首页 > 最新文献

Journal of Biomaterials Science, Polymer Edition最新文献

英文 中文
Enhancing therapeutic effects alginate microencapsulation of thyme and calendula oils using ionic gelation for controlled drug delivery. 利用离子凝胶技术提高百里香和金盏花油的藻酸盐微胶囊治疗效果,实现可控给药。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-18 DOI: 10.1080/09205063.2024.2386220
Cengizhan Çakır, Elif Hatice Gürkan

This study focuses on encapsulating and characterizing essential oils such as thyme and calendula oils, which are known for their therapeutic properties but are limited in pharmaceutical formulations due to their low water solubility and instability, with alginate microspheres. Alginate presents an excellent option for microencapsulation due to its biocompatibility and biological degradability. The ionic gelation (IG) technique, based on the ionic binding between alginate and divalent cations, allows the formation of hydrogel materials with high water content, mechanical strength, and biocompatibility. The microspheres were characterized using FT-IR, SEM, and swelling analyses. After determining the encapsulation efficiency and drug loading capacity, the microspheres were subjected to dissolution studies under simulated digestion conditions. It was observed that the swelling percentage of the microspheres in simulated gastric fluid (SGF) ranged from ∼15% to 100%, while in simulated intestinal fluid (SIF) it ranged from ∼150% to 325%. Thyme oil, with low viscosity, exhibited higher encapsulation efficiency than marigold oil. The highest encapsulation efficiency was observed in A-TO-2 microspheres, while the highest drug loading capacity was observed in A-TO-5 microspheres. During the examination of the dissolution profiles of the microspheres, dissolution rates ranging from 10.98% to 23.56% in SGF and from 52.44% to 63.20% in SIF were observed.

百里香油和金盏花油等精油具有众所周知的治疗特性,但由于其水溶性低和不稳定性,在药物配方中的应用受到限制。本研究的重点是用海藻酸盐微球封装百里香油和金盏花油等精油并确定其特性。藻酸盐具有生物相容性和生物降解性,是微囊化的绝佳选择。离子凝胶化(IG)技术基于海藻酸盐和二价阳离子之间的离子结合,可以形成具有高含水量、机械强度和生物相容性的水凝胶材料。利用傅立叶变换红外光谱、扫描电镜和膨胀分析对微球进行了表征。在确定了封装效率和载药量后,对微球进行了模拟消化条件下的溶解研究。结果表明,微球在模拟胃液(SGF)中的溶胀率在∼15%至100%之间,而在模拟肠液(SIF)中的溶胀率在∼150%至325%之间。低粘度的百里香油比万寿菊油具有更高的封装效率。A-TO-2 微球的封装效率最高,而 A-TO-5 微球的载药量最高。在检查微球的溶解曲线时,观察到在 SGF 中的溶解率为 10.98% 至 23.56%,在 SIF 中的溶解率为 52.44% 至 63.20%。
{"title":"Enhancing therapeutic effects alginate microencapsulation of thyme and calendula oils using ionic gelation for controlled drug delivery.","authors":"Cengizhan Çakır, Elif Hatice Gürkan","doi":"10.1080/09205063.2024.2386220","DOIUrl":"https://doi.org/10.1080/09205063.2024.2386220","url":null,"abstract":"<p><p>This study focuses on encapsulating and characterizing essential oils such as thyme and calendula oils, which are known for their therapeutic properties but are limited in pharmaceutical formulations due to their low water solubility and instability, with alginate microspheres. Alginate presents an excellent option for microencapsulation due to its biocompatibility and biological degradability. The ionic gelation (IG) technique, based on the ionic binding between alginate and divalent cations, allows the formation of hydrogel materials with high water content, mechanical strength, and biocompatibility. The microspheres were characterized using FT-IR, SEM, and swelling analyses. After determining the encapsulation efficiency and drug loading capacity, the microspheres were subjected to dissolution studies under simulated digestion conditions. It was observed that the swelling percentage of the microspheres in simulated gastric fluid (SGF) ranged from ∼15% to 100%, while in simulated intestinal fluid (SIF) it ranged from ∼150% to 325%. Thyme oil, with low viscosity, exhibited higher encapsulation efficiency than marigold oil. The highest encapsulation efficiency was observed in A-TO-2 microspheres, while the highest drug loading capacity was observed in A-TO-5 microspheres. During the examination of the dissolution profiles of the microspheres, dissolution rates ranging from 10.98% to 23.56% in SGF and from 52.44% to 63.20% in SIF were observed.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-29"},"PeriodicalIF":3.6,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication, optimization, and in vitro validation of penicillin-loaded hydrogels for controlled drug delivery. 用于控制药物输送的青霉素负载水凝胶的制造、优化和体外验证。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-18 DOI: 10.1080/09205063.2024.2387953
Guiyue Wang, Susu An, Siru Huang, Alamgir, Abdul Wahab, Zahoor Ahmad, Muhammad Suhail, M Zubair Iqbal

Bacterial infections present a major global challenge. Penicillin, a widely used antibiotic known for its effectiveness and safety, is frequently prescribed. However, its short half-life necessitates multiple high-dose daily administrations, leading to severe side-effects. Therefore, this study aims to address these issues by developing hydrogels which control the release of penicillin and alleviate its adverse effects. Various combinations of aspartic acid and acrylamide were crosslinked by N', N'-methylene bisacrylamide through a free radical polymerization process to prepare aspartic acid/acrylamide (Asp/Am) hydrogels. The fabricated hydrogels underwent comprehensive characterization to assess physical properties and thermal stability. The soluble and insoluble fractions and porosity of the synthesized matrix were evaluated by sol-gel and porosity studies. Gel fraction was estimated at 88-96%, whereas sol fraction was found 12-4% and porosity found within the 63-78% range for fabricated hydrogel formulations. Maximum swelling and drug release were seen at pH 7.4, demonstrating a controlled drug release from hydrogel networks. The results showed that swelling, porosity, gel fraction, and drug release increased with higher concentrations of aspartic acid and acrylamide. However, integration of N', N'-methylene bisacrylamide exhibited the opposite effect on swelling and porosity, while increasing gel fraction. All formulations followed the Korsymer-Peppas model of kinetics with 'r' values within the range of 0.9740-0.9980. Furthermore, the cytotoxicity study indicated an effective and safe use of hydrogel because the cell viability was higher than 70%. Therefore, these prepared hydrogels show promise candidates for controlled release of Penicillin and are anticipated to be valuable in clinical applications.

细菌感染是全球面临的一大挑战。青霉素是一种广泛使用的抗生素,以其有效性和安全性著称,是常用的处方药。然而,青霉素的半衰期较短,必须每天多次大剂量给药,从而导致严重的副作用。因此,本研究旨在通过开发可控制青霉素释放并减轻其不良反应的水凝胶来解决这些问题。通过自由基聚合工艺,用 N',N'-亚甲基双丙烯酰胺交联天冬氨酸和丙烯酰胺的各种组合,制备天冬氨酸/丙烯酰胺(Asp/Am)水凝胶。对制备的水凝胶进行了全面的表征,以评估其物理性质和热稳定性。通过溶胶-凝胶和孔隙率研究评估了合成基质的可溶和不溶部分以及孔隙率。凝胶部分估计为 88-96%,而溶胶部分为 12-4%,孔隙率为 63-78%。在 pH 值为 7.4 时,溶胀和药物释放达到最大值,这表明水凝胶网络的药物释放是可控的。结果表明,随着天冬氨酸和丙烯酰胺浓度的增加,溶胀度、孔隙率、凝胶成分和药物释放量也随之增加。然而,N',N'-亚甲基双丙烯酰胺的加入对溶胀和孔隙率的影响恰恰相反,同时增加了凝胶部分。所有配方都遵循 Korsymer-Peppas 动力学模型,"r "值在 0.9740-0.9980 之间。此外,细胞毒性研究表明水凝胶的使用是有效和安全的,因为细胞存活率高于 70%。因此,这些制备的水凝胶有望用于青霉素的控制释放,并有望在临床应用中发挥重要作用。
{"title":"Fabrication, optimization, and <i>in vitro</i> validation of penicillin-loaded hydrogels for controlled drug delivery.","authors":"Guiyue Wang, Susu An, Siru Huang, Alamgir, Abdul Wahab, Zahoor Ahmad, Muhammad Suhail, M Zubair Iqbal","doi":"10.1080/09205063.2024.2387953","DOIUrl":"https://doi.org/10.1080/09205063.2024.2387953","url":null,"abstract":"<p><p>Bacterial infections present a major global challenge. Penicillin, a widely used antibiotic known for its effectiveness and safety, is frequently prescribed. However, its short half-life necessitates multiple high-dose daily administrations, leading to severe side-effects. Therefore, this study aims to address these issues by developing hydrogels which control the release of penicillin and alleviate its adverse effects. Various combinations of aspartic acid and acrylamide were crosslinked by N', N'-methylene bisacrylamide through a free radical polymerization process to prepare aspartic acid/acrylamide (Asp/Am) hydrogels. The fabricated hydrogels underwent comprehensive characterization to assess physical properties and thermal stability. The soluble and insoluble fractions and porosity of the synthesized matrix were evaluated by sol-gel and porosity studies. Gel fraction was estimated at 88-96%, whereas sol fraction was found 12-4% and porosity found within the 63-78% range for fabricated hydrogel formulations. Maximum swelling and drug release were seen at pH 7.4, demonstrating a controlled drug release from hydrogel networks. The results showed that swelling, porosity, gel fraction, and drug release increased with higher concentrations of aspartic acid and acrylamide. However, integration of N', N'-methylene bisacrylamide exhibited the opposite effect on swelling and porosity, while increasing gel fraction. All formulations followed the Korsymer-Peppas model of kinetics with '<i>r</i>' values within the range of 0.9740-0.9980. Furthermore, the cytotoxicity study indicated an effective and safe use of hydrogel because the cell viability was higher than 70%. Therefore, these prepared hydrogels show promise candidates for controlled release of Penicillin and are anticipated to be valuable in clinical applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-21"},"PeriodicalIF":3.6,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osteoconductive composite membranes produced by rotary jet spinning bioresorbable PLGA for bone regeneration. 通过旋转喷射纺生物可吸收聚乳酸(PLGA)生产用于骨再生的骨传导复合膜。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-14 DOI: 10.1080/09205063.2024.2386219
Isabella Caroline Pereira Rodrigues, Karina Danielle Pereira, Augusto Ducati Luchessi, Éder Sócrates Najar Lopes, Laís Pellizzer Gabriel

Bone defects and injuries are common, and better solutions are needed for improved regeneration and osseointegration. Bioresorbable membranes hold great potential in bone tissue engineering due to their high surface area and versatility. In this context, polymers such as poly(lactic-co-glycolic acid) (PLGA) can be combined with osteoconductive materials like hydroxyapatite (HA) nanoparticles (NPs) to create membranes with enhanced bioactivity and bone regeneration. Rotary Jet spinning (RJS) is a powerful technique to produce these composite membranes. This study presents an innovative and efficient method to obtain PLGA-HA(NPs) membranes with continuous fibers containing homogeneous HA(NPs) distribution. The membranes demonstrated stable thermal degradation, allowing HA(NPs) quantification. In addition, the PLGA-HA(NPs) presented osteoconductivity, were not cytotoxic, and had high cell adhesion when cultured with pre-osteoblastic cells. These findings demonstrate the potential of RJS to produce PLGA-HA(NPs) membranes for easy and effective application in bone regeneration.

骨缺损和损伤很常见,需要更好的解决方案来改善再生和骨结合。生物可吸收膜具有高表面积和多功能性,在骨组织工程中具有巨大潜力。在这种情况下,聚(乳酸-共聚乙醇酸)(PLGA)等聚合物可与羟基磷灰石(HA)纳米颗粒(NPs)等骨诱导材料相结合,制成具有更强生物活性和骨再生能力的膜。旋转喷射纺丝(RJS)是生产这些复合膜的一项强大技术。本研究提出了一种创新而高效的方法,用于获得含有均匀分布的 HA(NPs) 的连续纤维的 PLGA-HA(NPs) 膜。这种膜具有稳定的热降解特性,可对 HA(NPs) 进行定量。此外,PLGA-HA(NPs)还具有骨传导性,无细胞毒性,在与成骨细胞前期培养时具有较高的细胞粘附性。这些发现证明了 RJS 生产 PLGA-HA(NPs)膜的潜力,可方便有效地应用于骨再生。
{"title":"Osteoconductive composite membranes produced by rotary jet spinning bioresorbable PLGA for bone regeneration.","authors":"Isabella Caroline Pereira Rodrigues, Karina Danielle Pereira, Augusto Ducati Luchessi, Éder Sócrates Najar Lopes, Laís Pellizzer Gabriel","doi":"10.1080/09205063.2024.2386219","DOIUrl":"https://doi.org/10.1080/09205063.2024.2386219","url":null,"abstract":"<p><p>Bone defects and injuries are common, and better solutions are needed for improved regeneration and osseointegration. Bioresorbable membranes hold great potential in bone tissue engineering due to their high surface area and versatility. In this context, polymers such as poly(lactic-co-glycolic acid) (PLGA) can be combined with osteoconductive materials like hydroxyapatite (HA) nanoparticles (NPs) to create membranes with enhanced bioactivity and bone regeneration. Rotary Jet spinning (RJS) is a powerful technique to produce these composite membranes. This study presents an innovative and efficient method to obtain PLGA-HA(NPs) membranes with continuous fibers containing homogeneous HA(NPs) distribution. The membranes demonstrated stable thermal degradation, allowing HA(NPs) quantification. In addition, the PLGA-HA(NPs) presented osteoconductivity, were not cytotoxic, and had high cell adhesion when cultured with pre-osteoblastic cells. These findings demonstrate the potential of RJS to produce PLGA-HA(NPs) membranes for easy and effective application in bone regeneration.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-14"},"PeriodicalIF":3.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composite hydrogels fabricated from CMC-PVA-GG incorporated with ZiF-8 for wound healing applications. 将 CMC-PVA-GG 与 ZiF-8 结合制成复合水凝胶,用于伤口愈合。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-07 DOI: 10.1080/09205063.2024.2386224
Tooba Yasin, Muhammad Azhar Aslam, Haamid Jamil, Abdalla Abdal-Hay, Hassan Fouad, Humaira Masood Siddiqi, Muhammad Umar Aslam Khan

The skin is at risk for injury to external factors since it serves as the body's first line of defense against the external environment. Hydrogels have drawn much interest due to their intrinsic extracellular matrix (ECM) properties and their biomimetic, structural, and durable mechanical characteristics. Hydrogels have enormous potential use in skin wound healing due to their ability to deliver bioactive substances easily. In this study, composite hydrogels were developed by blending guar gum (GG), polyvinyl alcohol (PVA), and carboxymethyl cellulose (CMC) with crosslinker TEOS for skin wound treatment. The structural, surface morphology, surface roughness, and stability features of the composite hydrogels were characterized by several techniques, such as FTIR, SEM-EDX, AFM, and DSC. The increasing ZiF-8 causes more surface roughness, with decreased swelling in different media (Aqueous > PBS > NaCl). The increasing ZiF-8 amount causes less hydrophilic behavior and biodegradation with increasing gel fraction. The cytocompatibility of Zinc imidazolate framework-8 (ZiF-8) based composites was evaluated against fibroblast cell lines by cell viability, proliferation, and cell morphology. The increasing ZiF-8 caused more cell viability and proliferation with proper cell morphology. Hence, the results show that synthesized composite hydrogels may be a potential candidate for numerous wound repair applications.

皮肤是人体抵御外界环境的第一道防线,因此有可能受到外界因素的伤害。水凝胶因其固有的细胞外基质(ECM)特性及其仿生、结构和持久的机械特性而备受关注。由于水凝胶能够方便地输送生物活性物质,因此在皮肤伤口愈合方面具有巨大的潜在用途。在这项研究中,通过将瓜尔胶(GG)、聚乙烯醇(PVA)和羧甲基纤维素(CMC)与交联剂 TEOS 混合,开发出了复合水凝胶,用于皮肤伤口治疗。傅立叶变换红外光谱(FTIR)、扫描电镜-电子显微镜(SEM-EDX)、原子力显微镜(AFM)和电导率扫描电镜(DSC)等多种技术对复合水凝胶的结构、表面形态、表面粗糙度和稳定性特征进行了表征。在不同介质中(水溶液 > PBS > NaCl),ZiF-8 的增加会导致表面粗糙度增加,溶胀度降低。随着 ZiF-8 含量的增加,凝胶的亲水性和生物降解性降低。通过细胞活力、增殖和细胞形态评估了基于咪唑酸锌骨架-8(ZiF-8)的复合材料与成纤维细胞系的细胞相容性。ZiF-8 越多,细胞活力和增殖越强,细胞形态越清晰。因此,研究结果表明,合成的复合水凝胶可能成为多种伤口修复应用的潜在候选材料。
{"title":"Composite hydrogels fabricated from CMC-PVA-GG incorporated with ZiF-8 for wound healing applications.","authors":"Tooba Yasin, Muhammad Azhar Aslam, Haamid Jamil, Abdalla Abdal-Hay, Hassan Fouad, Humaira Masood Siddiqi, Muhammad Umar Aslam Khan","doi":"10.1080/09205063.2024.2386224","DOIUrl":"https://doi.org/10.1080/09205063.2024.2386224","url":null,"abstract":"<p><p>The skin is at risk for injury to external factors since it serves as the body's first line of defense against the external environment. Hydrogels have drawn much interest due to their intrinsic extracellular matrix (ECM) properties and their biomimetic, structural, and durable mechanical characteristics. Hydrogels have enormous potential use in skin wound healing due to their ability to deliver bioactive substances easily. In this study, composite hydrogels were developed by blending guar gum (GG), polyvinyl alcohol (PVA), and carboxymethyl cellulose (CMC) with crosslinker TEOS for skin wound treatment. The structural, surface morphology, surface roughness, and stability features of the composite hydrogels were characterized by several techniques, such as FTIR, SEM-EDX, AFM, and DSC. The increasing ZiF-8 causes more surface roughness, with decreased swelling in different media (Aqueous > PBS > NaCl). The increasing ZiF-8 amount causes less hydrophilic behavior and biodegradation with increasing gel fraction. The cytocompatibility of Zinc imidazolate framework-8 (ZiF-8) based composites was evaluated against fibroblast cell lines by cell viability, proliferation, and cell morphology. The increasing ZiF-8 caused more cell viability and proliferation with proper cell morphology. Hence, the results show that synthesized composite hydrogels may be a potential candidate for numerous wound repair applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-20"},"PeriodicalIF":3.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing bioactivity of Callistemon citrinus (Curtis) essential oil through novel nanoemulsion formulation. 通过新型纳米乳液配方提高 Callistemon citrinus(Curtis)精油的生物活性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-05 DOI: 10.1080/09205063.2024.2386787
Hamta Haghbayan, Roya Moghimi, Yaghoub Sarrafi, Akram Taleghani, Rahman Hosseinzadeh

The main focus of this study was to create a stable and efficient nanoemulsion (NE) using Callistemon citrinus essential oil (EO). Various factors affecting the NE's stability were optimized including oil %, Tween 80%, time of sonication, and its accelerated stability was examined. The research also considered the antibacterial, antifungal, and larvicidal effects of the optimized NE (B10). The optimum NE stood out for its stability, featuring a particle size of 33.15 ± 0.32 nm. Analysis via IR spectroscopy confirmed successful EO encapsulation in B10. The formulation remained stable for six months, with B10 showing significantly higher antibacterial and antifungal potency compared to the pure oil. When samples were subjected to tests against Fusarium oxysporum, B10 exhibited a MIC value of 62.5 mg/mL, whereas the pure oil showed a MIC value of 250 mg/mL. This indicates that the B10 formulation was 50 times more effective than the EO. In terms of antibacterial activity against Escherichia coli, the MIC value was 0.256 mg/mL for B10 and 4 mg/mL for the EO. Also, pure oil and B10 displayed larvicidal effects against Chilo suppressalis (Walker) larvae, with B10 eliminating 95.2% of larvae in 48 h. Overall, stable and optimum C. citrinus NE with its strong antimicrobial qualities, shows promise as an effective fungicide and insecticide.

本研究的重点是利用枸橼酸马蹄莲精油(EO)制成稳定高效的纳米乳液(NE)。对影响 NE 稳定性的各种因素进行了优化,包括油%、吐温 80%、超声时间,并对其加速稳定性进行了检验。研究还考虑了优化 NE(B10)的抗菌、抗真菌和杀幼虫剂效果。最佳 NE 的稳定性突出,其粒径为 33.15 ± 0.32 nm。红外光谱分析证实,B10 中成功封装了环氧乙烷。配方在六个月内保持稳定,与纯油相比,B10 的抗菌和抗真菌效力明显更高。在对镰孢菌进行测试时,B10 的 MIC 值为 62.5 毫克/毫升,而纯油的 MIC 值为 250 毫克/毫升。这表明 B10 配方的效果是环氧乙烷的 50 倍。在对大肠杆菌的抗菌活性方面,B10 的 MIC 值为 0.256 毫克/毫升,而环氧乙烷的 MIC 值为 4 毫克/毫升。此外,纯油和 B10 还对 Chilo suppressalis (Walker) 幼虫具有杀幼虫作用,其中 B10 在 48 小时内消灭了 95.2% 的幼虫。总体而言,稳定和最佳的 C. citrinus NE 具有很强的抗菌性,有望成为一种有效的杀真菌剂和杀虫剂。
{"title":"Enhancing bioactivity of <i>Callistemon citrinus</i> (Curtis) essential oil through novel nanoemulsion formulation.","authors":"Hamta Haghbayan, Roya Moghimi, Yaghoub Sarrafi, Akram Taleghani, Rahman Hosseinzadeh","doi":"10.1080/09205063.2024.2386787","DOIUrl":"https://doi.org/10.1080/09205063.2024.2386787","url":null,"abstract":"<p><p>The main focus of this study was to create a stable and efficient nanoemulsion (NE) using <i>Callistemon citrinus</i> essential oil (EO). Various factors affecting the NE's stability were optimized including oil %, Tween 80%, time of sonication, and its accelerated stability was examined. The research also considered the antibacterial, antifungal, and larvicidal effects of the optimized NE (B10). The optimum NE stood out for its stability, featuring a particle size of 33.15 ± 0.32 nm. Analysis <i>via</i> IR spectroscopy confirmed successful EO encapsulation in B10. The formulation remained stable for six months, with B10 showing significantly higher antibacterial and antifungal potency compared to the pure oil. When samples were subjected to tests against <i>Fusarium oxysporum</i>, B10 exhibited a MIC value of 62.5 mg/mL, whereas the pure oil showed a MIC value of 250 mg/mL. This indicates that the B10 formulation was 50 times more effective than the EO. In terms of antibacterial activity against <i>Escherichia coli</i>, the MIC value was 0.256 mg/mL for B10 and 4 mg/mL for the EO. Also, pure oil and B10 displayed larvicidal effects against <i>Chilo suppressalis</i> (Walker) larvae, with B10 eliminating 95.2% of larvae in 48 h. Overall, stable and optimum <i>C. citrinus</i> NE with its strong antimicrobial qualities, shows promise as an effective fungicide and insecticide.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-22"},"PeriodicalIF":3.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printing chronicles in medical devices and pharmaceuticals: tracing the evolution and historical milestones. 医疗设备和药品中的 3D 打印编年史:追溯演变和历史里程碑。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-05 DOI: 10.1080/09205063.2024.2386222
Riya Patel, Shivani Patel, Nehal Shah, Sakshi Shah, Ilyas Momin, Shreeraj Shah

The objective of this study is to collect the significant advancements of 3D printed medical devices in the biomedical area in recent years. Especially related to a range of diseases and the polymers employed in drug administration. To address the existing limitations and constraints associated with the method used for producing 3D printed medical devices, in order to optimize their suitability for degradation. The compilation and use of research papers, reports, and patents that are relevant to the key keywords are employed to improve comprehension. According to this thorough investigation, it can be inferred that the 3D Printing method, specifically Fuse Deposition Modeling (FDM), is the most suitable and convenient approach for preparing medical devices. This study provides an analysis and summary of the development trend of 3D printed implantable medical devices, focusing on the production process, materials specially the polymers, and typical items associated with 3D printing technology. This study offers a comprehensive examination of nanocarrier research and its corresponding discoveries. The FDM method, which is already facing significant challenges in terms of achieving optimal performance and cost reduction, will experience remarkable advantages from this highly valuable technology. The objective of this analysis is to showcase the efficacy and limitations of 3D-printing applications in medical devices through thorough research, highlighting the significant technological advancements it offers. This article provides a comprehensive overview of the most recent research and discoveries on 3D-printed medical devices, offering significant insights into their study.

本研究旨在收集近年来 3D 打印医疗设备在生物医学领域取得的重大进展。特别是与一系列疾病和用药中使用的聚合物相关的内容。解决与 3D 打印医疗设备生产方法相关的现有限制和制约因素,以优化其降解适用性。汇编和使用与关键字相关的研究论文、报告和专利,以提高理解能力。根据这项深入调查,可以推断出三维打印方法,特别是熔融沉积建模(FDM),是制备医疗器械最合适、最便捷的方法。本研究对三维打印植入式医疗器械的发展趋势进行了分析和总结,重点关注三维打印技术的生产工艺、高分子材料以及相关的典型项目。本研究全面考察了纳米载体研究及其相应发现。FDM 方法在实现最佳性能和降低成本方面已经面临重大挑战,而这项极具价值的技术将带来显著优势。本分析报告旨在通过深入研究,展示三维打印技术在医疗设备中应用的功效和局限性,突出其带来的重大技术进步。本文全面概述了有关 3D 打印医疗设备的最新研究和发现,为其研究提供了重要见解。
{"title":"3D printing chronicles in medical devices and pharmaceuticals: tracing the evolution and historical milestones.","authors":"Riya Patel, Shivani Patel, Nehal Shah, Sakshi Shah, Ilyas Momin, Shreeraj Shah","doi":"10.1080/09205063.2024.2386222","DOIUrl":"https://doi.org/10.1080/09205063.2024.2386222","url":null,"abstract":"<p><p>The objective of this study is to collect the significant advancements of 3D printed medical devices in the biomedical area in recent years. Especially related to a range of diseases and the polymers employed in drug administration. To address the existing limitations and constraints associated with the method used for producing 3D printed medical devices, in order to optimize their suitability for degradation. The compilation and use of research papers, reports, and patents that are relevant to the key keywords are employed to improve comprehension. According to this thorough investigation, it can be inferred that the 3D Printing method, specifically Fuse Deposition Modeling (FDM), is the most suitable and convenient approach for preparing medical devices. This study provides an analysis and summary of the development trend of 3D printed implantable medical devices, focusing on the production process, materials specially the polymers, and typical items associated with 3D printing technology. This study offers a comprehensive examination of nanocarrier research and its corresponding discoveries. The FDM method, which is already facing significant challenges in terms of achieving optimal performance and cost reduction, will experience remarkable advantages from this highly valuable technology. The objective of this analysis is to showcase the efficacy and limitations of 3D-printing applications in medical devices through thorough research, highlighting the significant technological advancements it offers. This article provides a comprehensive overview of the most recent research and discoveries on 3D-printed medical devices, offering significant insights into their study.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-44"},"PeriodicalIF":3.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and characterization of transdermal delivery of ribociclib nanoemulgel in breast cancer treatment. 在乳腺癌治疗中透皮给药 ribociclib 纳米凝胶的制备和表征。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-01 Epub Date: 2024-05-20 DOI: 10.1080/09205063.2024.2346396
Hafiz A Makeen, Mohammed Albratty

The objective of this study is to create a nanoemulgel formulation of Ribociclib (RIBO), a highly selective inhibitor of CDK4/6 through the utilization of spontaneous emulsification method. An experimental investigation was conducted to construct pseudo-ternary phase diagram for the most favourable formulation utilizing rice bran oil, which is known for its diverse anticancer properties. The formulation consisted of varying combination of the surfactant and as the co-surfactant (Tween 80 and Transcutol, respectively) referred to as Smix and the trials were optimized to get the desired outcome. The nanoemulsion (NE) formulations that were developed exhibited a droplet size of 179.39 nm, accompanied with a PDI of 0.211. According to the data released by Opt-RIBO-NE, it can be inferred that the Higuchi model had the most favourable fit among many kinetics models considered. The results indicate that the use of nanogel preparations for the topical delivery of RIBO in breast cancer therapy, specifically RIBO-NE-G, is viable. This is supported by the extended release of the RIBO, and the appropriate level of drug permeation observed in Opt-RIBO-NE-G. Due to RIBO and Rice Bran oil, RIBO-NE-G had greater antioxidant activity, indicating its effectiveness as antioxidants. The stability of the RIBO-NE-G was observed over a period of three months, indicating a favourable shelf life. Therefore, this study proposes the utilization of an optimized formulation of RIBO-NE-G may enhance the efficacy of anticancer treatment and mitigate the occurrence of systemic side effects in breast cancer patients, as compared to the use of suspension preparation of RIBO.

本研究的目的是利用自发乳化法,制成 CDK4/6 的高选择性抑制剂 Ribociclib(RIBO)的纳米乳胶配方。实验研究利用米糠油构建了伪三相图,以确定最有利的配方,米糠油以其多种抗癌特性而闻名。该配方由不同的表面活性剂和辅助表面活性剂(分别为吐温 80 和 Transcutol)组合而成,被称为 Smix,通过优化试验获得了理想的结果。开发出的纳米乳液(NE)配方的液滴大小为 179.39 纳米,PDI 为 0.211。根据 Opt-RIBO-NE 公布的数据可以推断,在众多动力学模型中,樋口模型的拟合效果最好。结果表明,在乳腺癌治疗中使用纳米凝胶制剂局部给药 RIBO(特别是 RIBO-NE-G)是可行的。在 Opt-RIBO-NE-G 中观察到的 RIBO 的延长释放时间和适当的药物渗透水平证明了这一点。由于含有 RIBO 和米糠油,RIBO-NE-G 具有更强的抗氧化活性,这表明它具有抗氧化剂的功效。对 RIBO-NE-G 的稳定性进行了为期三个月的观察,表明其具有良好的保质期。因此,本研究建议,与使用 RIBO 悬浮制剂相比,使用 RIBO-NE-G 的优化配方可提高乳腺癌患者的抗癌疗效,并减轻全身副作用的发生。
{"title":"Fabrication and characterization of transdermal delivery of ribociclib nanoemulgel in breast cancer treatment.","authors":"Hafiz A Makeen, Mohammed Albratty","doi":"10.1080/09205063.2024.2346396","DOIUrl":"10.1080/09205063.2024.2346396","url":null,"abstract":"<p><p>The objective of this study is to create a nanoemulgel formulation of Ribociclib (RIBO), a highly selective inhibitor of CDK4/6 through the utilization of spontaneous emulsification method. An experimental investigation was conducted to construct pseudo-ternary phase diagram for the most favourable formulation utilizing rice bran oil, which is known for its diverse anticancer properties. The formulation consisted of varying combination of the surfactant and as the co-surfactant (Tween 80 and Transcutol, respectively) referred to as Smix and the trials were optimized to get the desired outcome. The nanoemulsion (NE) formulations that were developed exhibited a droplet size of 179.39 nm, accompanied with a PDI of 0.211. According to the data released by Opt-RIBO-NE, it can be inferred that the Higuchi model had the most favourable fit among many kinetics models considered. The results indicate that the use of nanogel preparations for the topical delivery of RIBO in breast cancer therapy, specifically RIBO-NE-G, is viable. This is supported by the extended release of the RIBO, and the appropriate level of drug permeation observed in Opt-RIBO-NE-G. Due to RIBO and Rice Bran oil, RIBO-NE-G had greater antioxidant activity, indicating its effectiveness as antioxidants. The stability of the RIBO-NE-G was observed over a period of three months, indicating a favourable shelf life. Therefore, this study proposes the utilization of an optimized formulation of RIBO-NE-G may enhance the efficacy of anticancer treatment and mitigate the occurrence of systemic side effects in breast cancer patients, as compared to the use of suspension preparation of RIBO.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1656-1683"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysine and citric acid based pegylated polymeric dendritic nano drug delivery carrier and their bioactivity evaluation. 基于赖氨酸和柠檬酸的聚合树枝状纳米给药载体及其生物活性评价。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-01 Epub Date: 2024-06-24 DOI: 10.1080/09205063.2024.2362023
Avtar Chand, Subhash Kumar, Smita Kapoor, Dharam Singh, Bharti Gaur

The main objective of this work is to synthesize multifunctional nanodendritic structural molecules that can effectively encapsulate hydrophilic as well as hydrophobic therapeutic agents. Four different types of fourth-generation lysine-citric acid based dendrimer have been synthesized in this work: PE-MC-Lys-CA-PEG, TMP-MC-Lys-CA-PEG, PE-MS-Lys-CA-PEG, and TMP-MS-Lys-CA-PEG. The antibacterial drug cefotaxime (CFTX) was further conjugated to these dendrimers. The dendrimer and drug-dendrimer conjugate structures were characterized with the help of FTIR,1H-NMR, and 13C-NMR spectroscopy. Zeta sizer, AFM, and HR-TEM techniques were used to investigate the particle size, surface topography, and structural characteristics of drug-dendrimer conjugates. In vitro drug release was then investigated using dialysis method. Various kinetic drug release models were examined to evaluate the type of kinetic drug release mechanism of the formulations. Cytotoxicity study revealed that the dendrimers encapsulated with CFTX exhibited 2-3% toxicity against healthy epithelial cells, indicating their safe use. Plain dendrimers show 10-15% hemolytic toxicity against red blood cells (RBC), and the toxicity was reduced to 2-3% when CFTX was conjugated to the same dendrimers. The 3rd and 4th generation synthesized drug-dendrimer conjugates exhibit a significantly effective zone of inhibition (ZOI) against both Gram-positive and Gram-negative bacteria. For Gram-positive bacteria, the lower concentration of 0.1 mg/mL showed more than 98% inhibition of drug-dendrimer conjugate samples against B. subtilis and more than 50% inhibition against S. aureus using 0.2 mg/mL, respectively. Moreover, samples with concentrations of 0.5 and 1.0 mg/mL exhibited more than 50% inhibition against S. typhimurium and E. coli, respectively.

这项工作的主要目的是合成多功能纳米树枝状结构分子,使其能够有效封装亲水性和疏水性治疗药物。这项工作合成了四种不同类型的第四代赖氨酸-柠檬酸树枝状聚合物:PE-MC-Lys-CA-PEG、TMP-MC-Lys-CA-PEG、PE-MS-Lys-CA-PEG 和 TMP-MS-Lys-CA-PEG。抗菌药物头孢他啶(CFTX)进一步与这些树枝状聚合物共轭。借助傅立叶变换红外光谱、1H-NMR 和 13C-NMR 光谱对树枝状聚合物和药物-树枝状聚合物共轭结构进行了表征。Zeta 粒度仪、原子力显微镜和 HR-TEM 技术用于研究药物-树枝状聚合物共轭物的粒度、表面形貌和结构特征。然后使用透析法研究了体外药物释放。研究了各种动力学药物释放模型,以评估制剂的动力学药物释放机制类型。细胞毒性研究表明,包裹了 CFTX 的树枝状聚合物对健康上皮细胞的毒性为 2-3%,这表明它们可以安全使用。普通树枝状聚合物对红细胞(RBC)的溶血性毒性为 10-15%,当 CFTX 与相同的树枝状聚合物共轭时,毒性降低到 2-3%。合成的第三代和第四代药物-树枝状聚合物共轭物对革兰氏阳性菌和革兰氏阴性菌都有显著有效的抑制区(ZOI)。对于革兰氏阳性菌,0.1 毫克/毫升的低浓度药物-树枝状聚合物共轭物样品对枯草杆菌的抑制率超过 98%,0.2 毫克/毫升的药物-树枝状聚合物共轭物样品对金黄色葡萄球菌的抑制率超过 50%。此外,浓度为 0.5 和 1.0 毫克/毫升的样品对伤寒杆菌和大肠杆菌的抑制率分别超过 50%。
{"title":"Lysine and citric acid based pegylated polymeric dendritic nano drug delivery carrier and their bioactivity evaluation.","authors":"Avtar Chand, Subhash Kumar, Smita Kapoor, Dharam Singh, Bharti Gaur","doi":"10.1080/09205063.2024.2362023","DOIUrl":"10.1080/09205063.2024.2362023","url":null,"abstract":"<p><p>The main objective of this work is to synthesize multifunctional nanodendritic structural molecules that can effectively encapsulate hydrophilic as well as hydrophobic therapeutic agents. Four different types of fourth-generation lysine-citric acid based dendrimer have been synthesized in this work: PE-MC-Lys-CA-PEG, TMP-MC-Lys-CA-PEG, PE-MS-Lys-CA-PEG, and TMP-MS-Lys-CA-PEG. The antibacterial drug cefotaxime (CFTX) was further conjugated to these dendrimers. The dendrimer and drug-dendrimer conjugate structures were characterized with the help of FTIR,<sup>1</sup>H-NMR, and <sup>13</sup>C-NMR spectroscopy. Zeta sizer, AFM, and HR-TEM techniques were used to investigate the particle size, surface topography, and structural characteristics of drug-dendrimer conjugates. <i>In vitro</i> drug release was then investigated using dialysis method. Various kinetic drug release models were examined to evaluate the type of kinetic drug release mechanism of the formulations. Cytotoxicity study revealed that the dendrimers encapsulated with CFTX exhibited 2-3% toxicity against healthy epithelial cells, indicating their safe use. Plain dendrimers show 10-15% hemolytic toxicity against red blood cells (RBC), and the toxicity was reduced to 2-3% when CFTX was conjugated to the same dendrimers. The 3<sup>rd</sup> and 4<sup>th</sup> generation synthesized drug-dendrimer conjugates exhibit a significantly effective zone of inhibition (ZOI) against both Gram-positive and Gram-negative bacteria. For Gram-positive bacteria, the lower concentration of 0.1 mg/mL showed more than 98% inhibition of drug-dendrimer conjugate samples against <i>B. subtilis</i> and more than 50% inhibition against <i>S. aureus</i> using 0.2 mg/mL, respectively. Moreover, samples with concentrations of 0.5 and 1.0 mg/mL exhibited more than 50% inhibition against <i>S. typhimurium</i> and <i>E. coli</i>, respectively.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1892-1921"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trilayer dissolving microneedle for transdermal delivery of minoxidil: a proof-of-concept study. 用于透皮给药米诺地尔的三层溶解微针:概念验证研究。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-01 Epub Date: 2024-05-08 DOI: 10.1080/09205063.2024.2350187
Nur Afika, Afifah Fadhilah Saniy, Athaullah Akmal Fawwaz Dharma, Christopher Kosasi Ko, Rayu Kamran, Andi Dian Permana

Alopecia areata (AA) is a chronic autoimmune disease characterized by bald patches in certain areas of the body, especially the scalp. Minoxidil (MNX), as a first-line treatment of AA, effectively induces hair growth. However, oral and topical administration pose problems, including low bioavailability, risk of uncontrolled hair growth, and local side effects such as burning hair loss, and scalp irritation. In the latest research, MNX was delivered to the skin via microneedle (MN) transdermally. The MNX concentration was distributed throughout the needle so that drug penetration was reduced and had the potential to irritate. In this study, we formulated MNX into three-layer dissolving microneedles (TDMN) to increase drug penetration and avoid irritation. Physicochemical evaluation, parafilm, was used to evaluate the mechanical strength of TDMN and showed that TDMN could penetrate the stratum corneum. The ex-vivo permeation test showed that the highest average permeation result was obtained for TDMN2, namely 165.28 ± 31.87 ug/cm2, while for Minoxidil cream it was 46.03 ± 8.5 ug/cm2. The results of ex vivo and in vivo dermatokinetic tests showed that the amount of drug concentration remaining in the skin from the TDMN2 formula was higher compared to the cream preparation. The formula developed has no potential for irritation and toxicity based on the HET-CAM test and hemolysis test. TDMN is a promising alternative to administering MNX to overcome MNX problems and increase the effectiveness of AA therapy.

斑秃(AA)是一种慢性自身免疫性疾病,其特征是身体某些部位出现斑秃,尤其是头皮。米诺地尔(Minoxidil,MNX)是治疗斑秃的一线药物,能有效促进头发生长。然而,口服和局部用药会带来一些问题,包括生物利用度低、毛发生长失控的风险,以及局部副作用,如灼热脱发和头皮刺激。在最新的研究中,MNX 通过微针(MN)透皮给药到皮肤。MNX 的浓度分布在整个针头上,因此药物渗透性降低,并有可能产生刺激。在本研究中,我们将 MNX 配制成三层溶解微针(TDMN),以增加药物渗透性并避免刺激。理化评价采用平行膜来评估 TDMN 的机械强度,结果表明 TDMN 可以穿透角质层。体内外渗透测试表明,TDMN2 的平均渗透率最高,为 165.28 ± 31.87 微克/平方厘米,而米诺地尔乳膏的平均渗透率为 46.03 ± 8.5 微克/平方厘米。体内外皮肤动力学测试结果表明,TDMN2 配方在皮肤中残留的药物浓度高于米诺地尔乳膏制剂。根据 HET-CAM 试验和溶血试验,所开发的配方没有潜在的刺激性和毒性。TDMN 是施用 MNX 的一种很有前途的替代方法,可克服 MNX 问题并提高 AA 治疗的效果。
{"title":"Trilayer dissolving microneedle for transdermal delivery of minoxidil: a proof-of-concept study.","authors":"Nur Afika, Afifah Fadhilah Saniy, Athaullah Akmal Fawwaz Dharma, Christopher Kosasi Ko, Rayu Kamran, Andi Dian Permana","doi":"10.1080/09205063.2024.2350187","DOIUrl":"10.1080/09205063.2024.2350187","url":null,"abstract":"<p><p>Alopecia areata (AA) is a chronic autoimmune disease characterized by bald patches in certain areas of the body, especially the scalp. Minoxidil (MNX), as a first-line treatment of AA, effectively induces hair growth. However, oral and topical administration pose problems, including low bioavailability, risk of uncontrolled hair growth, and local side effects such as burning hair loss, and scalp irritation. In the latest research, MNX was delivered to the skin <i>via</i> microneedle (MN) transdermally. The MNX concentration was distributed throughout the needle so that drug penetration was reduced and had the potential to irritate. In this study, we formulated MNX into three-layer dissolving microneedles (TDMN) to increase drug penetration and avoid irritation. Physicochemical evaluation, parafilm, was used to evaluate the mechanical strength of TDMN and showed that TDMN could penetrate the stratum corneum. The ex-vivo permeation test showed that the highest average permeation result was obtained for TDMN2, namely 165.28 ± 31.87 ug/cm<sup>2</sup>, while for Minoxidil cream it was 46.03 ± 8.5 ug/cm<sup>2</sup>. The results of <i>ex vivo</i> and <i>in vivo</i> dermatokinetic tests showed that the amount of drug concentration remaining in the skin from the TDMN2 formula was higher compared to the cream preparation. The formula developed has no potential for irritation and toxicity based on the HET-CAM test and hemolysis test. TDMN is a promising alternative to administering MNX to overcome MNX problems and increase the effectiveness of AA therapy.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1750-1770"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of carboxymethyl chitosan-guar gum-poly(vinylpyrrolidone) ternary blended hydrogels with antibacterial/anticancer efficacy and drug delivery applications. 具有抗菌/抗癌功效和药物输送应用的羧甲基壳聚糖-瓜尔胶-聚乙烯吡咯烷酮三元共混水凝胶的合成。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-01 Epub Date: 2024-05-16 DOI: 10.1080/09205063.2024.2349409
Muhammad Asim Raza, Shin-Ae Kim, Dong Im Kim, Mi-Kyung Song, Sung Soo Han, Sang Hyun Park

Biopolymers have the utmost significance in biomedical applications and blending synthetic polymers has shown favorable characteristics versus individual counterparts. The utilization of the blends can be restricted through the use of toxic chemical agents such as initiators or crosslinkers. In this regard, a chemical agent-free ionizing irradiation is a beneficial alternative for preparing the hydrogels for biomedical applications. In this study, carboxymethyl chitosan (CM-CS), guar gum (GG), and poly(vinylpyrrolidone) (PVP) based ternary blends (TB) were crosslinked using various doses of ionizing irradiation to fabricate hydrogels. The prepared hydrogels were characterized for physicochemical properties, swelling analysis, biological assays, and drug delivery applications. Swelling analysis in distilled water revealed that the hydrogels exhibit excellent swelling characteristics. An in vitro cytocompatibility assay showed that the hydrogels have greater than 90% cell viability for the human epithelial cell line and a decreasing cell viability trend for the human alveolar adenocarcinoma cell line. In addition, the prepared hydrogels possessed excellent antibacterial characteristics against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli). Finally, the release studies of anti-inflammatory Quercus acutissima (QA) loaded hydrogels exhibited more than 80% release in phosphate-buffered saline (pH = 7.4). These findings suggest that TB hydrogels can be used as suitable carrier media for different release systems and biomedical applications.

生物聚合物在生物医学应用中具有极其重要的意义,与单个聚合物相比,混合合成聚合物显示出良好的特性。使用引发剂或交联剂等有毒化学制剂可能会限制混合物的使用。在这方面,无化学剂电离辐照是制备生物医学应用水凝胶的一种有益替代方法。在这项研究中,使用不同剂量的电离辐照交联了羧甲基壳聚糖(CM-CS)、瓜尔豆胶(GG)和聚乙烯吡咯烷酮(PVP)三元共混物(TB)以制备水凝胶。对制备的水凝胶进行了理化性质、溶胀分析、生物检测和药物输送应用表征。在蒸馏水中的溶胀分析表明,水凝胶具有优异的溶胀特性。体外细胞相容性试验表明,水凝胶对人类上皮细胞系的细胞存活率超过 90%,而对人类肺泡腺癌细胞系的细胞存活率呈下降趋势。此外,所制备的水凝胶对革兰氏阳性金黄色葡萄球菌(S. aureus)和革兰氏阴性大肠杆菌(E. coli)具有优异的抗菌特性。最后,在磷酸盐缓冲盐水(pH=7.4)中,抗炎柞树(QA)负载水凝胶的释放研究显示释放率超过 80%。这些研究结果表明,TB 水凝胶可用作不同释放系统和生物医学应用的合适载体介质。
{"title":"Synthesis of carboxymethyl chitosan-guar gum-poly(vinylpyrrolidone) ternary blended hydrogels with antibacterial/anticancer efficacy and drug delivery applications.","authors":"Muhammad Asim Raza, Shin-Ae Kim, Dong Im Kim, Mi-Kyung Song, Sung Soo Han, Sang Hyun Park","doi":"10.1080/09205063.2024.2349409","DOIUrl":"10.1080/09205063.2024.2349409","url":null,"abstract":"<p><p>Biopolymers have the utmost significance in biomedical applications and blending synthetic polymers has shown favorable characteristics versus individual counterparts. The utilization of the blends can be restricted through the use of toxic chemical agents such as initiators or crosslinkers. In this regard, a chemical agent-free ionizing irradiation is a beneficial alternative for preparing the hydrogels for biomedical applications. In this study, carboxymethyl chitosan (CM-CS), guar gum (GG), and poly(vinylpyrrolidone) (PVP) based ternary blends (TB) were crosslinked using various doses of ionizing irradiation to fabricate hydrogels. The prepared hydrogels were characterized for physicochemical properties, swelling analysis, biological assays, and drug delivery applications. Swelling analysis in distilled water revealed that the hydrogels exhibit excellent swelling characteristics. An <i>in vitro</i> cytocompatibility assay showed that the hydrogels have greater than 90% cell viability for the human epithelial cell line and a decreasing cell viability trend for the human alveolar adenocarcinoma cell line. In addition, the prepared hydrogels possessed excellent antibacterial characteristics against gram-positive <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and gram-negative <i>Escherichia coli</i> (<i>E. coli</i>). Finally, the release studies of anti-inflammatory <i>Quercus acutissima</i> (QA) loaded hydrogels exhibited more than 80% release in phosphate-buffered saline (pH = 7.4). These findings suggest that TB hydrogels can be used as suitable carrier media for different release systems and biomedical applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1706-1725"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Science, Polymer Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1