For decades, titanium implants have shown impressive advantages in bone repair. However, the preparation of implants with excellent antimicrobial properties as well as better osseointegration ability remains difficult for clinical application. In this study, black phosphorus nanosheets (BPNSs) were doped into hydroxyapatite (HA) coatings using electrophoretic deposition. The coatings' surface morphology, roughness, water contact angle, photothermal properties, and antibacterial properties were investigated. The BP/HA coating exhibited a surface roughness of 59.1 nm, providing an ideal substrate for cell attachment and growth. The water contact angle on the BP/HA coating was measured to be approximately 8.55°, indicating its hydrophilic nature. The BPNSs demonstrated efficient photothermal conversion, with a temperature increase of 42.2°C under laser irradiation. The BP/HA composite coating exhibited a significant reduction in bacterial growth, with inhibition rates of 95.6% and 96.1% against Staphylococcus aureus and Escherichia coli. In addition, the cytocompatibility of the composite coating was evaluated by cell adhesion, CCK8 and AM/PI staining; the effect of the composite coating in promoting angiogenesis was assessed by scratch assay, transwell assay, and protein blotting; and the osteoinductivity of the composite coating was evaluated by alkaline phosphatase assay, alizarin red staining, and Western blot. The results showed that the BP/HA composite coating exhibited superior performance in promoting biological functions such as cell proliferation and adhesion, antibacterial activity, osteogenic differentiation, and angiogenesis, and had potential applications in vascularized bone regeneration.
{"title":"Improving osseointegration and antimicrobial properties of titanium implants with black phosphorus nanosheets-hydroxyapatite composite coatings for vascularized bone regeneration","authors":"Shilong Ma, Ruize Sun, Yuhui Wang, Yan Wei, Haofeng Xu, Xuanyu Liu, Ziwei Liang, Liqin Zhao, Yinchun Hu, Xiaojie Lian, Meiqing Guo, Di Huang","doi":"10.1002/jbm.b.35403","DOIUrl":"10.1002/jbm.b.35403","url":null,"abstract":"<p>For decades, titanium implants have shown impressive advantages in bone repair. However, the preparation of implants with excellent antimicrobial properties as well as better osseointegration ability remains difficult for clinical application. In this study, black phosphorus nanosheets (BPNSs) were doped into hydroxyapatite (HA) coatings using electrophoretic deposition. The coatings' surface morphology, roughness, water contact angle, photothermal properties, and antibacterial properties were investigated. The BP/HA coating exhibited a surface roughness of 59.1 nm, providing an ideal substrate for cell attachment and growth. The water contact angle on the BP/HA coating was measured to be approximately 8.55°, indicating its hydrophilic nature. The BPNSs demonstrated efficient photothermal conversion, with a temperature increase of 42.2°C under laser irradiation. The BP/HA composite coating exhibited a significant reduction in bacterial growth, with inhibition rates of 95.6% and 96.1% against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. In addition, the cytocompatibility of the composite coating was evaluated by cell adhesion, CCK8 and AM/PI staining; the effect of the composite coating in promoting angiogenesis was assessed by scratch assay, transwell assay, and protein blotting; and the osteoinductivity of the composite coating was evaluated by alkaline phosphatase assay, alizarin red staining, and Western blot. The results showed that the BP/HA composite coating exhibited superior performance in promoting biological functions such as cell proliferation and adhesion, antibacterial activity, osteogenic differentiation, and angiogenesis, and had potential applications in vascularized bone regeneration.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140193908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew Miller, Sujee Jeyapalina, Jayant P. Agarwal, James Peter Beck
Patients implanted with osseointegrated (OI) prosthetic systems have reported vastly improved upper and lower extremity prosthetic function compared with their previous experience with socket-suspension systems. However, OI systems have been associated with superficial and deep-bone infections and implant loosening due, in part, to a failure of the osseointegration process. Although monitoring the osseointegration using circulating biomarkers has clinical relevance for understanding the progression of osseointegration with these devices, it has yet to be established. Ten patients were enrolled in this study. Blood samples were collected at pre-selected times, starting before implantation surgery, and continuing to 12 months after the second surgery. Bone formation markers, bone resorption markers, and circulating amino acids were measured from blood samples. A linear mixed model was generated for each marker, incorporating patient ID and age with the normalized marker value as the response variable. Post hoc comparisons were made between 1 week before Stage 1 Surgery and all subsequent time points for each marker, followed by multiple testing corrections. Serial radiographic imaging of the residual limb containing the implant was obtained during follow-up, and the cortical index (CI) was calculated for the bone at the porous region of the device. Two markers of bone formation, specifically bone-specific alkaline phosphatase (Bone-ALP) and amino-terminal propeptide of type I procollagen (PINP), exhibited significant increases when compared with the baseline levels of unloaded residual bone prior to the initial surgery, and they subsequently returned to their baseline levels by the 12-month mark. Patients who experienced clinically robust osseointegration experienced increased cortical bone thickness at the porous coated region of the device. A medium correlation was observed between Bone-ALP and the porous CI values up to PoS2-M1 (p = .056), while no correlation was observed for PINP. An increase in bone formation markers and the lack of change observed in bone resorption markers likely reflect increased cortical bone formation induced by the end-loading design of the Utah OI device used in this study. A more extensive study is required to validate the correlation observed between Bone-ALP and porous CI values.
据报道,植入骨结合(OI)假肢系统的患者的上肢和下肢假肢功能比以前使用插座悬吊系统时有了很大改善。然而,骨结合义肢系统也与浅层和深层骨感染以及假体松动有关,部分原因是骨结合过程失败。虽然使用循环生物标志物监测骨结合情况对了解这些设备的骨结合进展具有临床意义,但这一意义尚未得到确立。本研究共招募了十名患者。从植入手术前开始,到第二次手术后的 12 个月,在预先选定的时间采集血液样本。从血液样本中测量骨形成标志物、骨吸收标志物和循环氨基酸。针对每种标记物生成一个线性混合模型,将患者 ID 和年龄与归一化标记物值作为响应变量。在第一阶段手术前一周与随后所有时间点之间对每个标记物进行事后比较,然后进行多重检验校正。在随访期间,对植入假体的残肢进行了连续的放射成像检查,并计算了假体多孔区域骨质的皮质指数(CI)。与初次手术前未加载残余骨的基线水平相比,骨形成的两个标志物,特别是骨特异性碱性磷酸酶(Bone-ALP)和 I 型胶原蛋白的氨基末端前肽(PINP),都有显著增加,随后在 12 个月时恢复到基线水平。在临床上经历了稳固骨结合的患者,其装置多孔涂层区域的皮质骨厚度有所增加。在 Bone-ALP 和多孔 CI 值之间观察到中等相关性(PoS2-M1)(p = .056),而 PINP 则没有观察到相关性。骨形成标志物的增加和骨吸收标志物的无变化可能反映了本研究中使用的犹他州 OI 装置的末端加载设计诱导了皮质骨形成的增加。需要进行更广泛的研究,以验证在 Bone-ALP 和多孔 CI 值之间观察到的相关性。
{"title":"Association between blood markers and the progression of osseointegration in percutaneous prostheses patients—A pilot study","authors":"Andrew Miller, Sujee Jeyapalina, Jayant P. Agarwal, James Peter Beck","doi":"10.1002/jbm.b.35398","DOIUrl":"10.1002/jbm.b.35398","url":null,"abstract":"<p>Patients implanted with osseointegrated (OI) prosthetic systems have reported vastly improved upper and lower extremity prosthetic function compared with their previous experience with socket-suspension systems. However, OI systems have been associated with superficial and deep-bone infections and implant loosening due, in part, to a failure of the osseointegration process. Although monitoring the osseointegration using circulating biomarkers has clinical relevance for understanding the progression of osseointegration with these devices, it has yet to be established. Ten patients were enrolled in this study. Blood samples were collected at pre-selected times, starting before implantation surgery, and continuing to 12 months after the second surgery. Bone formation markers, bone resorption markers, and circulating amino acids were measured from blood samples. A linear mixed model was generated for each marker, incorporating patient ID and age with the normalized marker value as the response variable. Post hoc comparisons were made between 1 week before Stage 1 Surgery and all subsequent time points for each marker, followed by multiple testing corrections. Serial radiographic imaging of the residual limb containing the implant was obtained during follow-up, and the cortical index (CI) was calculated for the bone at the porous region of the device. Two markers of bone formation, specifically bone-specific alkaline phosphatase (Bone-ALP) and amino-terminal propeptide of type I procollagen (PINP), exhibited significant increases when compared with the baseline levels of unloaded residual bone prior to the initial surgery, and they subsequently returned to their baseline levels by the 12-month mark. Patients who experienced clinically robust osseointegration experienced increased cortical bone thickness at the porous coated region of the device. A medium correlation was observed between Bone-ALP and the porous CI values up to PoS2-M1 (<i>p</i> = .056), while no correlation was observed for PINP. An increase in bone formation markers and the lack of change observed in bone resorption markers likely reflect increased cortical bone formation induced by the end-loading design of the Utah OI device used in this study. A more extensive study is required to validate the correlation observed between Bone-ALP and porous CI values.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35398","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vimal Kumar Dewangan, T. S. Sampath Kumar, Mukesh Doble, Viju Daniel Varghese
In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3–7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5–7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50–400 μm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5–13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.
{"title":"Injectable macroporous naturally-derived apatite bone cement as a potential trabecular bone substitute","authors":"Vimal Kumar Dewangan, T. S. Sampath Kumar, Mukesh Doble, Viju Daniel Varghese","doi":"10.1002/jbm.b.35397","DOIUrl":"10.1002/jbm.b.35397","url":null,"abstract":"<p>In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3–7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5–7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50–400 μm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5–13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tong Zhang, Jinrong Liu, Jin Qi, Lingxiang Sun, Xiaoming Liu, Jingyu Yan, Yanjie Zhang, Xiuping Wu, Bing Li
Lithium disilicate (Li2Si2O5) glass-ceramics are currently a more widely used all-ceramic restorative material due to their good mechanical properties and excellent aesthetic properties. However, they have a series of problems such as high brittleness and low fracture toughness, which has become the main bottleneck restricting its development. Therefore, in order to compensate for these shortcomings, we propose to prepare a reinforced glass-ceramics with better mechanical properties and to test the biosafety and chemical solubility of the material. Li2Si2O5 whiskers were synthesized by a one-step hydrothermal method, and multi-scale crystal-enhanced Li2Si2O5 glass-ceramics were prepared by reaction sintering. The biosafety of multi-scale crystal-reinforced Li2Si2O5 glass-ceramics was investigated by in vitro cytotoxicity test, rabbit pyrogen test, mice bone marrow micronucleus test, skin sensitization test, sub-chronic systemic toxicity test, and chronic systemic toxicity test. Additionally, the chemical solubility of multi-scale crystal-reinforced Li2Si2O5 glass-ceramics was investigated. The test results showed that the material was non-cytotoxic, non-thermogenic, non-mutagenic, non-sensitizing, and non-systemic. The chemical solubility, determined to be 377 ± 245 μg/cm2, complied with the ISO 6872 standard for the maximum solubility of ceramic materials. Multi-scale crystal-reinforced Li2Si2O5 glass-ceramics' biosafety and chemical solubility met current normative criteria, and they can move on to mechanical property measurements (such as flexural strength test, fatigue life test, friction and wear property study, etc.) and bonding property optimization, which shows promise for future clinical applications.
{"title":"Biosafety and chemical solubility studies of multiscale crystal-reinforced lithium disilicate glass-ceramics","authors":"Tong Zhang, Jinrong Liu, Jin Qi, Lingxiang Sun, Xiaoming Liu, Jingyu Yan, Yanjie Zhang, Xiuping Wu, Bing Li","doi":"10.1002/jbm.b.35400","DOIUrl":"10.1002/jbm.b.35400","url":null,"abstract":"<p>Lithium disilicate (Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>) glass-ceramics are currently a more widely used all-ceramic restorative material due to their good mechanical properties and excellent aesthetic properties. However, they have a series of problems such as high brittleness and low fracture toughness, which has become the main bottleneck restricting its development. Therefore, in order to compensate for these shortcomings, we propose to prepare a reinforced glass-ceramics with better mechanical properties and to test the biosafety and chemical solubility of the material. Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> whiskers were synthesized by a one-step hydrothermal method, and multi-scale crystal-enhanced Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> glass-ceramics were prepared by reaction sintering. The biosafety of multi-scale crystal-reinforced Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> glass-ceramics was investigated by in vitro cytotoxicity test, rabbit pyrogen test, mice bone marrow micronucleus test, skin sensitization test, sub-chronic systemic toxicity test, and chronic systemic toxicity test. Additionally, the chemical solubility of multi-scale crystal-reinforced Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> glass-ceramics was investigated. The test results showed that the material was non-cytotoxic, non-thermogenic, non-mutagenic, non-sensitizing, and non-systemic. The chemical solubility, determined to be 377 ± 245 μg/cm<sup>2</sup>, complied with the ISO 6872 standard for the maximum solubility of ceramic materials. Multi-scale crystal-reinforced Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> glass-ceramics' biosafety and chemical solubility met current normative criteria, and they can move on to mechanical property measurements (such as flexural strength test, fatigue life test, friction and wear property study, etc.) and bonding property optimization, which shows promise for future clinical applications.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaempferol (KMP) belong to flavonoid class have developed in ethosomal formulation and were evaluated for their potential to treat diabetic foot ulcers. Even though ethosomes are highly deformable, they can pass through human skin intact. KMP ethosomes were formulated using the cold method and optimized by Box–Behnken design (BBD) (three-factor, three-level (33)). The formulation variables used for optimization are drug concentration of KMP, soylecithin content, and ethanol percentage. The optimized formulation was examined using transmission electronic microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, in-vitro release, ex-vivo permeation studies, and storage stability. The optimized KMP ethosomes was found to have vesicle size (VS) of 283 ± 0.3 nm and zeta potential (ZP) of −29.67 ± 0.3 mV, polydispersity index (PDI) of 0.36, % entrapment efficiency (%EE) of 91.02 ± 0.21%, drug loading (%) of 46.23 ± 2.5% followed by good storage stability at 4°C/60 ± 5% RH. In vitro drug release of optimized KMP ethosomes was 88.2 ± 2.75%, which was approximately double when compared with pure KMP release, that is 49.9 ± 1.89%. The release kinetics for optimized KMP ethosomes follows the Korsmeyer–Peppas model. An apparent permeation coefficient of 356.25 ± 0.5 μg/cm2 was determined and compared with pure KMP (118.46 ± 0.3 μg/cm2) for 24 h. According to the study, ethosomes can be a cutting-edge strategy that offers a new delivery method for prolonged and targeted distribution of KMP in a variety of dosage forms including oral, topical, transdermal, and so forth.
{"title":"Development and optimization of kaempferol loaded ethosomes using Box–Behnken statistical design: In vitro and ex-vivo assessments","authors":"Shraddha Singh Raghav, Bhavna Kumar, Neeraj Kumar Sethiya, Shilpa Pahwa","doi":"10.1002/jbm.b.35394","DOIUrl":"10.1002/jbm.b.35394","url":null,"abstract":"<p>Kaempferol (KMP) belong to flavonoid class have developed in ethosomal formulation and were evaluated for their potential to treat diabetic foot ulcers. Even though ethosomes are highly deformable, they can pass through human skin intact. KMP ethosomes were formulated using the cold method and optimized by Box–Behnken design (BBD) (three-factor, three-level (3<sup>3</sup>)). The formulation variables used for optimization are drug concentration of KMP, soylecithin content, and ethanol percentage. The optimized formulation was examined using transmission electronic microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, <i>in-vitro</i> release, <i>ex-vivo</i> permeation studies, and storage stability. The optimized KMP ethosomes was found to have vesicle size (VS) of 283 ± 0.3 nm and zeta potential (ZP) of −29.67 ± 0.3 mV, polydispersity index (PDI) of 0.36, % entrapment efficiency (%EE) of 91.02 ± 0.21%, drug loading (%) of 46.23 ± 2.5% followed by good storage stability at 4°C/60 ± 5% RH. <i>In vitro</i> drug release of optimized KMP ethosomes was 88.2 ± 2.75%, which was approximately double when compared with pure KMP release, that is 49.9 ± 1.89%. The release kinetics for optimized KMP ethosomes follows the Korsmeyer–Peppas model. An apparent permeation coefficient of 356.25 ± 0.5 μg/cm<sup>2</sup> was determined and compared with pure KMP (118.46 ± 0.3 μg/cm<sup>2</sup>) for 24 h. According to the study, ethosomes can be a cutting-edge strategy that offers a new delivery method for prolonged and targeted distribution of KMP in a variety of dosage forms including oral, topical, transdermal, and so forth.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Zadegan, Bahman Vahidi, Jhamak Nourmohammadi, Asiyeh Shojaee, Nooshin Haghighipour
Development of osteochondral tissue engineering approaches using scaffolds seeded with stem cells in association with mechanical stimulations has been recently considered as a promising technique for the repair of this tissue. In this study, an integrated and biomimetic trilayered silk fibroin (SF) scaffold containing SF nanofibers in each layer was fabricated. The osteogenesis and chondrogenesis of stem cells seeded on the fabricated scaffolds were investigated under a perfusion flow. 3-Dimethylthiazol-2,5-diphenyltetrazolium bromide assay showed that the perfusion flow significantly enhanced cell viability and proliferation. Analysis of gene expression by stem cells revealed that perfusion flow had significantly upregulated the expression of osteogenic and chondrogenic genes in the bone and cartilage layers and downregulated the hypertrophic gene expression in the intermediate layer of the scaffold. In conclusion, applying flow perfusion on the prepared integrated trilayered SF-based scaffold can support osteogenic and chondrogenic differentiation for repairing osteochondral defects.
最近,使用干细胞种子支架结合机械刺激开发骨软骨组织工程方法被认为是修复这种组织的一种有前途的技术。本研究制作了一种集成的仿生物三层丝纤维素(SF)支架,每层都含有SF纳米纤维。在灌注流条件下,研究了播种在所制支架上的干细胞的成骨和软骨发育情况。3-二甲基噻唑-2,5-二苯基溴化四氮唑试验表明,灌注流显著提高了细胞的活力和增殖。干细胞基因表达分析表明,灌注流明显提高了骨层和软骨层的成骨和软骨基因表达,降低了支架中间层的肥大基因表达。总之,在制备好的三层 SF 基集成支架上进行流动灌注可支持成骨和软骨分化,从而修复骨软骨缺损。
{"title":"Evaluation of rabbit adipose derived stem cells fate in perfused multilayered silk fibroin composite scaffold for Osteochondral repair","authors":"Sara Zadegan, Bahman Vahidi, Jhamak Nourmohammadi, Asiyeh Shojaee, Nooshin Haghighipour","doi":"10.1002/jbm.b.35396","DOIUrl":"10.1002/jbm.b.35396","url":null,"abstract":"<p>Development of osteochondral tissue engineering approaches using scaffolds seeded with stem cells in association with mechanical stimulations has been recently considered as a promising technique for the repair of this tissue. In this study, an integrated and biomimetic trilayered silk fibroin (SF) scaffold containing SF nanofibers in each layer was fabricated. The osteogenesis and chondrogenesis of stem cells seeded on the fabricated scaffolds were investigated under a perfusion flow. 3-Dimethylthiazol-2,5-diphenyltetrazolium bromide assay showed that the perfusion flow significantly enhanced cell viability and proliferation. Analysis of gene expression by stem cells revealed that perfusion flow had significantly upregulated the expression of osteogenic and chondrogenic genes in the bone and cartilage layers and downregulated the hypertrophic gene expression in the intermediate layer of the scaffold. In conclusion, applying flow perfusion on the prepared integrated trilayered SF-based scaffold can support osteogenic and chondrogenic differentiation for repairing osteochondral defects.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcel Jakubowski, Łukasz Majchrzycki, Aleksej Zarkov, Adam Voelkel, Mariusz Sandomierski
6-Mercaptopurine (6MP) is commonly used in the treatment of acute lymphoblastic leukemia as an important agent in maintenance therapy. Despite its therapeutic benefits, 6MP has some limitations during therapy. Taking into account the disadvantages during 6MP therapy, there is a great need to create an appropriate delivery system for this drug. 6MP contains in its structure nitrogen and sulfur atoms capable of forming coordination compounds with metal ions, for example zinc. Therefore, in this work, we prepared biocompatible hydroxyapatite (HAp) doped with zinc ions, and used it as a carrier for 6MP. Doped HAp has not been used as a carrier for this drug before. The work proved that the prepared carrier-drug system has a particle size of about 130 nm, which indicates its potential for intravenous delivery. In addition, in an acidic environment (imitating cancer cells), the carrier agglomerates allow targeted release of the drug. The drug is evenly distributed, which indicates that the doses released from it will always be comparable. The release of the drug in a neutral environment is long-lasting in controlled doses, whereas in an acidic environment it is immediate. The obtained results indicate the high potential of the material in both slow-release and cancer-targeted release of 6MP.
{"title":"Zinc-doped hydroxyapatite as a pH responsive drug delivery system for anticancer drug 6-mercaptopurine","authors":"Marcel Jakubowski, Łukasz Majchrzycki, Aleksej Zarkov, Adam Voelkel, Mariusz Sandomierski","doi":"10.1002/jbm.b.35395","DOIUrl":"10.1002/jbm.b.35395","url":null,"abstract":"<p>6-Mercaptopurine (6MP) is commonly used in the treatment of acute lymphoblastic leukemia as an important agent in maintenance therapy. Despite its therapeutic benefits, 6MP has some limitations during therapy. Taking into account the disadvantages during 6MP therapy, there is a great need to create an appropriate delivery system for this drug. 6MP contains in its structure nitrogen and sulfur atoms capable of forming coordination compounds with metal ions, for example zinc. Therefore, in this work, we prepared biocompatible hydroxyapatite (HAp) doped with zinc ions, and used it as a carrier for 6MP. Doped HAp has not been used as a carrier for this drug before. The work proved that the prepared carrier-drug system has a particle size of about 130 nm, which indicates its potential for intravenous delivery. In addition, in an acidic environment (imitating cancer cells), the carrier agglomerates allow targeted release of the drug. The drug is evenly distributed, which indicates that the doses released from it will always be comparable. The release of the drug in a neutral environment is long-lasting in controlled doses, whereas in an acidic environment it is immediate. The obtained results indicate the high potential of the material in both slow-release and cancer-targeted release of 6MP.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vidul Goenka, Anupama Devi V. K., Ceera Manikandan, Amit Kumar Jaiswal
This study aims at developing a calcium magnesium phosphate-based bone biocement that combines a natural polymer and regenerative properties of bone bonding materials. The formulation of this biocement consists of oxidized guar gum, polydopamine, and calcium magnesium phosphate. The oxidized guar gum is easily soluble in water and has a slightly basic pH, unlike unmodified guar gum, thus allowing a homogenous paste to form in the alkaline environment of calcium magnesium phosphate. Three different oxidized degrees of guar gum were made, and the impact on the biocement properties was studied. The modified guar gum-reinforced biocement (OGG C2) displayed higher mechanical strength and lower degradation rates than OGG B1 and OGG A0. Furthermore, samples with polydopamine exhibited better results, thus, improving the already reinforced biocement. Morphological studies of the biocement displayed a highly porous structure with porosity varying among biocement containing different oxidized guar gum and polydopamine levels.
{"title":"Development of guar gum reinforced calcium magnesium phosphate-based bone biocement","authors":"Vidul Goenka, Anupama Devi V. K., Ceera Manikandan, Amit Kumar Jaiswal","doi":"10.1002/jbm.b.35384","DOIUrl":"10.1002/jbm.b.35384","url":null,"abstract":"<p>This study aims at developing a calcium magnesium phosphate-based bone biocement that combines a natural polymer and regenerative properties of bone bonding materials. The formulation of this biocement consists of oxidized guar gum, polydopamine, and calcium magnesium phosphate. The oxidized guar gum is easily soluble in water and has a slightly basic pH, unlike unmodified guar gum, thus allowing a homogenous paste to form in the alkaline environment of calcium magnesium phosphate. Three different oxidized degrees of guar gum were made, and the impact on the biocement properties was studied. The modified guar gum-reinforced biocement (OGG C2) displayed higher mechanical strength and lower degradation rates than OGG B1 and OGG A0. Furthermore, samples with polydopamine exhibited better results, thus, improving the already reinforced biocement. Morphological studies of the biocement displayed a highly porous structure with porosity varying among biocement containing different oxidized guar gum and polydopamine levels.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The piezoelectric properties of natural bone and their influence on bone growth have inspired researchers to study a range of bio-piezoelectric composite materials. By exploring these materials, researchers aim to understand better, how piezoelectricity can be controlled to promote bone growth and tissue regeneration. In this work, the prominent piezoelectric material, (Ba, Zr) TiO3-x(Ba,Ca)TiO3, abbreviated as BCZT, was selected as a possible bone growth enhancer in hydroxyapatite (HA) scaffolds. Initially, BCZT and hydroxyapatite (HA) powders were synthesized using the sol–gel method. Subsequently, various composite samples of BCZT–xHA were prepared using the conventional solid-state method. After sintering the samples at 1300°C, the phase structure, microstructure, density, and electrical properties were characterized. The samples' compressive strength was determined by analyzing the outcomes of basic compression tests. The biological behavior of the samples in terms of in vitro simulated body fluid immersion and MTT tests were evaluated. Our results revealed that among the BCZT–xHA samples, the BCZT-20HA sample had the best composition, considering its electrical, mechanical, and biological properties. A d33 value of 10 pC/N, dielectric permittivity of 110, and the g33 equal to 10.27 mV m/N resulted in the output voltage of 1.03 V. The results of the MTT assay test confirmed the noncytotoxic nature of the samples with the highest optical density in the BCZT-20HA sample.
{"title":"Studying the electrical, mechanical, and biological properties of BCZT–HA composites","authors":"Fatemeh Zare Dehnov, Raziye Hayati, Lobat Tayebi","doi":"10.1002/jbm.b.35392","DOIUrl":"https://doi.org/10.1002/jbm.b.35392","url":null,"abstract":"<p>The piezoelectric properties of natural bone and their influence on bone growth have inspired researchers to study a range of bio-piezoelectric composite materials. By exploring these materials, researchers aim to understand better, how piezoelectricity can be controlled to promote bone growth and tissue regeneration. In this work, the prominent piezoelectric material, (Ba, Zr) TiO<sub>3</sub>-x(Ba,Ca)TiO<sub>3</sub>, abbreviated as BCZT, was selected as a possible bone growth enhancer in hydroxyapatite (HA) scaffolds. Initially, BCZT and hydroxyapatite (HA) powders were synthesized using the sol–gel method. Subsequently, various composite samples of BCZT–xHA were prepared using the conventional solid-state method. After sintering the samples at 1300°C, the phase structure, microstructure, density, and electrical properties were characterized. The samples' compressive strength was determined by analyzing the outcomes of basic compression tests. The biological behavior of the samples in terms of in vitro simulated body fluid immersion and MTT tests were evaluated. Our results revealed that among the BCZT–xHA samples, the BCZT-20HA sample had the best composition, considering its electrical, mechanical, and biological properties. A d<sub>33</sub> value of 10 pC/N, dielectric permittivity of 110, and the g<sub>33</sub> equal to 10.27 mV m/N resulted in the output voltage of 1.03 V. The results of the MTT assay test confirmed the noncytotoxic nature of the samples with the highest optical density in the BCZT-20HA sample.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The treatment of critical-sized bone defects has long been a major problem for surgeons. In this study, an intramedullary nail shaped three-dimensional (3D)-printed porous titanium implant that is capable of releasing strontium ions was developed through a simple and cost-effective surface modification technique. The feasibility of this implant as a stand-alone solution was evaluated using a rabbit's segmental diaphyseal as a defect model. The strontium-loaded implant exhibited a favorable environment for cell adhesion, and mechanical properties that were commensurate with those of a rabbit's cortical bone. Radiographic, biomechanical, and histological analyses revealed a significantly higher amount of bone ingrowth and superior bone-bonding strength in the strontium-loaded implant when compared to an untreated porous titanium implant. Furthermore, one-year histological observations revealed that the strontium-loaded implant preserved the native-like diaphyseal bone structure without failure. These findings suggest that strontium-releasing 3D-printed titanium implants have the clinical potential to induce the early and efficient repair of critical-sized, load-bearing bone defects.
{"title":"Strontium-loaded 3D intramedullary nail titanium implant for critical-sized femoral defect in rabbits","authors":"Shintaro Honda, Shunsuke Fujibayashi, Takayoshi Shimizu, Seiji Yamaguchi, Yaichiro Okuzu, Yusuke Takaoka, Soichiro Masuda, Mitsuru Takemoto, Toshiyuki Kawai, Bungo Otsuki, Koji Goto, Shuichi Matsuda","doi":"10.1002/jbm.b.35393","DOIUrl":"https://doi.org/10.1002/jbm.b.35393","url":null,"abstract":"<p>The treatment of critical-sized bone defects has long been a major problem for surgeons. In this study, an intramedullary nail shaped three-dimensional (3D)-printed porous titanium implant that is capable of releasing strontium ions was developed through a simple and cost-effective surface modification technique. The feasibility of this implant as a stand-alone solution was evaluated using a rabbit's segmental diaphyseal as a defect model. The strontium-loaded implant exhibited a favorable environment for cell adhesion, and mechanical properties that were commensurate with those of a rabbit's cortical bone. Radiographic, biomechanical, and histological analyses revealed a significantly higher amount of bone ingrowth and superior bone-bonding strength in the strontium-loaded implant when compared to an untreated porous titanium implant. Furthermore, one-year histological observations revealed that the strontium-loaded implant preserved the native-like diaphyseal bone structure without failure. These findings suggest that strontium-releasing 3D-printed titanium implants have the clinical potential to induce the early and efficient repair of critical-sized, load-bearing bone defects.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}