CS scaffold exhibited nanofibers (NFs) with an average diameter of 321 ± 61 nm, defect-free and homogenous morphology. FTIR spectroscopy confirmed successful incorporation of chemotherapeutics into the scaffold. Additionally, the scaffold demonstrated a hydrophilic surface, proper mechanical strength, high porosity, and efficient liquid absorption capacity. Notably, sustained and controlled drug release was observed from the nanofibrous scaffold. Furthermore, the scaffold significantly increased cytotoxicity (95%) and apoptosis (74%) in A375 melanoma cells. Consequently, the prepared 5-FU/ETP co-loaded PVA/CS nanofibrous scaffold holds promise as a valuable system for localized eradication of cutaneous melanoma tumors and mitigation of adverse drug reactions associated with chemotherapy.
{"title":"Development of 5-fluorouracil/etoposide co-loaded electrospun nanofibrous scaffold for localized anti-melanoma therapy.","authors":"Shirin Shojaei, Mahtab Doostan, Hamidreza Mohammadi Motlagh, Seyedeh Sara Esnaashari, Hassan Maleki","doi":"10.1177/22808000241284439","DOIUrl":"https://doi.org/10.1177/22808000241284439","url":null,"abstract":"<p><p>Nanofibrous scaffolds have emerged as promising candidates for localized drug delivery systems in the treatment of cutaneous cancers. In this study, we prepared an electrospun nanofibrous scaffold incorporating 5-fluorouracil (5-FU) and etoposide (ETP) for chemotherapy targeting melanoma cutaneous cancer. The scaffold was composed of polyvinyl alcohol (PVA) and chitosan (CS), prepared via the electrospinning process and loaded with the chemotherapeutic agents. We conducted relevant physicochemical characterizations, assessed cytotoxicity, and evaluated apoptosis against melanoma A375 cells. The prepared 5-FU/ETP co-loaded PVA/CS scaffold exhibited nanofibers (NFs) with an average diameter of 321 ± 61 nm, defect-free and homogenous morphology. FTIR spectroscopy confirmed successful incorporation of chemotherapeutics into the scaffold. Additionally, the scaffold demonstrated a hydrophilic surface, proper mechanical strength, high porosity, and efficient liquid absorption capacity. Notably, sustained and controlled drug release was observed from the nanofibrous scaffold. Furthermore, the scaffold significantly increased cytotoxicity (95%) and apoptosis (74%) in A375 melanoma cells. Consequently, the prepared 5-FU/ETP co-loaded PVA/CS nanofibrous scaffold holds promise as a valuable system for localized eradication of cutaneous melanoma tumors and mitigation of adverse drug reactions associated with chemotherapy.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241284439"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/22808000241296663
Marina Vega-González, Rubén Abraham Domínguez-Pérez, Ana Edith Higareda-Mendoza, Ricardo Domínguez-Pérez, León Francisco Espinosa-Cristóbal, Roberto Gustavo Sánchez-Lara Y Tajonar
Hydraulic calcium silicate cements (HCSCs) are valuable for various dental procedures. However, several reports document inherent limitations and complaints about their high costs, hindering accessibility in low-and middle-income countries. This study aimed to characterize four low-cost HCSC prototypes to show their microstructure, composition, and fundamental physical properties. Four HCSC prototypes were formulated: 1- calcium silicate powder with 17.5 wt. % replacement of calcium tungstate, 2- calcium silicate powder with 17.5 wt. % replacement of zirconium oxide, 3- calcium silicate powder with 17.5 wt. % replacement of calcium tungstate and 2.5 wt. % of zirconium oxide and 4- calcium silicate powder with 10 wt. % replacement of calcium tungstate and 10 wt. % replacement of zirconium oxide. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction were used to assess their microstructure and composition. Additionally, radiopacity, setting time, solubility, pH, and in vitro bioactivity were evaluated at different time points and contrasted with controls (Mineral trioxide aggregate -MTA Angelus- and Intermediate restorative material -IRM-). Their production cost was significantly lower than commercially available HCSCs. All prototypes exhibited a microstructure and composition comparable to MTA Angelus. All the prototypes exhibited radiopacity exceeding 3 mm of aluminum and shorter initial and final setting times than MTA Angelus. The solubility of some prototypes closely adhered to the ISO standard recommendation of 3% after 1 day, and all promoted an alkaline pH and the formation of calcium/phosphate precipitates. These promising findings suggest the potential clinical application of these prototypes. However, further research is necessary to evaluate their mechanical and biological properties for definitive clinical use.
硅酸钙水门汀(HCSCs)对各种牙科手术都很有价值。然而,一些报告指出了其固有的局限性,并抱怨其成本过高,阻碍了中低收入国家的使用。本研究旨在表征四种低成本 HCSC 原型,以显示其微观结构、成分和基本物理性质。共配制了四种 HCSC 原型:1- 取代钨酸钙 17.5 wt.%的硅酸钙粉末;2- 取代氧化锆 17.5 wt.%的硅酸钙粉末;3- 取代钨酸钙 17.5 wt.%和氧化锆 2.5 wt.%的硅酸钙粉末;4- 取代钨酸钙 10 wt.%和氧化锆 10 wt.%的硅酸钙粉末。扫描电子显微镜、能量色散 X 射线光谱和 X 射线衍射被用来评估它们的微观结构和成分。此外,还在不同的时间点对其放射性、凝固时间、溶解度、pH 值和体外生物活性进行了评估,并与对照组(三氧化二铝矿物骨料 -MTA Angelus- 和中间修复材料 -IRM-)进行了对比。它们的生产成本明显低于市售的高密度聚合体。所有原型的微观结构和成分都与 MTA Angelus 相当。与 MTA Angelus 相比,所有原型的铝放射通量都超过了 3 毫米,初凝和终凝时间也更短。一些原型的溶解度与 ISO 标准建议的 1 天后 3% 的溶解度非常接近,并且所有原型都能促进 pH 值呈碱性和钙/磷酸盐沉淀的形成。这些令人鼓舞的研究结果表明,这些原型具有临床应用的潜力。不过,还需要进一步的研究来评估它们的机械和生物特性,以便最终用于临床。
{"title":"The microstructure, composition, physical properties, and bioactivity of calcium silicate cement prototypes for vital pulp therapies.","authors":"Marina Vega-González, Rubén Abraham Domínguez-Pérez, Ana Edith Higareda-Mendoza, Ricardo Domínguez-Pérez, León Francisco Espinosa-Cristóbal, Roberto Gustavo Sánchez-Lara Y Tajonar","doi":"10.1177/22808000241296663","DOIUrl":"https://doi.org/10.1177/22808000241296663","url":null,"abstract":"<p><p>Hydraulic calcium silicate cements (HCSCs) are valuable for various dental procedures. However, several reports document inherent limitations and complaints about their high costs, hindering accessibility in low-and middle-income countries. This study aimed to characterize four low-cost HCSC prototypes to show their microstructure, composition, and fundamental physical properties. Four HCSC prototypes were formulated: 1- calcium silicate powder with 17.5 wt. % replacement of calcium tungstate, 2- calcium silicate powder with 17.5 wt. % replacement of zirconium oxide, 3- calcium silicate powder with 17.5 wt. % replacement of calcium tungstate and 2.5 wt. % of zirconium oxide and 4- calcium silicate powder with 10 wt. % replacement of calcium tungstate and 10 wt. % replacement of zirconium oxide. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction were used to assess their microstructure and composition. Additionally, radiopacity, setting time, solubility, pH, and in vitro bioactivity were evaluated at different time points and contrasted with controls (Mineral trioxide aggregate -MTA Angelus- and Intermediate restorative material -IRM-). Their production cost was significantly lower than commercially available HCSCs. All prototypes exhibited a microstructure and composition comparable to MTA Angelus. All the prototypes exhibited radiopacity exceeding 3 mm of aluminum and shorter initial and final setting times than MTA Angelus. The solubility of some prototypes closely adhered to the ISO standard recommendation of 3% after 1 day, and all promoted an alkaline pH and the formation of calcium/phosphate precipitates. These promising findings suggest the potential clinical application of these prototypes. However, further research is necessary to evaluate their mechanical and biological properties for definitive clinical use.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241296663"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/22808000241282184
Bojana Ramić, Milica Cvjetićanin, Branislav Bajkin, Milan Drobac, Marija Milanović, Dragan Rajnović, Veljko Krstonošić, Đorđe Veljović
High viscosity glass ionomer cements (GICs) are widely used in various clinical applications, being particularly effective in atraumatic restorative treatment (ART) due to the synergistic interaction between the material and the technique. However, the inadequate mechanical properties of GICs raise concerns regarding the predictability and longevity of these restorations in areas exposed to occlusal stress. Various modifications of the powder components have been proposed to improve the mechanical strength of GICs to withstand occlusal loading during mastication. In this in vitro study, we investigated whether the nanoparticles (NPs) added to commercially available GICs could fulfill this requirement, which would likely broaden the spectrum of their potential clinical applications. Two commercially available GIC powders (Fuji IX and Ketac Molar), modified by the addition of 5 wt.% TiO2, MgHAp100 or MgHAp1000 NPs, were incorporated into the corresponding liquid in an appropriate ratio, and the mixed cements were evaluated in terms of fracture toughness, flexural strength, Vickers microhardness and rheological tests and compared with the original material. Fuji IX containing 5 wt.% MgHAp100 NPs had lower flexural strength, while Ketac Molar with 5 wt.% TiO2 NPs showed increased fracture toughness. Vickers microhardness increased in Fuji IX following the addition of 5 wt.% TiO2 and MgHAp100 but decreased in Ketac Molar comprising 5 wt.% MgHAp100 (p < 0.05). Achieving a predictable bond between NPs and cement matrix, as well as ensuring a uniform distribution of the NPs within the cement, are critical prerequisites for enhancing the mechanical performance of the original cement.
{"title":"Physical and mechanical properties assessment of glass ionomer cements modified with TiO<sub>2</sub> and Mg-doped hydroxyapatite nanoparticles.","authors":"Bojana Ramić, Milica Cvjetićanin, Branislav Bajkin, Milan Drobac, Marija Milanović, Dragan Rajnović, Veljko Krstonošić, Đorđe Veljović","doi":"10.1177/22808000241282184","DOIUrl":"https://doi.org/10.1177/22808000241282184","url":null,"abstract":"<p><p>High viscosity glass ionomer cements (GICs) are widely used in various clinical applications, being particularly effective in atraumatic restorative treatment (ART) due to the synergistic interaction between the material and the technique. However, the inadequate mechanical properties of GICs raise concerns regarding the predictability and longevity of these restorations in areas exposed to occlusal stress. Various modifications of the powder components have been proposed to improve the mechanical strength of GICs to withstand occlusal loading during mastication. In this in vitro study, we investigated whether the nanoparticles (NPs) added to commercially available GICs could fulfill this requirement, which would likely broaden the spectrum of their potential clinical applications. Two commercially available GIC powders (Fuji IX and Ketac Molar), modified by the addition of 5 wt.% TiO<sub>2</sub>, MgHAp100 or MgHAp1000 NPs, were incorporated into the corresponding liquid in an appropriate ratio, and the mixed cements were evaluated in terms of fracture toughness, flexural strength, Vickers microhardness and rheological tests and compared with the original material. Fuji IX containing 5 wt.% MgHAp100 NPs had lower flexural strength, while Ketac Molar with 5 wt.% TiO<sub>2</sub> NPs showed increased fracture toughness. Vickers microhardness increased in Fuji IX following the addition of 5 wt.% TiO<sub>2</sub> and MgHAp100 but decreased in Ketac Molar comprising 5 wt.% MgHAp100 (<i>p</i> < 0.05). Achieving a predictable bond between NPs and cement matrix, as well as ensuring a uniform distribution of the NPs within the cement, are critical prerequisites for enhancing the mechanical performance of the original cement.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241282184"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/22808000241266487
Ya-Ming Wang, Jiang-Tao Shen
Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.
{"title":"Chitosan-based promising scaffolds for the construction of tailored nanosystems against osteoporosis: Current status and future prospects.","authors":"Ya-Ming Wang, Jiang-Tao Shen","doi":"10.1177/22808000241266487","DOIUrl":"https://doi.org/10.1177/22808000241266487","url":null,"abstract":"<p><p>Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241266487"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-30DOI: 10.35745/afm2023v03.02.0001
Olexandr Kucherov, Andrey Mudryk
In this article, we present a discovery of the binary atomic structure. Through picoscopy experiments, it was revealed that electronic structure is divided into core and functional structures. Internal chemically neutral electrons form the core of an atom and are spherical in pink, while the outer functional electrons are elongated in green being chemically active. A spherical yellow layer separates these two parts. It significantly simplifies the Schrödinger equation and leads to a solution for all 118 chemical elements. As a result, the Kucherov-Mudryk formula w = n + ¾l was derived. That formula allowed for organizing the periodic table in ascending order of the whole energy where en electron first fills the level with the lowest energy, according to the Minimum Potential Energy general principle of nature.
在这篇文章中,我们提出了二元原子结构的一个发现。通过picoscopy实验,发现其电子结构分为核心结构和功能结构。内部的化学中性电子构成了原子的核心,呈粉红色球形,而外部的功能电子呈绿色,呈细长状,具有化学活性。一个球形的黄色层将这两部分隔开。它极大地简化了Schrödinger方程,并得出了所有118种化学元素的解。由此推导出Kucherov-Mudryk公式w = n +¾l。这个公式允许按照整个能量的升序来组织元素周期表,其中一个电子首先填满了能量最低的能级,根据自然的最小势能一般原理。
{"title":"Picoscopy Discoveries of the Binary Atomic Structure","authors":"Olexandr Kucherov, Andrey Mudryk","doi":"10.35745/afm2023v03.02.0001","DOIUrl":"https://doi.org/10.35745/afm2023v03.02.0001","url":null,"abstract":"In this article, we present a discovery of the binary atomic structure. Through picoscopy experiments, it was revealed that electronic structure is divided into core and functional structures. Internal chemically neutral electrons form the core of an atom and are spherical in pink, while the outer functional electrons are elongated in green being chemically active. A spherical yellow layer separates these two parts. It significantly simplifies the Schrödinger equation and leads to a solution for all 118 chemical elements. As a result, the Kucherov-Mudryk formula w = n + ¾l was derived. That formula allowed for organizing the periodic table in ascending order of the whole energy where en electron first fills the level with the lowest energy, according to the Minimum Potential Energy general principle of nature.","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136369198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}