首页 > 最新文献

Journal of Electrochemical Energy Conversion and Storage最新文献

英文 中文
Smoothed particle hydrodynamics modeling of electrodeposition and dendritic growth under migration- and diffusion-controlled mass transport 在迁移和扩散控制的质量传输下,电沉积和枝晶生长的光滑粒子流体动力学模型
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2022-11-29 DOI: 10.1115/1.4056327
Andrew Cannon, J. McDaniel, E. Ryan
In many electrochemical processes, the transport of charged species is governed by the Nernst-Planck equation, which includes terms for both diffusion and electrochemical migration. In this work, a multi-physics, multi-species model based on the smoothed particle hydrodynamics (SPH) method is presented to model the Nernst-Planck equation in systems with electrodeposition. Electrodeposition occurs when ions are deposited onto an electrode. These deposits create complex boundary geometries, which can be challenging for numerical methods to resolve. SPH is a particularly effective numerical method for systems with moving and deforming boundaries due to its particle nature. This paper discusses the SPH implementation of the Nernst-Planck equations with electrodeposition and verifies the model with an analytical solution and a numerical integrator. A convergence study of migration and precipitation is presented to illustrate the model’s accuracy, along with comparisons of the deposition growth front to experimental results.
在许多电化学过程中,带电物质的传输由能斯特-普朗克方程控制,该方程包括扩散和电化学迁移两个术语。在这项工作中,提出了一个基于光滑粒子流体动力学(SPH)方法的多物理、多物种模型,以模拟电沉积系统中的能斯特-普朗克方程。当离子沉积在电极上时,就会发生电沉积。这些沉积物形成了复杂的边界几何形状,这对于数值方法来说可能是一个挑战。SPH由于其粒子性质,对于具有运动和变形边界的系统是一种特别有效的数值方法。本文讨论了用电沉积实现能斯特-普朗克方程的SPH,并用解析解和数值积分器验证了该模型。对迁移和降水进行了收敛性研究,以说明该模型的准确性,并将沉积生长前沿与实验结果进行了比较。
{"title":"Smoothed particle hydrodynamics modeling of electrodeposition and dendritic growth under migration- and diffusion-controlled mass transport","authors":"Andrew Cannon, J. McDaniel, E. Ryan","doi":"10.1115/1.4056327","DOIUrl":"https://doi.org/10.1115/1.4056327","url":null,"abstract":"\u0000 In many electrochemical processes, the transport of charged species is governed by the Nernst-Planck equation, which includes terms for both diffusion and electrochemical migration. In this work, a multi-physics, multi-species model based on the smoothed particle hydrodynamics (SPH) method is presented to model the Nernst-Planck equation in systems with electrodeposition. Electrodeposition occurs when ions are deposited onto an electrode. These deposits create complex boundary geometries, which can be challenging for numerical methods to resolve. SPH is a particularly effective numerical method for systems with moving and deforming boundaries due to its particle nature. This paper discusses the SPH implementation of the Nernst-Planck equations with electrodeposition and verifies the model with an analytical solution and a numerical integrator. A convergence study of migration and precipitation is presented to illustrate the model’s accuracy, along with comparisons of the deposition growth front to experimental results.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43630681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Research on overdischarge lithium-ion battery based on X-ray computed tomography 基于x射线计算机断层扫描的过放电锂离子电池研究
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2022-11-17 DOI: 10.1115/1.4056271
Xiaofan Zhang, Lifu Li, Shengqiang Li
Overdischarge is one of the main factors of lithium-ion battery failure, due to the inconsistency of lithium-ion battery in pack. However, the failure mechanism remains unclear. This paper introduces the X-ray computed tomography to explore the gas production and copper dissolution of lithium battery during overdischarge state. From tomographic images in two different cross-section directions, the internal structure changes of bulge deformation and copper deposition are observed to quantitatively analyze the relationship between copper deposition and overdischarge state of charge. The position distribution is analyzed by density distribution feature, which indicate that the gas production is mainly distribute in the middle of the battery, and the copper deposition is distribute around the outer side. The experimental result shows that X-ray CT is a nondestructive, quantitative, visual and effective way to study the internal structure and material distribution of the over-discharge battery. So as to effectively monitor the state of the lithium-ion battery, to avoid dangerous problems such as internal short circuits and thermal runaway.
过放电是锂离子电池失效的主要原因之一,是电池组内锂离子电池的不一致性造成的。然而,失效机制尚不清楚。本文介绍了利用x射线计算机断层扫描技术对锂电池过放电状态下的产气和铜溶解进行研究。通过两个不同截面方向的层析图像,观察凸起变形和铜沉积的内部结构变化,定量分析铜沉积与电荷过放电状态的关系。通过密度分布特征对位置分布进行分析,表明产气主要分布在电池中部,铜沉积主要分布在电池外侧。实验结果表明,x射线CT是一种无损、定量、直观、有效的研究过放电电池内部结构和材料分布的方法。从而有效监测锂离子电池的状态,避免出现内部短路、热失控等危险问题。
{"title":"Research on overdischarge lithium-ion battery based on X-ray computed tomography","authors":"Xiaofan Zhang, Lifu Li, Shengqiang Li","doi":"10.1115/1.4056271","DOIUrl":"https://doi.org/10.1115/1.4056271","url":null,"abstract":"\u0000 Overdischarge is one of the main factors of lithium-ion battery failure, due to the inconsistency of lithium-ion battery in pack. However, the failure mechanism remains unclear. This paper introduces the X-ray computed tomography to explore the gas production and copper dissolution of lithium battery during overdischarge state. From tomographic images in two different cross-section directions, the internal structure changes of bulge deformation and copper deposition are observed to quantitatively analyze the relationship between copper deposition and overdischarge state of charge. The position distribution is analyzed by density distribution feature, which indicate that the gas production is mainly distribute in the middle of the battery, and the copper deposition is distribute around the outer side. The experimental result shows that X-ray CT is a nondestructive, quantitative, visual and effective way to study the internal structure and material distribution of the over-discharge battery. So as to effectively monitor the state of the lithium-ion battery, to avoid dangerous problems such as internal short circuits and thermal runaway.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45623055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Studies of Graphene-Coated Polymer Electrolyte Membranes for Direct Methanol Fuel Cells 直接甲醇燃料电池用石墨烯包覆聚合物电解质膜的实验研究
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2022-11-17 DOI: 10.1115/1.4056269
Nathan Metzger, I. Vlassiouk, S. Smirnov, Gabriel Mariscal, Ryan Spragg, Xianglin Li
The two main technical limitations of direct methanol fuel cells (DMFCs) are the slow kinetic reactions of the methanol oxidation reaction (MOR) in the anode and the crossing over of unreacted methanol through the proton exchange membrane (PEM). It is common practice to use Nafion membranes as PEMs, which have high ion exchange capacity. However, Nafion-based membranes also have high fuel permeability, decreasing fuel utilization and reducing the potential power density. This manuscript focuses on using graphene-coated (Gr-coated) PEMs to reduce fuel crossover. Protons can permeate across graphene and thus it can be employed in various devices as a proton conductive membrane. Here we report efficiency of Gr-coated Nafions. We tested performance and crossover at three different temperatures with four different fuel concentrations and compared to a Nafion PEM that underwent that same test conditions. We found that the adhesion of Gr on to PEMs is not sufficient for prolong fuel cell operation resulting in Gr delamination at high temperatures leading to a higher fuel crossover values compared to lower temperature testing. The results for 7.5M methanol fuel show a reduction of up to 25% in methanol crossover, translating to a peak power density that increases from 3.9 to 9.5 mW/cm2 when using a Gr-Coated PEM compared to a Nafion PEM at 30°C.
直接甲醇燃料电池(dmfc)的两个主要技术限制是阳极甲醇氧化反应(MOR)的缓慢动力学反应和未反应的甲醇通过质子交换膜(PEM)的交叉。使用Nafion膜作为pem是一种常见的做法,它具有很高的离子交换能力。然而,基于nafion的膜也具有高燃料渗透率,降低了燃料利用率并降低了潜在的功率密度。本文的重点是使用石墨烯涂层(Gr-coated) PEMs来减少燃料交叉。质子可以穿透石墨烯,因此它可以作为质子导电膜应用于各种设备中。在这里,我们报告了镀铬合金的效率。我们在三种不同的温度和四种不同的燃料浓度下测试了性能和跨界性能,并与在相同测试条件下测试的Nafion PEM进行了比较。我们发现,与低温测试相比,石墨烯在PEMs上的粘附不足以延长燃料电池的运行时间,导致在高温下石墨烯分层,从而导致更高的燃料交叉值。750米甲醇燃料的结果显示,与30°C下使用的Nafion PEM相比,使用gr涂层PEM时,甲醇交叉减少了25%,转化为峰值功率密度从3.9 mW/cm2增加到9.5 mW/cm2。
{"title":"Experimental Studies of Graphene-Coated Polymer Electrolyte Membranes for Direct Methanol Fuel Cells","authors":"Nathan Metzger, I. Vlassiouk, S. Smirnov, Gabriel Mariscal, Ryan Spragg, Xianglin Li","doi":"10.1115/1.4056269","DOIUrl":"https://doi.org/10.1115/1.4056269","url":null,"abstract":"The two main technical limitations of direct methanol fuel cells (DMFCs) are the slow kinetic reactions of the methanol oxidation reaction (MOR) in the anode and the crossing over of unreacted methanol through the proton exchange membrane (PEM). It is common practice to use Nafion membranes as PEMs, which have high ion exchange capacity. However, Nafion-based membranes also have high fuel permeability, decreasing fuel utilization and reducing the potential power density. This manuscript focuses on using graphene-coated (Gr-coated) PEMs to reduce fuel crossover. Protons can permeate across graphene and thus it can be employed in various devices as a proton conductive membrane. Here we report efficiency of Gr-coated Nafions. We tested performance and crossover at three different temperatures with four different fuel concentrations and compared to a Nafion PEM that underwent that same test conditions. We found that the adhesion of Gr on to PEMs is not sufficient for prolong fuel cell operation resulting in Gr delamination at high temperatures leading to a higher fuel crossover values compared to lower temperature testing. The results for 7.5M methanol fuel show a reduction of up to 25% in methanol crossover, translating to a peak power density that increases from 3.9 to 9.5 mW/cm2 when using a Gr-Coated PEM compared to a Nafion PEM at 30°C.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46417232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Modeling Study of RED-MED Salinity Gradient Heat Engine: the Conventional Scheme and A Modified Scheme RED-MED盐度梯度热机的模拟研究:常规方案和改进方案
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2022-11-17 DOI: 10.1115/1.4056270
Dongxiao Yang, Xiaodong Zhang, Yaguang Liu, Shili Song
Reverse electrodialysis - Multi-effect distillation(RED-MED) heat engine has received increasing attention in recent years, due to its ability of converting low temperature waste heat into salinity gradient energy, and then extracting electric power from it. In this work, the RED-MED coupled system was studied with a mathematical model, which was validated by our experimental results. The influences of RED channel length and the feed flow rate on the performance of the coupled system were studied. Furthermore, in the literature, only one of the two streams leaving RED, i.e. either the dilute or the concentrate, is split and partly mixed with another stream before being treated in MED. In this paper, a modified scheme is proposed, in which both the two streams were split, i.e. only a fraction of the concentrate solution was mixed with a fraction of the dilute. The purpose of the modification is to further reduce the total flow rate in MED. After the modification, both the energy efficiency and the heat exchange area requirement of MED increase. The optimum value of the split fraction was discussed. Results imply that while the studies reported in the literature mainly focus on the aspects closely related to the RED section, attention should also be paid to the overall scheme design of the RED-MED coupled system.
近年来,反电渗析-多效蒸馏(RED-MED)热机由于能够将低温废热转化为盐度梯度能量,然后从中提取电力而受到越来越多的关注。研究了RED通道长度和进料流量对耦合系统性能的影响。此外,在文献中,离开RED的两股物流中,只有一股(即稀释液或浓缩液)在MED处理前被分流并与另一股物流部分混合。本文提出了一种改进方案,即两股物流都被分流,即只有一部分浓缩液溶液与一部分稀释液混合。改造的目的是进一步降低MED的总流量。改造后,MED的能效和换热面积要求都有所提高。讨论了分裂分数的最佳值。结果表明,虽然文献中报道的研究主要集中在与RED部分密切相关的方面,但也应注意RED-MED耦合系统的总体方案设计。
{"title":"A Modeling Study of RED-MED Salinity Gradient Heat Engine: the Conventional Scheme and A Modified Scheme","authors":"Dongxiao Yang, Xiaodong Zhang, Yaguang Liu, Shili Song","doi":"10.1115/1.4056270","DOIUrl":"https://doi.org/10.1115/1.4056270","url":null,"abstract":"\u0000 Reverse electrodialysis - Multi-effect distillation(RED-MED) heat engine has received increasing attention in recent years, due to its ability of converting low temperature waste heat into salinity gradient energy, and then extracting electric power from it. In this work, the RED-MED coupled system was studied with a mathematical model, which was validated by our experimental results. The influences of RED channel length and the feed flow rate on the performance of the coupled system were studied. Furthermore, in the literature, only one of the two streams leaving RED, i.e. either the dilute or the concentrate, is split and partly mixed with another stream before being treated in MED. In this paper, a modified scheme is proposed, in which both the two streams were split, i.e. only a fraction of the concentrate solution was mixed with a fraction of the dilute. The purpose of the modification is to further reduce the total flow rate in MED. After the modification, both the energy efficiency and the heat exchange area requirement of MED increase. The optimum value of the split fraction was discussed. Results imply that while the studies reported in the literature mainly focus on the aspects closely related to the RED section, attention should also be paid to the overall scheme design of the RED-MED coupled system.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45887117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Self Adhesive Properties of Carbon Activated-Like Shape Coin Derived from Palmae Plant Waste and used as High-Performance Supercapacitor Electrodes 棕榈植物废弃物中碳活化型硬币的自粘性能及用作高性能超级电容器电极的研究
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2022-11-17 DOI: 10.1115/1.4056268
R. Farma, Bela Winalda, I. Apriyani
Synthesized biomass-based carbonaceous materials from Palmae plant wastes with self-adhesive properties, converted into coin-like shapes, are used as supercapacitor electrodes with high power and energy density, high specific capacitance, excellent electrical conductivity, low cost, and environmentally friendly. Therefore, this study aims to investigate a simple and cost-effective method to generate porous carbon activation from Palmae plant waste biomass, namely areca leaf midrib (ALM). Activated carbon (AC) material derived from ALM was obtained through pre-carbonization, alkaline chemical activation, and two-step pyrolysis, namely carbonization and physical activation at 600°C and 700°C in the N2 as well as CO2 atmosphere, respectively. Its physical properties show an sp2 structure with high graphitization or amorphousness and two sloping peaks in the hkl plane at an angle of 2θ, approximately 24° and 44°. The electrochemical properties of AC supercapacitor cells derived from ALM biomass have the highest specific capacitance value of 216 Fg−1 at a scan rate of 1 mVs−1 in a two-electrode system. Furthermore, the cell obtained a maximum energy density of 11 Whkg−1 and a power density of 196 W kg−1, respectively. Therefore, this study recommends an innovative and environmentally safe approach for producing high-performance supercapacitor cell electrodes for energy storage without adding nanomaterials and externally doped heteroatoms.
利用棕榈植物废弃物合成具有自粘特性的生物质基碳质材料,转化成硬币状,作为超级电容器电极,具有高功率和能量密度、高比电容、优异的导电性、低成本、环保等特点。因此,本研究旨在探索一种简单而经济的方法,从棕榈植物废弃物生物质,即槟榔叶中脉(ALM)中产生多孔碳活化。通过预炭化、碱性化学活化、两步热解,即在600°C N2和700°C CO2气氛下炭化和物理活化,得到ALM衍生的活性炭(AC)材料。其物理性质表现为高度石墨化或非晶化的sp2结构,在hkl平面上有两个倾角为2θ,约为24°和44°的倾斜峰。在双电极系统中,当扫描速率为1 mv−1时,由ALM生物质制成的交流超级电容器的电化学性能最高,比电容值为216 Fg−1。此外,该电池的最大能量密度为11 Whkg−1,功率密度为196 W kg−1。因此,本研究推荐了一种创新且环保的方法,可以在不添加纳米材料和外部掺杂杂原子的情况下生产用于储能的高性能超级电容器电池电极。
{"title":"The Self Adhesive Properties of Carbon Activated-Like Shape Coin Derived from Palmae Plant Waste and used as High-Performance Supercapacitor Electrodes","authors":"R. Farma, Bela Winalda, I. Apriyani","doi":"10.1115/1.4056268","DOIUrl":"https://doi.org/10.1115/1.4056268","url":null,"abstract":"\u0000 Synthesized biomass-based carbonaceous materials from Palmae plant wastes with self-adhesive properties, converted into coin-like shapes, are used as supercapacitor electrodes with high power and energy density, high specific capacitance, excellent electrical conductivity, low cost, and environmentally friendly. Therefore, this study aims to investigate a simple and cost-effective method to generate porous carbon activation from Palmae plant waste biomass, namely areca leaf midrib (ALM). Activated carbon (AC) material derived from ALM was obtained through pre-carbonization, alkaline chemical activation, and two-step pyrolysis, namely carbonization and physical activation at 600°C and 700°C in the N2 as well as CO2 atmosphere, respectively. Its physical properties show an sp2 structure with high graphitization or amorphousness and two sloping peaks in the hkl plane at an angle of 2θ, approximately 24° and 44°. The electrochemical properties of AC supercapacitor cells derived from ALM biomass have the highest specific capacitance value of 216 Fg−1 at a scan rate of 1 mVs−1 in a two-electrode system. Furthermore, the cell obtained a maximum energy density of 11 Whkg−1 and a power density of 196 W kg−1, respectively. Therefore, this study recommends an innovative and environmentally safe approach for producing high-performance supercapacitor cell electrodes for energy storage without adding nanomaterials and externally doped heteroatoms.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45093270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Research on the mechanism of cathode failure of lead-acid battery under extreme conditions 铅酸蓄电池极端条件下阴极失效机理的研究
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2022-11-11 DOI: 10.1115/1.4056207
Yaowei Li, Nawei Lyu, Yang Jin
Lead-acid batteries have the advantages of wide temperature adaptability, large discharge power, and high safety factor. It is still widely used in electrochemical energy storage systems. In order to ensure the application of batteries under extreme working conditions, it is necessary to explore the degradation mechanism. In this study, the experimental battery is the same type of 2V-500Ah lead-acid battery produced by different manufacturers. Firstly, the three batteries were subjected to the same high temperature and high current cycle thermal shock test (50°C, 0.2C current), combined with quantitative analysis of plate active material and microscopic morphology observation. In addition, numerical studies are used to simulate the distribution of electrical parameters on the positive plate and grid. The above three parts are combined to study the causes of accelerated battery decay under high temperature and high current conditions. The results showed that the extreme conditions aggravated the non-uniformity of the potential distribution of the positive plate and the grid, which increased by 10.62% and 51.59%, respectively. The battery with higher remaining capacity has more a-PbO2 in the active material, and has a considerable amount of β-PbO2. The battery with the smallest remaining capacity has the largest volume of active material. The volume of the material affects the electrochemical reaction surface area. The larger the volume of the material, the higher the resistance of that part, which will lead to an increase in the overall impedance of the battery.
铅酸电池具有温度适应性广、放电功率大、安全系数高等优点。它在电化学储能系统中仍被广泛应用。为了保证电池在极端工况下的应用,有必要对电池的降解机理进行探讨。在本研究中,实验电池为不同厂家生产的同型号2V-500Ah铅酸电池。首先,对三种电池进行相同的高温大电流循环热冲击试验(50℃,0.2C电流),并结合极板活性物质的定量分析和微观形貌观察。此外,采用数值方法模拟了电参数在正极板和栅极上的分布。结合以上三部分,研究高温大电流条件下电池加速衰减的原因。结果表明:极端工况加剧了正极板和栅极电位分布的不均匀性,分别增加了10.62%和51.59%;剩余容量越高的电池活性物质中a- pbo2含量越多,β-PbO2含量越高。剩余容量最小的电池,其活性物质体积最大。材料的体积影响电化学反应的表面积。材料的体积越大,该部分的电阻就越高,这将导致电池整体阻抗的增加。
{"title":"Research on the mechanism of cathode failure of lead-acid battery under extreme conditions","authors":"Yaowei Li, Nawei Lyu, Yang Jin","doi":"10.1115/1.4056207","DOIUrl":"https://doi.org/10.1115/1.4056207","url":null,"abstract":"\u0000 Lead-acid batteries have the advantages of wide temperature adaptability, large discharge power, and high safety factor. It is still widely used in electrochemical energy storage systems. In order to ensure the application of batteries under extreme working conditions, it is necessary to explore the degradation mechanism. In this study, the experimental battery is the same type of 2V-500Ah lead-acid battery produced by different manufacturers. Firstly, the three batteries were subjected to the same high temperature and high current cycle thermal shock test (50°C, 0.2C current), combined with quantitative analysis of plate active material and microscopic morphology observation. In addition, numerical studies are used to simulate the distribution of electrical parameters on the positive plate and grid. The above three parts are combined to study the causes of accelerated battery decay under high temperature and high current conditions. The results showed that the extreme conditions aggravated the non-uniformity of the potential distribution of the positive plate and the grid, which increased by 10.62% and 51.59%, respectively. The battery with higher remaining capacity has more a-PbO2 in the active material, and has a considerable amount of β-PbO2. The battery with the smallest remaining capacity has the largest volume of active material. The volume of the material affects the electrochemical reaction surface area. The larger the volume of the material, the higher the resistance of that part, which will lead to an increase in the overall impedance of the battery.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46536396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and Simulations Study of Thermal Performance of Cell-to-Pack Structure for a Li-ion Battery Pack 锂离子电池组电池-电池组结构热性能的实验与模拟研究
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2022-10-28 DOI: 10.1115/1.4056112
Kai Shen, Linsen Yang, Jieyu Sun, Chengshan Xu, Huaibin Wang, Yuejiu Zheng, Xuning Feng
A new model for simulating battery temperature changes from the lower surface to the upper surface is proposed. The cell model is established with experimental calibration. Simultaneously, the Cell-to-Pack model is established through experimental benchmarking. In addition, the thermal properties of Cell-to-Pack and an ordinary battery pack that has an enclosure on the basis were compared under four different working conditions. The results indicate that adding an enclosure to the Cell-to-Pack has little effect on the thermal performance of the battery pack. Adding an enclosure to the Cell-to-Pack hardly improve the temperature uniformity of the battery under cooling conditions; the temperature difference between the upper and lower surfaces of the batteries at both ends of the module drops by approximately 0.5°C, while the central temperature difference is basically unchanged. Compared with fast charging without cooling, the battery temperature dropped by more than 12°C under the fast charge condition with cooling. More importantly, the specific energy and packaging efficiency of the battery dropped from 160.27Wh·kg−1 and 73.1% to 148.72 Wh·kg−1 and 67.8%, respectively, after the Cell-to-Pack was added with an enclosure.
提出了一种新的模拟电池温度从下表面到上表面变化的模型。通过实验标定,建立了单元模型。同时,通过实验对标建立了电池-电池组模型。此外,还比较了Cell-to-Pack和在此基础上有外壳的普通电池组在四种不同工况下的热性能。结果表明,在电池-电池组中增加外壳对电池组的热性能影响不大。在电池-电池组中增加一个外壳几乎不能改善电池在冷却条件下的温度均匀性;模块两端电池上下表面温差下降约0.5℃,中心温差基本不变。与无冷却快速充电相比,有冷却快速充电电池温度下降超过12℃。更重要的是,电池的比能量和封装效率分别从160.27Wh·kg - 1和73.1%下降到148.72 Wh·kg - 1和67.8%。
{"title":"Experimental and Simulations Study of Thermal Performance of Cell-to-Pack Structure for a Li-ion Battery Pack","authors":"Kai Shen, Linsen Yang, Jieyu Sun, Chengshan Xu, Huaibin Wang, Yuejiu Zheng, Xuning Feng","doi":"10.1115/1.4056112","DOIUrl":"https://doi.org/10.1115/1.4056112","url":null,"abstract":"\u0000 A new model for simulating battery temperature changes from the lower surface to the upper surface is proposed. The cell model is established with experimental calibration. Simultaneously, the Cell-to-Pack model is established through experimental benchmarking. In addition, the thermal properties of Cell-to-Pack and an ordinary battery pack that has an enclosure on the basis were compared under four different working conditions. The results indicate that adding an enclosure to the Cell-to-Pack has little effect on the thermal performance of the battery pack. Adding an enclosure to the Cell-to-Pack hardly improve the temperature uniformity of the battery under cooling conditions; the temperature difference between the upper and lower surfaces of the batteries at both ends of the module drops by approximately 0.5°C, while the central temperature difference is basically unchanged. Compared with fast charging without cooling, the battery temperature dropped by more than 12°C under the fast charge condition with cooling. More importantly, the specific energy and packaging efficiency of the battery dropped from 160.27Wh·kg−1 and 73.1% to 148.72 Wh·kg−1 and 67.8%, respectively, after the Cell-to-Pack was added with an enclosure.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42964402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Gradient Platinum-Loading and Porosity Distribution for Anion Exchange Membrane Fuel Cells 阴离子交换膜燃料电池梯度铂负载及孔隙分布研究
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2022-10-20 DOI: 10.1115/1.4056029
H. Mousa, L. Xing, P. Das
Anion exchange membrane fuel cells (AEMFCs) are in development as a low-cost alternative to proton exchange membrane fuel cells (PEMFCs). AEMFCs produce water at the anode side and consume it at the cathode side, resulting in no cathode water-flooding like in PEMFCS. However, it brings complexity to water transportation behaviour and requires appropriate water balance to avoid membrane drying out. In this study, a two-dimensional two-phase multi-physics model has been developed to investigate the impacts of three key electrode parameters (porosity, catalyst loading, and ionomer content) that are responsible for water production and transport as well as the performance of an AEMFC. A piecewise constant function along the x-direction (reactant diffusion direction) is used to apply the gradient on the porosity and platinum loading. The present results show that a larger porosity gradient near the cathode gas-diffusion layer (GDL)/flow-channel interface and lower near the GDL/microporous layer (MPL) interface can enhance mass transport and water removal, which is benefited the AEMFC performance. However, anode GDL porosity gradients show a lower AEMFC performance compared to the cathode porosity gradients. Moreover, it was confirmed that for both electrodes, the performance of AEMFC was significantly dependent on each electrode parameter.
阴离子交换膜燃料电池(aemfc)作为质子交换膜燃料电池(pemfc)的低成本替代品正在发展中。aemfc在阳极侧产生水,并在阴极侧消耗水,因此不会像PEMFCS那样产生阴极水淹。然而,它给水的输送行为带来了复杂性,需要适当的水平衡来避免膜的干燥。在这项研究中,开发了一个二维两相多物理模型来研究三个关键电极参数(孔隙率、催化剂负载和离聚物含量)对水的产生和输送以及AEMFC性能的影响。沿着x方向(反应物扩散方向)的分段常数函数用于对孔隙率和铂载荷施加梯度。研究结果表明,阴极气扩散层(GDL)/流道界面附近孔隙度梯度越大,GDL/微孔层(MPL)界面附近孔隙度梯度越小,有利于AEMFC的传质和脱水,有利于AEMFC的性能。然而,与阴极孔隙度梯度相比,阳极GDL孔隙度梯度显示出较低的AEMFC性能。此外,还证实了对于两种电极,AEMFC的性能显著依赖于每个电极参数。
{"title":"Investigation of Gradient Platinum-Loading and Porosity Distribution for Anion Exchange Membrane Fuel Cells","authors":"H. Mousa, L. Xing, P. Das","doi":"10.1115/1.4056029","DOIUrl":"https://doi.org/10.1115/1.4056029","url":null,"abstract":"\u0000 Anion exchange membrane fuel cells (AEMFCs) are in development as a low-cost alternative to proton exchange membrane fuel cells (PEMFCs). AEMFCs produce water at the anode side and consume it at the cathode side, resulting in no cathode water-flooding like in PEMFCS. However, it brings complexity to water transportation behaviour and requires appropriate water balance to avoid membrane drying out. In this study, a two-dimensional two-phase multi-physics model has been developed to investigate the impacts of three key electrode parameters (porosity, catalyst loading, and ionomer content) that are responsible for water production and transport as well as the performance of an AEMFC. A piecewise constant function along the x-direction (reactant diffusion direction) is used to apply the gradient on the porosity and platinum loading. The present results show that a larger porosity gradient near the cathode gas-diffusion layer (GDL)/flow-channel interface and lower near the GDL/microporous layer (MPL) interface can enhance mass transport and water removal, which is benefited the AEMFC performance. However, anode GDL porosity gradients show a lower AEMFC performance compared to the cathode porosity gradients. Moreover, it was confirmed that for both electrodes, the performance of AEMFC was significantly dependent on each electrode parameter.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45464533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State-of-charge estimation of lithium-ion batteries using convolutional neural network with self-attention mechanism 基于自关注机制的卷积神经网络的锂离子电池电量状态估计
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2022-10-14 DOI: 10.1115/1.4055985
Jianlong Chen, Chenghao Zhang, Cong Chen, Chenlei Lu, Xuan Dongji
State of charge (SOC) of lithium-ion battery is an indispensable performance indicator in battery management system (BMS), which is essential to ensure the safe operation of the battery and avoid potential hazards. However, SOC can't be directly measured by sensors or tools. In order to accurately estimate the SOC, this paper proposes a convolutional neural network based on self-attention mechanism. Firstly, the one-dimensional convolution is introduced to extract features from battery voltage, current, and temperature data. Then the self-attention mechanism can reduce the dependence on external information and well capture the internal correlation of features extracted by the convolutional layer. Finally, the proposed method is validated on four dynamic driving conditions at five temperatures and compared with other two deep learning methods. The experimental results show that the proposed method has good accuracy and robustness.
锂离子电池的充电状态(SOC)是电池管理系统(BMS)中不可或缺的性能指标,对确保电池的安全运行和避免潜在危险至关重要。然而,SOC不能通过传感器或工具直接测量。为了准确估计SOC,本文提出了一种基于自注意机制的卷积神经网络。首先,引入一维卷积从电池电压、电流和温度数据中提取特征。然后,自注意机制可以减少对外部信息的依赖,并很好地捕捉卷积层提取的特征的内部相关性。最后,在五种温度下的四种动态驾驶条件下对所提出的方法进行了验证,并与其他两种深度学习方法进行了比较。实验结果表明,该方法具有良好的精度和鲁棒性。
{"title":"State-of-charge estimation of lithium-ion batteries using convolutional neural network with self-attention mechanism","authors":"Jianlong Chen, Chenghao Zhang, Cong Chen, Chenlei Lu, Xuan Dongji","doi":"10.1115/1.4055985","DOIUrl":"https://doi.org/10.1115/1.4055985","url":null,"abstract":"\u0000 State of charge (SOC) of lithium-ion battery is an indispensable performance indicator in battery management system (BMS), which is essential to ensure the safe operation of the battery and avoid potential hazards. However, SOC can't be directly measured by sensors or tools. In order to accurately estimate the SOC, this paper proposes a convolutional neural network based on self-attention mechanism. Firstly, the one-dimensional convolution is introduced to extract features from battery voltage, current, and temperature data. Then the self-attention mechanism can reduce the dependence on external information and well capture the internal correlation of features extracted by the convolutional layer. Finally, the proposed method is validated on four dynamic driving conditions at five temperatures and compared with other two deep learning methods. The experimental results show that the proposed method has good accuracy and robustness.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47538572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Balancing method of retired battery pack based on variable domain fuzzy control 基于变域模糊控制的退役电池组平衡方法
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2022-10-06 DOI: 10.1115/1.4055880
Tiezhou Wu, Liuliang Chen, Yuhong Xu, Xiaoxing Zhang
For the problem of performance gap between individual cells in retired lithium batteries after group use, which affects the usable capacity of battery pack, a grouping bi-directional equalization method based on variable domain fuzzy control is proposed. Equalization circuits based on single inductor and LC oscillation circuit are respectively used for inter-cell and inter-cell group, to achieve inter-cell equalization and inter-cell group equalization; Variable domain fuzzy control strategy is used to determine the reasonable range of operating current according to State of Health (SOH) of the battery, combined with the relationship between the capacity decay coefficient and the average operational range of State of Charge (SOC); the equalization current is dynamically adjusted according to its mathematical relationship with operating current. To verify the effectiveness of this equalization method, an experimental platform was built and verification simulations were performed. The result of experiments shows, the equalization speed is increased by 25%, comparing to fixed equalization current control strategy; the capacity decay is reduced by 6% and the service life is extended after experiments of 1200 charge-discharge cycles, comparing to traditional fuzzy equalization strategy.
针对退役锂电池组使用后单体电池性能差距影响电池组可用容量的问题,提出了一种基于变域模糊控制的分组双向均衡方法。基于单电感的均衡电路和LC振荡电路分别用于单元间和单元间组,以实现单元间均衡和单元组间均衡;根据电池的健康状态,结合容量衰减系数与荷电状态平均工作范围之间的关系,采用变域模糊控制策略确定合理的工作电流范围;均衡电流是根据其与工作电流的数学关系来动态调整的。为了验证这种均衡方法的有效性,搭建了一个实验平台,并进行了验证仿真。实验结果表明,与固定均衡电流控制策略相比,均衡速度提高了25%;与传统的模糊均衡策略相比,经过1200次充放电循环的实验,容量衰减降低了6%,使用寿命延长。
{"title":"Balancing method of retired battery pack based on variable domain fuzzy control","authors":"Tiezhou Wu, Liuliang Chen, Yuhong Xu, Xiaoxing Zhang","doi":"10.1115/1.4055880","DOIUrl":"https://doi.org/10.1115/1.4055880","url":null,"abstract":"\u0000 For the problem of performance gap between individual cells in retired lithium batteries after group use, which affects the usable capacity of battery pack, a grouping bi-directional equalization method based on variable domain fuzzy control is proposed. Equalization circuits based on single inductor and LC oscillation circuit are respectively used for inter-cell and inter-cell group, to achieve inter-cell equalization and inter-cell group equalization; Variable domain fuzzy control strategy is used to determine the reasonable range of operating current according to State of Health (SOH) of the battery, combined with the relationship between the capacity decay coefficient and the average operational range of State of Charge (SOC); the equalization current is dynamically adjusted according to its mathematical relationship with operating current. To verify the effectiveness of this equalization method, an experimental platform was built and verification simulations were performed. The result of experiments shows, the equalization speed is increased by 25%, comparing to fixed equalization current control strategy; the capacity decay is reduced by 6% and the service life is extended after experiments of 1200 charge-discharge cycles, comparing to traditional fuzzy equalization strategy.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47799609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Journal of Electrochemical Energy Conversion and Storage
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1