Pub Date : 2024-09-24DOI: 10.1016/j.jece.2024.114241
Hongda Zhang , Yunzhe Zhao , Chenxu Wang , Baolin Liu , Yong Yu
The mediation of vacancy in catalysts is crucial for the enhancement of oxidant activation. Here the boron nitride loaded with Co mixed oxides (Co2O3-CoO) and boron vacancy (Bv) catalyst (Co/BN-X) was prepared to degrade sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS). Under dark condition, Co/BN-3+PMS system can completely remove SMX in surface water within 15 min, and its removal efficiency constant (0.5154 min−1) was 4.0 and 6.7 times greater than those of Co/BN-2+PMS (0.1284 min−1) and Co/BN-1+PMS (0.0771 min−1), respectively. The system showed excellent performance in different influencing factors and cyclic experiments, and exhibited good practical application potential in secondary effluent. Electron paramagnetic resonance, radical quenching and electrochemical tests certified that singlet oxygen (1O2) was the major active species, followed by •O2–, and SO4•–, further elaborating the activation pathway of PMS in Co/BN-3+PMS system. The density functional theory (DFT) calculations confirmed that CoO and PMS-O2 sites were the main reaction sites, and the existence of Bv reduced the adsorption energy of Co/BN-3 for PMS. This work reveals the synergistic effect between Co oxide sites and Bv on the catalyst surface and offers a potential modification method to accelerate Fenton-like reaction.
{"title":"Activation of peroxymonosulfate by boron nitride loaded with Co mixed oxides and boron vacancy for ultrafast removal of drugs in surface water","authors":"Hongda Zhang , Yunzhe Zhao , Chenxu Wang , Baolin Liu , Yong Yu","doi":"10.1016/j.jece.2024.114241","DOIUrl":"10.1016/j.jece.2024.114241","url":null,"abstract":"<div><div>The mediation of vacancy in catalysts is crucial for the enhancement of oxidant activation. Here the boron nitride loaded with Co mixed oxides (Co<sub>2</sub>O<sub>3</sub>-CoO) and boron vacancy (B<sub>v</sub>) catalyst (Co/BN-X) was prepared to degrade sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS). Under dark condition, Co/BN-3+PMS system can completely remove SMX in surface water within 15 min, and its removal efficiency constant (0.5154 min<sup>−1</sup>) was 4.0 and 6.7 times greater than those of Co/BN-2+PMS (0.1284 min<sup>−1</sup>) and Co/BN-1+PMS (0.0771 min<sup>−1</sup>), respectively. The system showed excellent performance in different influencing factors and cyclic experiments, and exhibited good practical application potential in secondary effluent. Electron paramagnetic resonance, radical quenching and electrochemical tests certified that singlet oxygen (<sup>1</sup>O<sub>2</sub>) was the major active species, followed by •O<sub>2</sub><sup>–</sup>, and SO<sub>4</sub><sup>•–</sup>, further elaborating the activation pathway of PMS in Co/BN-3+PMS system. The density functional theory (DFT) calculations confirmed that CoO and PMS-O<sub>2</sub> sites were the main reaction sites, and the existence of B<sub>v</sub> reduced the adsorption energy of Co/BN-3 for PMS. This work reveals the synergistic effect between Co oxide sites and B<sub>v</sub> on the catalyst surface and offers a potential modification method to accelerate Fenton-like reaction.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114241"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.jece.2024.114235
Panchan Dansawad , Lixia Cao , Shengyong Zhao , Haigang Gao , Muhammad Sheraz , Cong Xue , Yanxiang Li , Wangliang Li
The CS-rPET electrospun nanofibrous membrane is fabricated from recycled polyethylene terephthalate (rPET) through electrospinning and enhanced with candle soot (CS) to separate oil-water mixtures and emulsions when pre-wetted by oil or water. Using rPET polymers and CS waste reduces the environmental impact of plastic bottle waste and improves its value. The CS-rPET electrospun nanofibrous membrane showed excellent separation performance in oil-water mixtures, achieving over 81.18 % and 71.38 % of separation efficiency through 40 separation cycles after pre-wetting by oil and after washing with ethanol and pre-wetting by water, respectively. The membrane maintained high separation performance after being pre-wetted by oil for water-in-oil emulsions with efficiencies above 99 % and flux exceeding 12,200 L m−2 h−1. Similarly, the efficiencies remained above 98 % for oil-in-water emulsions after being pre-wetted by water, with a flux over 8000 L m−2 h−1. Additionally, the CS-rPET electrospun nanofibrous membrane exhibited high separation efficiencies above 97 % and flux over 14,000 L m−2 h−1 after pre-wetting by oil and 7700 L m−2 h−1 after pre-wetting by water in harsh environmental conditions. Its adaptability of switchable wettability on-demand after pre-wetting by oil or water highlights its potential for a wide range of challenging oil-water separation applications. However, multiple separation cycles, separation efficiency and flux were reduced, indicating the necessity to improve the membrane's efficiency and reduce the chance of water accumulation in multicycle separation.
{"title":"Candle soot-modified rPET electrospun nanofibrous membrane for separating on-demand oil-water mixture and emulsions","authors":"Panchan Dansawad , Lixia Cao , Shengyong Zhao , Haigang Gao , Muhammad Sheraz , Cong Xue , Yanxiang Li , Wangliang Li","doi":"10.1016/j.jece.2024.114235","DOIUrl":"10.1016/j.jece.2024.114235","url":null,"abstract":"<div><div>The CS-rPET electrospun nanofibrous membrane is fabricated from recycled polyethylene terephthalate (rPET) through electrospinning and enhanced with candle soot (CS) to separate oil-water mixtures and emulsions when pre-wetted by oil or water. Using rPET polymers and CS waste reduces the environmental impact of plastic bottle waste and improves its value. The CS-rPET electrospun nanofibrous membrane showed excellent separation performance in oil-water mixtures, achieving over 81.18 % and 71.38 % of separation efficiency through 40 separation cycles after pre-wetting by oil and after washing with ethanol and pre-wetting by water, respectively. The membrane maintained high separation performance after being pre-wetted by oil for water-in-oil emulsions with efficiencies above 99 % and flux exceeding 12,200 L m<sup>−2</sup> h<sup>−1</sup>. Similarly, the efficiencies remained above 98 % for oil-in-water emulsions after being pre-wetted by water, with a flux over 8000 L m<sup>−2</sup> h<sup>−1</sup>. Additionally, the CS-rPET electrospun nanofibrous membrane exhibited high separation efficiencies above 97 % and flux over 14,000 L m<sup>−2</sup> h<sup>−1</sup> after pre-wetting by oil and 7700 L m<sup>−2</sup> h<sup>−1</sup> after pre-wetting by water in harsh environmental conditions. Its adaptability of switchable wettability on-demand after pre-wetting by oil or water highlights its potential for a wide range of challenging oil-water separation applications. However, multiple separation cycles, separation efficiency and flux were reduced, indicating the necessity to improve the membrane's efficiency and reduce the chance of water accumulation in multicycle separation.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114235"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.jece.2024.114244
Zhenhua Yang , Xintong Yang , Quanxi Zhang , Xianyun Zheng , Yuexia Zhang , Chuan Dong
The precise regulation of morin levels in both diet and medicine is essential to evaluate the nutritional quality of food. Furthermore, plant yield is attracting considerable attention in the agricultural and herbal industries. Accordingly, the sensing platforms based on orange S and N co-doped carbon dots (SNCDs) were developed to detect morin through photoluminescence signals in aqueous solutions, solid matrices, and zebrafish. These sensing platforms exhibited excellent selectivity toward morin and possessed good anti-interference abilities, achieving limits of detection with 0.31 and 0.19 μM in the aqueous solution and solid state, respectively. Furthermore, the application of the as-prepared SNCDs at low concentration enhanced plant growth (using soybean seedlings as a model). The biological effects may be attributed to the promotion of light reaction and excess light reaction-induced injury. These findings offer novel insights into potential applications of SNCDs in sustainable agriculture and environmental monitoring.
要评估食物的营养质量,就必须精确调节饮食和药物中的吗啉含量。此外,植物产量在农业和草药产业中也备受关注。因此,我们开发了基于橙色 S 和 N 共掺杂碳点(SNCDs)的传感平台,在水溶液、固体基质和斑马鱼中通过光致发光信号检测吗啉。这些传感平台对吗啉具有极佳的选择性和良好的抗干扰能力,在水溶液和固体状态下的检测限分别为 0.31 和 0.19 μM。此外,低浓度施用制备的 SNCD 还能促进植物生长(以大豆幼苗为模型)。这些生物效应可能是由于促进了光反应和过量光反应引起的损伤。这些发现为 SNCDs 在可持续农业和环境监测领域的潜在应用提供了新的见解。
{"title":"Orange carbon dot nanomaterial as optical/visual sensing platforms for morin and a biomass booster for plant seedlings","authors":"Zhenhua Yang , Xintong Yang , Quanxi Zhang , Xianyun Zheng , Yuexia Zhang , Chuan Dong","doi":"10.1016/j.jece.2024.114244","DOIUrl":"10.1016/j.jece.2024.114244","url":null,"abstract":"<div><div>The precise regulation of morin levels in both diet and medicine is essential to evaluate the nutritional quality of food. Furthermore, plant yield is attracting considerable attention in the agricultural and herbal industries. Accordingly, the sensing platforms based on orange S and N co-doped carbon dots (SNCDs) were developed to detect morin through photoluminescence signals in aqueous solutions, solid matrices, and zebrafish. These sensing platforms exhibited excellent selectivity toward morin and possessed good anti-interference abilities, achieving limits of detection with 0.31 and 0.19 μM in the aqueous solution and solid state, respectively. Furthermore, the application of the as-prepared SNCDs at low concentration enhanced plant growth (using soybean seedlings as a model). The biological effects may be attributed to the promotion of light reaction and excess light reaction-induced injury. These findings offer novel insights into potential applications of SNCDs in sustainable agriculture and environmental monitoring.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114244"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.jece.2024.114239
Hao Li , Xiangyi Gong , Hua Tong , Fu Feng , Dajung Ren
Three MOF-derived nanoparticles were synthesized by manganese doping and calcination of ZIF-67 precursor. The surface physicochemical properties of these materials were compared using SEM, TEM, XRD, FTIR and BET analyses. Among them, cobalt-manganese oxide nanoflowers (CoMn2O4-NFs) exhibited excellent catalytic performance in the degradation of ciprofloxacin (CIP) by activated peroxymonosulfate (PMS), achieving 100 % removal within 30 minutes with a rate constant (kobs) of 0.2960 min−1. The catalytic mechanism was elucidated by quenching experiments, EPR, electrochemical analysis and X-ray photoelectron spectroscopy (XPS). The results show that the non-radical oxidation process was initiated mainly by direct electron transfer and 1O2 (∼80 %), with a small contribution from the radical SO4·- (∼20 %). The nano-confined structure on the surface of CoMn2O4-NFs makes it easy to combine with PMS to form CoMn2O4-NFs/PMS* complexes, which directly capture electrons from CIP to complete the degradation process. The double redox cycle of cobalt-manganese ions and oxygen vacancies on CoMn2O4-NFs could accelerate the electron transfer process. CoMn2O4-NFs maintained high removal efficiency (>99 %) over a wide pH range (3−11), with minimal interference from most environmental anions, demonstrating strong stability and interference resistance. This study provides insights into using metal-based materials for oxidative degradation of organic pollutants via non-radical pathways.
{"title":"Electron transfer mechanism mediated MOF-derived nanoflowers catalyst for promoting peroxymonosulfate activation and ciprofloxacin degradation","authors":"Hao Li , Xiangyi Gong , Hua Tong , Fu Feng , Dajung Ren","doi":"10.1016/j.jece.2024.114239","DOIUrl":"10.1016/j.jece.2024.114239","url":null,"abstract":"<div><div>Three MOF-derived nanoparticles were synthesized by manganese doping and calcination of ZIF-67 precursor. The surface physicochemical properties of these materials were compared using SEM, TEM, XRD, FTIR and BET analyses. Among them, cobalt-manganese oxide nanoflowers (CoMn<sub>2</sub>O<sub>4</sub>-NFs) exhibited excellent catalytic performance in the degradation of ciprofloxacin (CIP) by activated peroxymonosulfate (PMS), achieving 100 % removal within 30 minutes with a rate constant (k<sub>obs</sub>) of 0.2960 min<sup>−1</sup>. The catalytic mechanism was elucidated by quenching experiments, EPR, electrochemical analysis and X-ray photoelectron spectroscopy (XPS). The results show that the non-radical oxidation process was initiated mainly by direct electron transfer and <sup>1</sup>O<sub>2</sub> (∼80 %), with a small contribution from the radical SO<sub>4</sub><sup>·-</sup> (∼20 %). The nano-confined structure on the surface of CoMn<sub>2</sub>O<sub>4</sub>-NFs makes it easy to combine with PMS to form CoMn<sub>2</sub>O<sub>4</sub>-NFs/PMS* complexes, which directly capture electrons from CIP to complete the degradation process. The double redox cycle of cobalt-manganese ions and oxygen vacancies on CoMn<sub>2</sub>O<sub>4</sub>-NFs could accelerate the electron transfer process. CoMn<sub>2</sub>O<sub>4</sub>-NFs maintained high removal efficiency (>99 %) over a wide pH range (3−11), with minimal interference from most environmental anions, demonstrating strong stability and interference resistance. This study provides insights into using metal-based materials for oxidative degradation of organic pollutants via non-radical pathways.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114239"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.jece.2024.114247
Amolwan Sornvichai , Muhammad Adnan , Nouman Ahmad , Ratchanon Piemjaiswang , Pornpote Piumsomboon , Benjapon Chalermsinsuwan
The study investigates the use of potassium-based solid sorbents for CO2 capture in a circulating fluidized bed reactor (CFBR), a promising technology in various industries. The numerical simulations were employed to explore the process of CO2 capture in a three-dimensional (3D) CFBR using K2CO3 adsorbents with a reactive multiphase Eulerian-Eulerian approach. After successfully validating the model for CO2 removal concentration with the experimental data, the key parameters like cooling water temperature, flow rate, distance between cooling stages, diameter, and configuration of cooling tubes were analyzed to optimize K2CO3 performance for CO2 adsorption. Results show adjustments to these parameters can enhance CO2 removal rates. Lowering cooling water temperature improves K2CO3 performance but increases energy consumption. Increasing the cooling water flow rate slightly boosts CO2 removal efficiency. Changes in cooling stage gaps have minimal impact on CO2 removal, but larger cooling tube diameters enhance CO2 removal rates by increasing heat transfer surface area. Different riser configurations affect CO2 removal, with staggered cooling tube arrangements showing superior particle distribution and CO2 removal efficiency. Overall, decreasing temperature improves K2CO3 performance by favorably shifting reaction equilibrium.
{"title":"CFD modeling of CO2 capture in a non-isothermal circulating fluidized bed riser using K2CO3 solid sorbent","authors":"Amolwan Sornvichai , Muhammad Adnan , Nouman Ahmad , Ratchanon Piemjaiswang , Pornpote Piumsomboon , Benjapon Chalermsinsuwan","doi":"10.1016/j.jece.2024.114247","DOIUrl":"10.1016/j.jece.2024.114247","url":null,"abstract":"<div><div>The study investigates the use of potassium-based solid sorbents for CO<sub>2</sub> capture in a circulating fluidized bed reactor (CFBR), a promising technology in various industries. The numerical simulations were employed to explore the process of CO<sub>2</sub> capture in a three-dimensional (3D) CFBR using K<sub>2</sub>CO<sub>3</sub> adsorbents with a reactive multiphase Eulerian-Eulerian approach. After successfully validating the model for CO<sub>2</sub> removal concentration with the experimental data, the key parameters like cooling water temperature, flow rate, distance between cooling stages, diameter, and configuration of cooling tubes were analyzed to optimize K<sub>2</sub>CO<sub>3</sub> performance for CO<sub>2</sub> adsorption. Results show adjustments to these parameters can enhance CO<sub>2</sub> removal rates. Lowering cooling water temperature improves K<sub>2</sub>CO<sub>3</sub> performance but increases energy consumption. Increasing the cooling water flow rate slightly boosts CO<sub>2</sub> removal efficiency. Changes in cooling stage gaps have minimal impact on CO<sub>2</sub> removal, but larger cooling tube diameters enhance CO<sub>2</sub> removal rates by increasing heat transfer surface area. Different riser configurations affect CO<sub>2</sub> removal, with staggered cooling tube arrangements showing superior particle distribution and CO<sub>2</sub> removal efficiency. Overall, decreasing temperature improves K<sub>2</sub>CO<sub>3</sub> performance by favorably shifting reaction equilibrium.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114247"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L-lactate is an essential biomarker in clinical diagnostics and food quality assessment. This study introduces a novel ratiometric fluorescence sensor, RhB@Zn-MOF, which was specifically designed for the sensitive and selective detection of L-lactate. Through the strategic incorporation of Rhodamine B (RhB) into Zn-MOF, RhB@Zn-MOF was synthesized, exhibiting dual-emission properties and could effectively distinguish L-lactate in complex biological and food matrices such as milk and sweat based on the competitive absorption mechanism. Notably, the sensor achieves a low detection limit of 0.091 μM and demonstrates excellent stability and reproducibility in varied conditions. Furthermore, the integration of the sensor with smartphone technology enables rapid, real-time analysis, showcasing potential applications in sports medicine, clinical environments, and the food industry.
{"title":"Highly sensitive and selective L-lactate monitoring in complex matrices with a ratiometric fluorescent sensor RhB@Zn-MOF","authors":"Bo Jing, Xinke Xu, Jingze Wang, Changyan Sun, Wenjun Li, Zhidong Chang","doi":"10.1016/j.jece.2024.114233","DOIUrl":"10.1016/j.jece.2024.114233","url":null,"abstract":"<div><div>L-lactate is an essential biomarker in clinical diagnostics and food quality assessment. This study introduces a novel ratiometric fluorescence sensor, RhB@Zn-MOF, which was specifically designed for the sensitive and selective detection of L-lactate. Through the strategic incorporation of Rhodamine B (RhB) into Zn-MOF, RhB@Zn-MOF was synthesized, exhibiting dual-emission properties and could effectively distinguish L-lactate in complex biological and food matrices such as milk and sweat based on the competitive absorption mechanism. Notably, the sensor achieves a low detection limit of 0.091 μM and demonstrates excellent stability and reproducibility in varied conditions. Furthermore, the integration of the sensor with smartphone technology enables rapid, real-time analysis, showcasing potential applications in sports medicine, clinical environments, and the food industry.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114233"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.jece.2024.114228
Xiangyu Fu, Yafeng Li, Keqing Cui, Yihan Liu, Le Lv
A novel manganese/phosphorus-doped biochar (Mn/P-C) catalyst was prepared for the degradation of tetracycline hydrochloride (TCH) by activating peroxymonosulfate (PMS). Characterization of the catalyst revealed that Mn/P-C possessed stacked, complex pleated sheets and surface oxygen-containing functional groups, providing abundant active sites. Mn/P-C exhibited superior adsorption and catalytic properties. Nearly complete removal of TCH was achieved under optimal conditions: a PMS concentration of 2 mM, pH 6.51, and catalyst dosage of 0.5 g/L within 120 minutes of reaction time. The reaction rate constant of the system was 0.060 min−1, which was 13.79 times higher than that of pure biochar. XPS characterization before and after the reaction, quenching experiment, and electron paramagnetic resonance (EPR) experiment comprehensively verified the reaction pathway mechanisms. The primary radicals involved were SO4•- and O2•-, while the 1O2 non-radical transfer pathway was also generated on the catalyst surface, enhancing electron transfer and accelerating catalytic degradation. UPLC-MS/MS was used to investigate the main degradation intermediates and the possible transformation pathways were proposed. The toxicity of TCH and its intermediates was evaluated by the quantitative structure-activity relationship (QSAR) method. Theoretical calculations provided deeper insights into TCH degradation pathways through DFT computational analysis. This study confirms that doping biochar with transition metals and nonmetals can synergistically enhance the degradation efficacy of PMS-activated biochar catalysts, providing a novel approach for the application of carbon-based material catalysts in persulfate activation.
{"title":"Mn and P co-doped biochar catalyst for persulfate efficient degradation of tetracycline hydrochloride:Process and mechanism","authors":"Xiangyu Fu, Yafeng Li, Keqing Cui, Yihan Liu, Le Lv","doi":"10.1016/j.jece.2024.114228","DOIUrl":"10.1016/j.jece.2024.114228","url":null,"abstract":"<div><div>A novel manganese/phosphorus-doped biochar (Mn/P-C) catalyst was prepared for the degradation of tetracycline hydrochloride (TCH) by activating peroxymonosulfate (PMS). Characterization of the catalyst revealed that Mn/P-C possessed stacked, complex pleated sheets and surface oxygen-containing functional groups, providing abundant active sites. Mn/P-C exhibited superior adsorption and catalytic properties. Nearly complete removal of TCH was achieved under optimal conditions: a PMS concentration of 2 mM, pH 6.51, and catalyst dosage of 0.5 g/L within 120 minutes of reaction time. The reaction rate constant of the system was 0.060 min<sup>−1</sup>, which was 13.79 times higher than that of pure biochar. XPS characterization before and after the reaction, quenching experiment, and electron paramagnetic resonance (EPR) experiment comprehensively verified the reaction pathway mechanisms. The primary radicals involved were SO<sub>4</sub><sup>•-</sup> and O<sub>2</sub><sup>•-</sup>, while the <sup>1</sup>O<sub>2</sub> non-radical transfer pathway was also generated on the catalyst surface, enhancing electron transfer and accelerating catalytic degradation. UPLC-MS/MS was used to investigate the main degradation intermediates and the possible transformation pathways were proposed. The toxicity of TCH and its intermediates was evaluated by the quantitative structure-activity relationship (QSAR) method. Theoretical calculations provided deeper insights into TCH degradation pathways through DFT computational analysis. This study confirms that doping biochar with transition metals and nonmetals can synergistically enhance the degradation efficacy of PMS-activated biochar catalysts, providing a novel approach for the application of carbon-based material catalysts in persulfate activation.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114228"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.jece.2024.114238
Meng Cheng, Xingtai Yan, Wenjing Liu, Ruihua Li, Gangfu Song
Designing and synthesizing sustainable adsorbents for the separation and recovery of gold from waste resources has significant importance to alleviate the problems of the scarcity of resource and environmental pollution. Herein, a cyanide-functionalized ionic liquid-modified polymer (CPR-CN) was prepared by a simple one-step process for gold (Au(III)) recovery. The introduction of cyan group and cationic imidazolium ring gives CPR-CN significant adsorption ability with 1450.41 mg/g. Kinetics study suggested that the uptake of Au(III) onto CPR-CN could be commendably matched by the pseudo-second order kinetic model and it took only 10 min to reach adsorption equilibrium. The CPR-CN had a remarkable selectivity towards Au(III) for it presented much overwhelming affinity for Au(III) than that for other base metal ions such as K(I), Co(II), Cu(II), Ca(II), Mg(II), Al(III) and Fe(III), thus it was successfully applied to recover Au(III) from e-waste leaching solution. Besides, the CPR-CN displayed preferable reusability, and the possible mechanism of CPR-CN for Au(III) was investigated with the aid of several characterization techniques. These performance of CPR-CN indicates it can serve as an attractive adsorbent to efficiently and selectively separate and recover Au(III) from waste.
{"title":"Cyanide-functionalized ionic liquid-modified polymer as an adsorbent for highly efficient and selective recovery of Au(III)","authors":"Meng Cheng, Xingtai Yan, Wenjing Liu, Ruihua Li, Gangfu Song","doi":"10.1016/j.jece.2024.114238","DOIUrl":"10.1016/j.jece.2024.114238","url":null,"abstract":"<div><div>Designing and synthesizing sustainable adsorbents for the separation and recovery of gold from waste resources has significant importance to alleviate the problems of the scarcity of resource and environmental pollution. Herein, a cyanide-functionalized ionic liquid-modified polymer (CPR-CN) was prepared by a simple one-step process for gold (Au(III)) recovery. The introduction of cyan group and cationic imidazolium ring gives CPR-CN significant adsorption ability with 1450.41 mg/g. Kinetics study suggested that the uptake of Au(III) onto CPR-CN could be commendably matched by the pseudo-second order kinetic model and it took only 10 min to reach adsorption equilibrium. The CPR-CN had a remarkable selectivity towards Au(III) for it presented much overwhelming affinity for Au(III) than that for other base metal ions such as K(I), Co(II), Cu(II), Ca(II), Mg(II), Al(III) and Fe(III), thus it was successfully applied to recover Au(III) from e-waste leaching solution. Besides, the CPR-CN displayed preferable reusability, and the possible mechanism of CPR-CN for Au(III) was investigated with the aid of several characterization techniques. These performance of CPR-CN indicates it can serve as an attractive adsorbent to efficiently and selectively separate and recover Au(III) from waste.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114238"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.jece.2024.114219
Xiaoyue Hu , Ziwei Hua , Ziyue Ding , Jie Sun , Tiejun Wang , Yuying Li , B. Larry Li , Hao Zhang
Polyethylene (PE) and carbendazim are common pollutants in soil, and their individual toxicities have been widely studied. However, there are few reports on PE as a carrier for carbendazim and their combined toxicity to plants and soil. Therefore, in this study, we focused on the adsorption effects of different PE particle sizes (25 μm, 150 μm) at different concentrations (1 %, 5 %, m/m) on carbendazim (2.0 mg·kg−1, 5.0 mg·kg−1) and the combined toxicity to cotton and soil microbiota. The results showed that the carbendazim adsorption by PE followed secondary kinetics and was consistent with the Freundlich model. Due to adsorption, the half-life of carbendazim in soil was extended (from 6.31 d to 14.20 d), and the capacity of carbendazim to control cotton Verticillium wilt was weakened. Combined stress exacerbated the inhibitory effects on cotton biomass, chlorophyll content, soil enzyme activity compared to the individual carbendazim or PE treatments. The high-throughput sequencing analysis indicated that combined stress (5.0 mg·kg−1 carbendazim, 5 % 25 μm PE) significantly reduced the richness and diversity, changed the structural composition of rhizosphere soil bacterial community, and greatly increased the abundance of bacteria with potential degrading functions, such as Marmoricola. Functional and network analysis showed that combined stress altered the soil microbial function and abundance, as well as the network structure and key bacterial groups, decreased the number of positively correlated connections. This study provides a theoretical basis for evaluating the effects of combined PE and carbendazim stress on crops and soils.
聚乙烯(PE)和多菌灵是土壤中常见的污染物,它们各自的毒性已被广泛研究。然而,关于聚乙烯作为多菌灵的载体及其对植物和土壤的综合毒性的报道却很少。因此,在本研究中,我们重点研究了不同粒径(25 μm、150 μm)、不同浓度(1 %、5 %、m/m)的聚乙烯对多菌灵(2.0 mg-kg-1、5.0 mg-kg-1)的吸附效果,以及对棉花和土壤微生物群的综合毒性。结果表明,聚乙烯对多菌灵的吸附遵循二级动力学,与 Freundlich 模型一致。由于吸附作用,多菌灵在土壤中的半衰期延长(从 6.31 d 延长到 14.20 d),多菌灵防治棉花轮纹病的能力减弱。与单独的多菌灵或 PE 处理相比,联合胁迫加剧了对棉花生物量、叶绿素含量和土壤酶活性的抑制作用。高通量测序分析表明,联合胁迫(5.0 mg-kg-1 多菌灵、5 % 25 μm PE)显著降低了根瘤菌土壤细菌群落的丰富度和多样性,改变了根瘤菌土壤细菌群落的结构组成,并大大增加了具有潜在降解功能的细菌的丰度,如Marmoricola。功能和网络分析表明,综合胁迫改变了土壤微生物的功能和丰度,也改变了网络结构和关键细菌群,减少了正相关连接的数量。这项研究为评估 PE 和多菌灵联合胁迫对作物和土壤的影响提供了理论依据。
{"title":"Carbendazim adsorption on polyethylene microplastics and the toxicity mechanisms on cotton plants, soil enzyme activity and rhizosphere bacterial community under combined stress conditions","authors":"Xiaoyue Hu , Ziwei Hua , Ziyue Ding , Jie Sun , Tiejun Wang , Yuying Li , B. Larry Li , Hao Zhang","doi":"10.1016/j.jece.2024.114219","DOIUrl":"10.1016/j.jece.2024.114219","url":null,"abstract":"<div><div>Polyethylene (PE) and carbendazim are common pollutants in soil, and their individual toxicities have been widely studied. However, there are few reports on PE as a carrier for carbendazim and their combined toxicity to plants and soil. Therefore, in this study, we focused on the adsorption effects of different PE particle sizes (25 μm, 150 μm) at different concentrations (1 %, 5 %, m/m) on carbendazim (2.0 mg·kg<sup>−1</sup>, 5.0 mg·kg<sup>−1</sup>) and the combined toxicity to cotton and soil microbiota. The results showed that the carbendazim adsorption by PE followed secondary kinetics and was consistent with the Freundlich model. Due to adsorption, the half-life of carbendazim in soil was extended (from 6.31 d to 14.20 d), and the capacity of carbendazim to control cotton <em>Verticillium wilt</em> was weakened. Combined stress exacerbated the inhibitory effects on cotton biomass, chlorophyll content, soil enzyme activity compared to the individual carbendazim or PE treatments. The high-throughput sequencing analysis indicated that combined stress (5.0 mg·kg<sup>−1</sup> carbendazim, 5 % 25 μm PE) significantly reduced the richness and diversity, changed the structural composition of rhizosphere soil bacterial community, and greatly increased the abundance of bacteria with potential degrading functions, such as <em>Marmoricola</em>. Functional and network analysis showed that combined stress altered the soil microbial function and abundance, as well as the network structure and key bacterial groups, decreased the number of positively correlated connections. This study provides a theoretical basis for evaluating the effects of combined PE and carbendazim stress on crops and soils.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114219"},"PeriodicalIF":7.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.jece.2024.114222
Younggun Yoon , Bongkyu Kim , Min Cho
An innovative hybrid water treatment system consisting of an ultraviolet C light-emitting diode sequentially connected to a secondary battery and microbial fuel cells was developed and systematically optimized via an electrochemical performance test. According to standardized bio-dosimetry, the generated ultraviolet intensity powered by a pre-charged battery was determined to be 2.3×10−1 μW cm−2. The quantified UV intensity was used in calculating the fundamental kinetic parameters for the inactivation of microbial entities and the degradation of organic pollutants during UVC-LED and UVC-LED/H2O2 treatment processes. The fluence-based first-order rate constants were 1.07 and 2.43 cm2/mJ for Escherichia coli and 0.10 and 0.18 cm2/mJ for MS-2 bacteriophage, respectively. The study detected 2.76–8.00×10−16 M hydroxyl radicals at steady-state during UVC-LED/H2O2 treatment with 0.3–1 mM H2O2. The second-order rate constant for atrazine during UVC-LED/H2O2 treatment was 1.90×109 M−1 s−1 according to linear regression analysis of atrazine elimination over •OH exposure. This comprehensive investigation expands the application of microbial electrochemical systems in water treatment, providing a fundamental kinetic dataset for quantifying and predicting the microbial and (persistent) organic pollutants abatement.
{"title":"Feasibility of UVC-LED/H2O2 advanced oxidation processes as a hybrid water treatment system uniting secondary battery and microbial fuel cell","authors":"Younggun Yoon , Bongkyu Kim , Min Cho","doi":"10.1016/j.jece.2024.114222","DOIUrl":"10.1016/j.jece.2024.114222","url":null,"abstract":"<div><div>An innovative hybrid water treatment system consisting of an ultraviolet C light-emitting diode sequentially connected to a secondary battery and microbial fuel cells was developed and systematically optimized via an electrochemical performance test. According to standardized bio-dosimetry, the generated ultraviolet intensity powered by a pre-charged battery was determined to be 2.3×10<sup>−1</sup> μW cm<sup>−2</sup>. The quantified UV intensity was used in calculating the fundamental kinetic parameters for the inactivation of microbial entities and the degradation of organic pollutants during UVC-LED and UVC-LED/H<sub>2</sub>O<sub>2</sub> treatment processes. The fluence-based first-order rate constants were 1.07 and 2.43 cm<sup>2</sup>/mJ for <em>Escherichia coli</em> and 0.10 and 0.18 cm<sup>2</sup>/mJ for MS-2 bacteriophage, respectively. The study detected 2.76–8.00×10<sup>−16</sup> M hydroxyl radicals at steady-state during UVC-LED/H<sub>2</sub>O<sub>2</sub> treatment with 0.3–1 mM H<sub>2</sub>O<sub>2</sub>. The second-order rate constant for atrazine during UVC-LED/H<sub>2</sub>O<sub>2</sub> treatment was 1.90×10<sup>9</sup> M<sup>−1</sup> s<sup>−1</sup> according to linear regression analysis of atrazine elimination over •OH exposure. This comprehensive investigation expands the application of microbial electrochemical systems in water treatment, providing a fundamental kinetic dataset for quantifying and predicting the microbial and (persistent) organic pollutants abatement.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114222"},"PeriodicalIF":7.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}