首页 > 最新文献

Journal of Environmental Chemical Engineering最新文献

英文 中文
Microporous layer in proton exchange membrane fuel cells: Advancement in materials and properties 质子交换膜燃料电池中的微孔层:材料和性能方面的进展
IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-09-26 DOI: 10.1016/j.jece.2024.114220
Muhamad Ariff Amir Hamzah , Siti Kartom Kamarudin , Mahnoush Beygisangchin , Norazuwana Shaari , Roshasnorlyza Hazan , Zulfirdaus Zakaria
The microporous layer (MPL) is one of the components in the membrane electrode assembly (MEA), the heart of a proton exchange membrane fuel cell (PEMFC), and plays a vital role in managing mass transport and water management in PEMFCs, where these two aspects can negatively impact fuel cell performance if not tackled properly. Thus, the development of MPLs, in terms of material used, preparation methods, and its physical characteristics, has been widely investigated in recent years, to ensure its functionality for improved fuel cell performance. This paper aims to highlight recent MPL studies, focusing on the aforementioned development factors. This paper also addresses the challenges for optimum MPL performance and future trends in MPL development. Thus, the past findings and future outlooks discussed in this paper can act as a useful guideline for future works related to MPL development, to produce good quality MPLs for enhanced fuel cell performance.
微孔层(MPL)是质子交换膜燃料电池(PEMFC)的核心部件--膜电极组件(MEA)的组成部分之一,在质子交换膜燃料电池的质量传输和水管理方面发挥着至关重要的作用。因此,近年来,人们从所用材料、制备方法及其物理特性等方面对 MPL 的发展进行了广泛研究,以确保 MPL 的功能性,从而提高燃料电池的性能。本文旨在重点介绍最近的 MPL 研究,重点关注上述开发因素。本文还探讨了实现最佳 MPL 性能所面临的挑战以及 MPL 的未来发展趋势。因此,本文讨论的过去研究结果和未来展望可作为未来 MPL 开发相关工作的有用指南,以生产出优质 MPL,提高燃料电池性能。
{"title":"Microporous layer in proton exchange membrane fuel cells: Advancement in materials and properties","authors":"Muhamad Ariff Amir Hamzah ,&nbsp;Siti Kartom Kamarudin ,&nbsp;Mahnoush Beygisangchin ,&nbsp;Norazuwana Shaari ,&nbsp;Roshasnorlyza Hazan ,&nbsp;Zulfirdaus Zakaria","doi":"10.1016/j.jece.2024.114220","DOIUrl":"10.1016/j.jece.2024.114220","url":null,"abstract":"<div><div>The microporous layer (MPL) is one of the components in the membrane electrode assembly (MEA), the heart of a proton exchange membrane fuel cell (PEMFC), and plays a vital role in managing mass transport and water management in PEMFCs, where these two aspects can negatively impact fuel cell performance if not tackled properly. Thus, the development of MPLs, in terms of material used, preparation methods, and its physical characteristics, has been widely investigated in recent years, to ensure its functionality for improved fuel cell performance. This paper aims to highlight recent MPL studies, focusing on the aforementioned development factors. This paper also addresses the challenges for optimum MPL performance and future trends in MPL development. Thus, the past findings and future outlooks discussed in this paper can act as a useful guideline for future works related to MPL development, to produce good quality MPLs for enhanced fuel cell performance.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114220"},"PeriodicalIF":7.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the competitive mechanism between SO2 and PCDD/Fs on activated carbon adsorption 揭示二氧化硫和多氯二苯并对二恶英/多氯二苯并呋喃在活性炭吸附上的竞争机制
IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-09-25 DOI: 10.1016/j.jece.2024.114254
Jianwen Lai , Peiyue Wang , Yunfeng Ma , Zhongkang Han , Heidelore Fiedler , Xiaoqing Lin , Xiaodong Li
In municipal solid waste incineration (MSWI) plants, activated carbon (AC) adsorption is the key technique for eliminating Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from flue gases. This research thoroughly investigates the potential competitive adsorption between SO2 and PCDD/Fs and examines how adsorption at the center and the edge of the AC layer impacts the adsorption process. The findings show a decline in the removal efficiency of PCDD/Fs from 86.8 % to 84.2 % and further to 74.4 % when using SO2 pre-treated (AC-A3) and H2SO4-impregnated (AC-B2) activated carbon, respectively. Multiple characterization methods reveal that sulfur elements occupy active sites within the inner pores of the activated carbon, reducing the availability of its pore structure, particularly affecting microporous more than mesoporous structures. DFT calculations suggest that the π-π EDA effect facilitates the adsorption of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), whereas dispersion force drive SO2 adsorption. Comparisons among various oxygenated functional groups show that the organic acid anhydride (CO-CO) has better adsorption selectivity toward TCDD and less adsorption to SO2. This study provides a novel perspective on the adsorption mechanisms of PCDD/Fs on AC and the competitive dynamics of sulfur in the flue gas.
在城市固体废物焚烧(MSWI)厂中,活性炭(AC)吸附是消除烟气中多氯二苯并对二恶英和多氯二苯并呋喃(PCDD/Fs)的关键技术。这项研究深入探讨了二氧化硫和多氯二苯并对二恶英和多氯二苯并呋喃(PCDD/Fs)之间潜在的竞争性吸附,并研究了 AC 层中心和边缘的吸附如何影响吸附过程。研究结果表明,使用经二氧化硫预处理(AC-A3)和 H2SO4 浸渍(AC-B2)的活性炭时,多氯二苯并对二恶英和多氯二苯并呋喃的去除率分别从 86.8% 下降到 84.2%,再进一步下降到 74.4%。多种表征方法表明,硫元素占据了活性炭内孔的活性位点,降低了其孔隙结构的可用性,尤其是对微孔结构的影响大于中孔结构。DFT 计算表明,π-π EDA 效应促进了 2,3,7,8-四氯二苯并对二恶英(2,3,7,8-TCDD)的吸附,而分散力则推动了二氧化硫的吸附。对各种含氧官能团的比较表明,有机酸酐(CO-CO)对 TCDD 具有更好的吸附选择性,而对 SO2 的吸附能力较弱。这项研究为多氯二苯并对二恶英和多氯二苯并呋喃在 AC 上的吸附机制以及烟气中硫的竞争动态提供了一个新的视角。
{"title":"Unveiling the competitive mechanism between SO2 and PCDD/Fs on activated carbon adsorption","authors":"Jianwen Lai ,&nbsp;Peiyue Wang ,&nbsp;Yunfeng Ma ,&nbsp;Zhongkang Han ,&nbsp;Heidelore Fiedler ,&nbsp;Xiaoqing Lin ,&nbsp;Xiaodong Li","doi":"10.1016/j.jece.2024.114254","DOIUrl":"10.1016/j.jece.2024.114254","url":null,"abstract":"<div><div>In municipal solid waste incineration (MSWI) plants, activated carbon (AC) adsorption is the key technique for eliminating Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from flue gases. This research thoroughly investigates the potential competitive adsorption between SO<sub>2</sub> and PCDD/Fs and examines how adsorption at the center and the edge of the AC layer impacts the adsorption process. The findings show a decline in the removal efficiency of PCDD/Fs from 86.8 % to 84.2 % and further to 74.4 % when using SO<sub>2</sub> pre-treated (AC-A3) and H<sub>2</sub>SO<sub>4</sub>-impregnated (AC-B2) activated carbon, respectively. Multiple characterization methods reveal that sulfur elements occupy active sites within the inner pores of the activated carbon, reducing the availability of its pore structure, particularly affecting microporous more than mesoporous structures. DFT calculations suggest that the π-π EDA effect facilitates the adsorption of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), whereas dispersion force drive SO<sub>2</sub> adsorption. Comparisons among various oxygenated functional groups show that the organic acid anhydride (C<img>O-C<img>O) has better adsorption selectivity toward TCDD and less adsorption to SO<sub>2</sub>. This study provides a novel perspective on the adsorption mechanisms of PCDD/Fs on AC and the competitive dynamics of sulfur in the flue gas.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114254"},"PeriodicalIF":7.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The removal of pollutants from synthetic bathroom greywater by coagulation-flocculation and filtration as a fit-for-purpose method 通过混凝-絮凝和过滤去除合成浴室中水污染物的适用方法
IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-09-25 DOI: 10.1016/j.jece.2024.114250
Andrea Szabolcsik-Izbéki , Ildikó Bodnár , István Fábián
It has been demonstrated that treated bathroom greywater (TBGW) is a useful substitute for fresh water for non-potable applications in households. Reuse of TBGW for irrigation, toilet flushing, car washing etc. offers a good opportunity to save drinking water and meet the sustainable development goals (SDGs). In this study, synthetic bathroom greywater (SBGW) was compiled in a controlled manner and used as a substitute for bathroom GW. Detailed statistical analysis also was performed to confirm the similarity between real and synthetic BGWs. SBGW is suitable for testing efficiency of applied treatment methods. It was confirmed that coagulation–flocculation with iron(III) chloride and sand filtration was the most effective method of the tested 7 systems. The best and affordable treatment combination generates good-quality treated SBGW (TSBGW) (pH = 7.54 ± 0.29, TURB = 0.54 ± 0.49 NTU, BOD5 = 21 ± 10 mgL−1, COD = 32 ± 11 mgL−1, and TOC = 12.7 ± 6.7 mgL−1) for different non-potable purposes by complying with the regulated limit values for reuse. The elemental analysis of raw, TSBGW and tap water (TW) samples by MP-AES method provided further support for safe recycling. This study leads to the conclusion that the generation of TBGW by fit-for-purpose treatment can effectively meet the circular economy goals at household level. The recycling of GW is of limited importance in the European Union (EU) and legal regulations are not available in many countries. This study provides novel support for regulating the reuse of water in Eastern European countries.
实践证明,经过处理的浴室中水(TBGW)可替代淡水用于家庭非饮用水应用。将浴室中水回用至灌溉、冲厕、洗车等用途为节约饮用水和实现可持续发展目标(SDGs)提供了良机。在本研究中,我们以受控方式编制了合成浴室中水(SBGW),并将其用作浴室中水的替代品。此外,还进行了详细的统计分析,以确认真实和合成浴室中水之间的相似性。SBGW 适用于测试应用处理方法的效率。结果表明,使用氯化铁(III)进行混凝絮凝和砂滤是所测试的 7 种系统中最有效的方法。最佳且经济实惠的处理组合可产生优质的处理后 SBGW(TSBGW)(pH = 7.54 ± 0.29,TURB = 0.54 ± 0.49 NTU,BOD5 = 21 ± 10 mgL-1,COD = 32 ± 11 mgL-1,TOC = 12.7 ± 6.7 mgL-1),用于不同的非饮用水用途,符合规定的再利用限值。采用 MP-AES 方法对原水、TSBGW 和自来水 (TW) 样品进行的元素分析进一步证明了回收利用的安全性。这项研究得出的结论是,通过适合目的的处理方法产生自来水,可有效实现家庭层面的循环经济目标。在欧盟(EU),GW 回收利用的重要性有限,许多国家都没有相关的法律法规。本研究为规范东欧国家的水再利用提供了新的支持。
{"title":"The removal of pollutants from synthetic bathroom greywater by coagulation-flocculation and filtration as a fit-for-purpose method","authors":"Andrea Szabolcsik-Izbéki ,&nbsp;Ildikó Bodnár ,&nbsp;István Fábián","doi":"10.1016/j.jece.2024.114250","DOIUrl":"10.1016/j.jece.2024.114250","url":null,"abstract":"<div><div>It has been demonstrated that treated bathroom greywater (TBGW) is a useful substitute for fresh water for non-potable applications in households. Reuse of TBGW for irrigation, toilet flushing, car washing etc. offers a good opportunity to save drinking water and meet the sustainable development goals (SDGs). In this study, synthetic bathroom greywater (SBGW) was compiled in a controlled manner and used as a substitute for bathroom GW. Detailed statistical analysis also was performed to confirm the similarity between real and synthetic BGWs. SBGW is suitable for testing efficiency of applied treatment methods. It was confirmed that coagulation–flocculation with iron(III) chloride and sand filtration was the most effective method of the tested 7 systems. The best and affordable treatment combination generates good-quality treated SBGW (TSBGW) (pH = 7.54 ± 0.29, TURB = 0.54 ± 0.49 NTU, BOD<sub>5</sub> = 21 ± 10 mgL<sup>−1</sup>, COD = 32 ± 11 mgL<sup>−1</sup>, and TOC = 12.7 ± 6.7 mgL<sup>−1</sup>) for different non-potable purposes by complying with the regulated limit values for reuse. The elemental analysis of raw, TSBGW and tap water (TW) samples by MP-AES method provided further support for safe recycling. This study leads to the conclusion that the generation of TBGW by fit-for-purpose treatment can effectively meet the circular economy goals at household level. The recycling of GW is of limited importance in the European Union (EU) and legal regulations are not available in many countries. This study provides novel support for regulating the reuse of water in Eastern European countries.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114250"},"PeriodicalIF":7.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential insights into the distribution characteristics of archaeal communities and their response to typical pollutants in the sediments and soils of deep-water reservoir 对深水水库沉积物和土壤中古生物群落分布特征及其对典型污染物反应的不同见解
IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-09-25 DOI: 10.1016/j.jece.2024.114256
Zelun Jiang , Qianli Huang , Kangping Cui , Guangwei Deng , Yuansheng Huang , Kaifeng Yu , Chen-Xuan Li , Yihan Chen
This study focused on the Fengshuba deep-water reservoir in South China, and systematically explored the distribution characteristics of archaeal communities in the sediment and soil in water level fluctuation zones and their response mechanisms to typical pollutants. The results show that Euryarchaeota and Bathyarchaeota are the dominant phyla in sediment archaeal communities, while Thaumarchaeota dominates in soil. The absolute abundance of archaea in the sediments was lower than that in the soils, but the diversity and richness of archaeal communities were higher than those in the soils. Seasonal changes affected the composition of sediment archaeal communities, and the archaeal compositions in the two habitats also showed significant differences. The neutral community model indicates that the assembly of archaeal communities in sediments is mainly governed by stochastic processes, while deterministic processes dominate in soils. The responses of archaeal communities to pollutants in the two habitats were significantly different. Among them, the carbon-nitrogen ratio and tetracycline concentration are the key factors driving seasonal changes in the archaeal communities in the sediment. Structural equation modeling further showed that the archaeal community in the sediment was positively correlated with organochlorine pesticides and antibiotics, while the archaeal community in the soil showed an opposite trend. This study provides new insights into the complexity of interactions between archaeal communities and typical contaminants in reservoir systems.
本研究以华南枫树坝深水水库为研究对象,系统探讨了水位波动区沉积物和土壤中古生物群落的分布特征及其对典型污染物的响应机制。结果表明,沉积物古菌群落的优势菌门为水螅古菌门(Euryarchaeota)和藻类古菌门(Bathyarchaeota),土壤古菌群落的优势菌门为藻类古菌门(Thaumarchaeota)。沉积物中古细菌的绝对丰度低于土壤,但古细菌群落的多样性和丰富度却高于土壤。季节变化影响了沉积物古细菌群落的组成,两种生境的古细菌组成也有显著差异。中性群落模型表明,沉积物中考古群落的形成主要受随机过程的支配,而土壤中则以确定性过程为主。两种生境中的古菌群落对污染物的反应存在显著差异。其中,碳氮比和四环素浓度是导致沉积物中古细菌群落季节性变化的关键因素。结构方程模型进一步表明,沉积物中的古菌群落与有机氯农药和抗生素呈正相关,而土壤中的古菌群落则呈现相反的趋势。这项研究为了解水库系统中古生物群落与典型污染物之间相互作用的复杂性提供了新的视角。
{"title":"Differential insights into the distribution characteristics of archaeal communities and their response to typical pollutants in the sediments and soils of deep-water reservoir","authors":"Zelun Jiang ,&nbsp;Qianli Huang ,&nbsp;Kangping Cui ,&nbsp;Guangwei Deng ,&nbsp;Yuansheng Huang ,&nbsp;Kaifeng Yu ,&nbsp;Chen-Xuan Li ,&nbsp;Yihan Chen","doi":"10.1016/j.jece.2024.114256","DOIUrl":"10.1016/j.jece.2024.114256","url":null,"abstract":"<div><div>This study focused on the Fengshuba deep-water reservoir in South China, and systematically explored the distribution characteristics of archaeal communities in the sediment and soil in water level fluctuation zones and their response mechanisms to typical pollutants. The results show that <em>Euryarchaeota</em> and <em>Bathyarchaeota</em> are the dominant phyla in sediment archaeal communities, while <em>Thaumarchaeota</em> dominates in soil. The absolute abundance of archaea in the sediments was lower than that in the soils, but the diversity and richness of archaeal communities were higher than those in the soils. Seasonal changes affected the composition of sediment archaeal communities, and the archaeal compositions in the two habitats also showed significant differences. The neutral community model indicates that the assembly of archaeal communities in sediments is mainly governed by stochastic processes, while deterministic processes dominate in soils. The responses of archaeal communities to pollutants in the two habitats were significantly different. Among them, the carbon-nitrogen ratio and tetracycline concentration are the key factors driving seasonal changes in the archaeal communities in the sediment. Structural equation modeling further showed that the archaeal community in the sediment was positively correlated with organochlorine pesticides and antibiotics, while the archaeal community in the soil showed an opposite trend. This study provides new insights into the complexity of interactions between archaeal communities and typical contaminants in reservoir systems.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114256"},"PeriodicalIF":7.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of peroxymonosulfate by boron nitride loaded with Co mixed oxides and boron vacancy for ultrafast removal of drugs in surface water 氮化硼负载钴混合氧化物和硼空位活化过一硫酸盐,超快去除地表水中的药物
IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-09-24 DOI: 10.1016/j.jece.2024.114241
Hongda Zhang , Yunzhe Zhao , Chenxu Wang , Baolin Liu , Yong Yu
The mediation of vacancy in catalysts is crucial for the enhancement of oxidant activation. Here the boron nitride loaded with Co mixed oxides (Co2O3-CoO) and boron vacancy (Bv) catalyst (Co/BN-X) was prepared to degrade sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS). Under dark condition, Co/BN-3+PMS system can completely remove SMX in surface water within 15 min, and its removal efficiency constant (0.5154 min−1) was 4.0 and 6.7 times greater than those of Co/BN-2+PMS (0.1284 min−1) and Co/BN-1+PMS (0.0771 min−1), respectively. The system showed excellent performance in different influencing factors and cyclic experiments, and exhibited good practical application potential in secondary effluent. Electron paramagnetic resonance, radical quenching and electrochemical tests certified that singlet oxygen (1O2) was the major active species, followed by •O2, and SO4•–, further elaborating the activation pathway of PMS in Co/BN-3+PMS system. The density functional theory (DFT) calculations confirmed that CoO and PMS-O2 sites were the main reaction sites, and the existence of Bv reduced the adsorption energy of Co/BN-3 for PMS. This work reveals the synergistic effect between Co oxide sites and Bv on the catalyst surface and offers a potential modification method to accelerate Fenton-like reaction.
催化剂中空位的调解对于提高氧化剂活化至关重要。本文制备了负载钴混合氧化物(Co2O3-CoO)和硼空位(Bv)的氮化硼催化剂(Co/BN-X),通过活化过一硫酸盐(PMS)来降解磺胺甲噁唑(SMX)。在黑暗条件下,Co/BN-3+PMS 系统能在 15 分钟内完全去除地表水中的 SMX,其去除效率常数(0.5154 min-1)分别是 Co/BN-2+PMS (0.1284 min-1)和 Co/BN-1+PMS (0.0771 min-1)的 4.0 倍和 6.7 倍。该系统在不同影响因素和循环实验中均表现出优异的性能,在二级污水中具有良好的实际应用潜力。电子顺磁共振、自由基淬灭和电化学测试证明,单线态氧(1O2)是主要的活性物种,其次是-O2-和SO4--,进一步阐明了Co/BN-3+PMS体系中PMS的活化途径。密度泛函理论(DFT)计算证实,CoO 和 PMS-O2 位点是主要的反应位点,Bv 的存在降低了 Co/BN-3 对 PMS 的吸附能。这项研究揭示了催化剂表面 Co 氧化位点和 Bv 之间的协同效应,为加速 Fenton 类反应提供了一种潜在的改性方法。
{"title":"Activation of peroxymonosulfate by boron nitride loaded with Co mixed oxides and boron vacancy for ultrafast removal of drugs in surface water","authors":"Hongda Zhang ,&nbsp;Yunzhe Zhao ,&nbsp;Chenxu Wang ,&nbsp;Baolin Liu ,&nbsp;Yong Yu","doi":"10.1016/j.jece.2024.114241","DOIUrl":"10.1016/j.jece.2024.114241","url":null,"abstract":"<div><div>The mediation of vacancy in catalysts is crucial for the enhancement of oxidant activation. Here the boron nitride loaded with Co mixed oxides (Co<sub>2</sub>O<sub>3</sub>-CoO) and boron vacancy (B<sub>v</sub>) catalyst (Co/BN-X) was prepared to degrade sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS). Under dark condition, Co/BN-3+PMS system can completely remove SMX in surface water within 15 min, and its removal efficiency constant (0.5154 min<sup>−1</sup>) was 4.0 and 6.7 times greater than those of Co/BN-2+PMS (0.1284 min<sup>−1</sup>) and Co/BN-1+PMS (0.0771 min<sup>−1</sup>), respectively. The system showed excellent performance in different influencing factors and cyclic experiments, and exhibited good practical application potential in secondary effluent. Electron paramagnetic resonance, radical quenching and electrochemical tests certified that singlet oxygen (<sup>1</sup>O<sub>2</sub>) was the major active species, followed by •O<sub>2</sub><sup>–</sup>, and SO<sub>4</sub><sup>•–</sup>, further elaborating the activation pathway of PMS in Co/BN-3+PMS system. The density functional theory (DFT) calculations confirmed that CoO and PMS-O<sub>2</sub> sites were the main reaction sites, and the existence of B<sub>v</sub> reduced the adsorption energy of Co/BN-3 for PMS. This work reveals the synergistic effect between Co oxide sites and B<sub>v</sub> on the catalyst surface and offers a potential modification method to accelerate Fenton-like reaction.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114241"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Candle soot-modified rPET electrospun nanofibrous membrane for separating on-demand oil-water mixture and emulsions 用于按需分离油水混合物和乳液的烛烟改性 rPET 电纺纳米纤维膜
IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-09-24 DOI: 10.1016/j.jece.2024.114235
Panchan Dansawad , Lixia Cao , Shengyong Zhao , Haigang Gao , Muhammad Sheraz , Cong Xue , Yanxiang Li , Wangliang Li
The CS-rPET electrospun nanofibrous membrane is fabricated from recycled polyethylene terephthalate (rPET) through electrospinning and enhanced with candle soot (CS) to separate oil-water mixtures and emulsions when pre-wetted by oil or water. Using rPET polymers and CS waste reduces the environmental impact of plastic bottle waste and improves its value. The CS-rPET electrospun nanofibrous membrane showed excellent separation performance in oil-water mixtures, achieving over 81.18 % and 71.38 % of separation efficiency through 40 separation cycles after pre-wetting by oil and after washing with ethanol and pre-wetting by water, respectively. The membrane maintained high separation performance after being pre-wetted by oil for water-in-oil emulsions with efficiencies above 99 % and flux exceeding 12,200 L m−2 h−1. Similarly, the efficiencies remained above 98 % for oil-in-water emulsions after being pre-wetted by water, with a flux over 8000 L m−2 h−1. Additionally, the CS-rPET electrospun nanofibrous membrane exhibited high separation efficiencies above 97 % and flux over 14,000 L m−2 h−1 after pre-wetting by oil and 7700 L m−2 h−1 after pre-wetting by water in harsh environmental conditions. Its adaptability of switchable wettability on-demand after pre-wetting by oil or water highlights its potential for a wide range of challenging oil-water separation applications. However, multiple separation cycles, separation efficiency and flux were reduced, indicating the necessity to improve the membrane's efficiency and reduce the chance of water accumulation in multicycle separation.
CS-rPET 电纺丝纳米纤维膜是用回收的聚对苯二甲酸乙二酯(rPET)通过电纺丝制成的,并用蜡烛烟灰(CS)增强了其分离油水混合物和乳化液的能力。使用 rPET 聚合物和 CS 废弃物可减少塑料瓶废弃物对环境的影响,并提高其价值。CS-rPET 电纺纳米纤维膜在油水混合物中表现出优异的分离性能,在被油预湿、乙醇洗涤和水预湿后的 40 个分离循环中,分离效率分别达到 81.18% 和 71.38%。对于油包水型乳剂,该膜在被油预湿后仍能保持较高的分离性能,分离效率超过 99%,通量超过 12,200 升 m-2 h-1。同样,水包油型乳液在被水预湿后,分离效率仍保持在 98% 以上,通量超过 8000 升/米-2 小时-1。此外,在恶劣的环境条件下,CS-rPET 电纺纳米纤维膜在被油预湿后的分离效率高达 97 % 以上,通量超过 14,000 L m-2 h-1,在被水预湿后的通量超过 7700 L m-2 h-1。在油或水预润湿后,其可按需切换润湿性的适应性突显了其在各种具有挑战性的油水分离应用中的潜力。然而,多次分离循环后,分离效率和通量都有所降低,这表明有必要提高膜的效率,并减少多循环分离过程中的积水机会。
{"title":"Candle soot-modified rPET electrospun nanofibrous membrane for separating on-demand oil-water mixture and emulsions","authors":"Panchan Dansawad ,&nbsp;Lixia Cao ,&nbsp;Shengyong Zhao ,&nbsp;Haigang Gao ,&nbsp;Muhammad Sheraz ,&nbsp;Cong Xue ,&nbsp;Yanxiang Li ,&nbsp;Wangliang Li","doi":"10.1016/j.jece.2024.114235","DOIUrl":"10.1016/j.jece.2024.114235","url":null,"abstract":"<div><div>The CS-rPET electrospun nanofibrous membrane is fabricated from recycled polyethylene terephthalate (rPET) through electrospinning and enhanced with candle soot (CS) to separate oil-water mixtures and emulsions when pre-wetted by oil or water. Using rPET polymers and CS waste reduces the environmental impact of plastic bottle waste and improves its value. The CS-rPET electrospun nanofibrous membrane showed excellent separation performance in oil-water mixtures, achieving over 81.18 % and 71.38 % of separation efficiency through 40 separation cycles after pre-wetting by oil and after washing with ethanol and pre-wetting by water, respectively. The membrane maintained high separation performance after being pre-wetted by oil for water-in-oil emulsions with efficiencies above 99 % and flux exceeding 12,200 L m<sup>−2</sup> h<sup>−1</sup>. Similarly, the efficiencies remained above 98 % for oil-in-water emulsions after being pre-wetted by water, with a flux over 8000 L m<sup>−2</sup> h<sup>−1</sup>. Additionally, the CS-rPET electrospun nanofibrous membrane exhibited high separation efficiencies above 97 % and flux over 14,000 L m<sup>−2</sup> h<sup>−1</sup> after pre-wetting by oil and 7700 L m<sup>−2</sup> h<sup>−1</sup> after pre-wetting by water in harsh environmental conditions. Its adaptability of switchable wettability on-demand after pre-wetting by oil or water highlights its potential for a wide range of challenging oil-water separation applications. However, multiple separation cycles, separation efficiency and flux were reduced, indicating the necessity to improve the membrane's efficiency and reduce the chance of water accumulation in multicycle separation.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114235"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orange carbon dot nanomaterial as optical/visual sensing platforms for morin and a biomass booster for plant seedlings 橙色碳点纳米材料作为莫林的光学/视觉传感平台和植物幼苗的生物量促进剂
IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-09-24 DOI: 10.1016/j.jece.2024.114244
Zhenhua Yang , Xintong Yang , Quanxi Zhang , Xianyun Zheng , Yuexia Zhang , Chuan Dong
The precise regulation of morin levels in both diet and medicine is essential to evaluate the nutritional quality of food. Furthermore, plant yield is attracting considerable attention in the agricultural and herbal industries. Accordingly, the sensing platforms based on orange S and N co-doped carbon dots (SNCDs) were developed to detect morin through photoluminescence signals in aqueous solutions, solid matrices, and zebrafish. These sensing platforms exhibited excellent selectivity toward morin and possessed good anti-interference abilities, achieving limits of detection with 0.31 and 0.19 μM in the aqueous solution and solid state, respectively. Furthermore, the application of the as-prepared SNCDs at low concentration enhanced plant growth (using soybean seedlings as a model). The biological effects may be attributed to the promotion of light reaction and excess light reaction-induced injury. These findings offer novel insights into potential applications of SNCDs in sustainable agriculture and environmental monitoring.
要评估食物的营养质量,就必须精确调节饮食和药物中的吗啉含量。此外,植物产量在农业和草药产业中也备受关注。因此,我们开发了基于橙色 S 和 N 共掺杂碳点(SNCDs)的传感平台,在水溶液、固体基质和斑马鱼中通过光致发光信号检测吗啉。这些传感平台对吗啉具有极佳的选择性和良好的抗干扰能力,在水溶液和固体状态下的检测限分别为 0.31 和 0.19 μM。此外,低浓度施用制备的 SNCD 还能促进植物生长(以大豆幼苗为模型)。这些生物效应可能是由于促进了光反应和过量光反应引起的损伤。这些发现为 SNCDs 在可持续农业和环境监测领域的潜在应用提供了新的见解。
{"title":"Orange carbon dot nanomaterial as optical/visual sensing platforms for morin and a biomass booster for plant seedlings","authors":"Zhenhua Yang ,&nbsp;Xintong Yang ,&nbsp;Quanxi Zhang ,&nbsp;Xianyun Zheng ,&nbsp;Yuexia Zhang ,&nbsp;Chuan Dong","doi":"10.1016/j.jece.2024.114244","DOIUrl":"10.1016/j.jece.2024.114244","url":null,"abstract":"<div><div>The precise regulation of morin levels in both diet and medicine is essential to evaluate the nutritional quality of food. Furthermore, plant yield is attracting considerable attention in the agricultural and herbal industries. Accordingly, the sensing platforms based on orange S and N co-doped carbon dots (SNCDs) were developed to detect morin through photoluminescence signals in aqueous solutions, solid matrices, and zebrafish. These sensing platforms exhibited excellent selectivity toward morin and possessed good anti-interference abilities, achieving limits of detection with 0.31 and 0.19 μM in the aqueous solution and solid state, respectively. Furthermore, the application of the as-prepared SNCDs at low concentration enhanced plant growth (using soybean seedlings as a model). The biological effects may be attributed to the promotion of light reaction and excess light reaction-induced injury. These findings offer novel insights into potential applications of SNCDs in sustainable agriculture and environmental monitoring.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114244"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron transfer mechanism mediated MOF-derived nanoflowers catalyst for promoting peroxymonosulfate activation and ciprofloxacin degradation 电子传递机制介导的 MOF 衍生纳米花催化剂促进过一硫酸盐活化和环丙沙星降解
IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-09-24 DOI: 10.1016/j.jece.2024.114239
Hao Li , Xiangyi Gong , Hua Tong , Fu Feng , Dajung Ren
Three MOF-derived nanoparticles were synthesized by manganese doping and calcination of ZIF-67 precursor. The surface physicochemical properties of these materials were compared using SEM, TEM, XRD, FTIR and BET analyses. Among them, cobalt-manganese oxide nanoflowers (CoMn2O4-NFs) exhibited excellent catalytic performance in the degradation of ciprofloxacin (CIP) by activated peroxymonosulfate (PMS), achieving 100 % removal within 30 minutes with a rate constant (kobs) of 0.2960 min−1. The catalytic mechanism was elucidated by quenching experiments, EPR, electrochemical analysis and X-ray photoelectron spectroscopy (XPS). The results show that the non-radical oxidation process was initiated mainly by direct electron transfer and 1O2 (∼80 %), with a small contribution from the radical SO4·- (∼20 %). The nano-confined structure on the surface of CoMn2O4-NFs makes it easy to combine with PMS to form CoMn2O4-NFs/PMS* complexes, which directly capture electrons from CIP to complete the degradation process. The double redox cycle of cobalt-manganese ions and oxygen vacancies on CoMn2O4-NFs could accelerate the electron transfer process. CoMn2O4-NFs maintained high removal efficiency (>99 %) over a wide pH range (3−11), with minimal interference from most environmental anions, demonstrating strong stability and interference resistance. This study provides insights into using metal-based materials for oxidative degradation of organic pollutants via non-radical pathways.
通过对 ZIF-67 前驱体进行锰掺杂和煅烧,合成了三种 MOF 衍生纳米粒子。使用 SEM、TEM、XRD、FTIR 和 BET 分析比较了这些材料的表面理化性质。其中,钴锰氧化物纳米流体(CoMn2O4-NFs)在活化过一硫酸盐(PMS)降解环丙沙星(CIP)的过程中表现出优异的催化性能,30 分钟内的去除率达到 100%,速率常数(kobs)为 0.2960 min-1。通过淬灭实验、EPR、电化学分析和 X 射线光电子能谱(XPS)阐明了催化机理。结果表明,非自由基氧化过程主要由直接电子传递和 1O2 (∼80%)引发,自由基 SO4-- (∼20%)的贡献较小。CoMn2O4-NFs 表面的纳米致密结构使其很容易与 PMS 结合形成 CoMn2O4-NFs/PMS* 复合物,直接从 CIP 中捕获电子完成降解过程。CoMn2O4-NFs 上钴锰离子和氧空位的双重氧化还原循环可加速电子转移过程。CoMn2O4-NFs 在较宽的 pH 值范围(3-11)内都能保持较高的去除率(99%),且受大多数环境阴离子的干扰极小,表现出较强的稳定性和抗干扰性。这项研究为利用金属基材料通过非自由基途径氧化降解有机污染物提供了启示。
{"title":"Electron transfer mechanism mediated MOF-derived nanoflowers catalyst for promoting peroxymonosulfate activation and ciprofloxacin degradation","authors":"Hao Li ,&nbsp;Xiangyi Gong ,&nbsp;Hua Tong ,&nbsp;Fu Feng ,&nbsp;Dajung Ren","doi":"10.1016/j.jece.2024.114239","DOIUrl":"10.1016/j.jece.2024.114239","url":null,"abstract":"<div><div>Three MOF-derived nanoparticles were synthesized by manganese doping and calcination of ZIF-67 precursor. The surface physicochemical properties of these materials were compared using SEM, TEM, XRD, FTIR and BET analyses. Among them, cobalt-manganese oxide nanoflowers (CoMn<sub>2</sub>O<sub>4</sub>-NFs) exhibited excellent catalytic performance in the degradation of ciprofloxacin (CIP) by activated peroxymonosulfate (PMS), achieving 100 % removal within 30 minutes with a rate constant (k<sub>obs</sub>) of 0.2960 min<sup>−1</sup>. The catalytic mechanism was elucidated by quenching experiments, EPR, electrochemical analysis and X-ray photoelectron spectroscopy (XPS). The results show that the non-radical oxidation process was initiated mainly by direct electron transfer and <sup>1</sup>O<sub>2</sub> (∼80 %), with a small contribution from the radical SO<sub>4</sub><sup>·-</sup> (∼20 %). The nano-confined structure on the surface of CoMn<sub>2</sub>O<sub>4</sub>-NFs makes it easy to combine with PMS to form CoMn<sub>2</sub>O<sub>4</sub>-NFs/PMS* complexes, which directly capture electrons from CIP to complete the degradation process. The double redox cycle of cobalt-manganese ions and oxygen vacancies on CoMn<sub>2</sub>O<sub>4</sub>-NFs could accelerate the electron transfer process. CoMn<sub>2</sub>O<sub>4</sub>-NFs maintained high removal efficiency (&gt;99 %) over a wide pH range (3−11), with minimal interference from most environmental anions, demonstrating strong stability and interference resistance. This study provides insights into using metal-based materials for oxidative degradation of organic pollutants via non-radical pathways.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114239"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CFD modeling of CO2 capture in a non-isothermal circulating fluidized bed riser using K2CO3 solid sorbent 使用 K2CO3 固体吸附剂在非等温循环流化床立管中捕获二氧化碳的 CFD 建模
IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-09-24 DOI: 10.1016/j.jece.2024.114247
Amolwan Sornvichai , Muhammad Adnan , Nouman Ahmad , Ratchanon Piemjaiswang , Pornpote Piumsomboon , Benjapon Chalermsinsuwan
The study investigates the use of potassium-based solid sorbents for CO2 capture in a circulating fluidized bed reactor (CFBR), a promising technology in various industries. The numerical simulations were employed to explore the process of CO2 capture in a three-dimensional (3D) CFBR using K2CO3 adsorbents with a reactive multiphase Eulerian-Eulerian approach. After successfully validating the model for CO2 removal concentration with the experimental data, the key parameters like cooling water temperature, flow rate, distance between cooling stages, diameter, and configuration of cooling tubes were analyzed to optimize K2CO3 performance for CO2 adsorption. Results show adjustments to these parameters can enhance CO2 removal rates. Lowering cooling water temperature improves K2CO3 performance but increases energy consumption. Increasing the cooling water flow rate slightly boosts CO2 removal efficiency. Changes in cooling stage gaps have minimal impact on CO2 removal, but larger cooling tube diameters enhance CO2 removal rates by increasing heat transfer surface area. Different riser configurations affect CO2 removal, with staggered cooling tube arrangements showing superior particle distribution and CO2 removal efficiency. Overall, decreasing temperature improves K2CO3 performance by favorably shifting reaction equilibrium.
本研究探讨了在循环流化床反应器(CFBR)中使用钾基固体吸附剂捕集二氧化碳的问题,这是一项在各行各业都很有前景的技术。研究采用欧拉-欧拉反应多相法,通过数值模拟探索了在使用 K2CO3 吸附剂的三维 CFBR 中捕获二氧化碳的过程。在根据实验数据成功验证了二氧化碳去除浓度模型后,分析了冷却水温度、流速、冷却级之间的距离、冷却管直径和配置等关键参数,以优化 K2CO3 吸附二氧化碳的性能。结果表明,调整这些参数可以提高二氧化碳去除率。降低冷却水温度可提高 K2CO3 的性能,但会增加能耗。提高冷却水流速可略微提高二氧化碳去除率。冷却级间隙的变化对二氧化碳去除率的影响很小,但较大的冷却管直径可通过增加传热表面积来提高二氧化碳去除率。不同的立管配置会影响二氧化碳的去除率,交错布置的冷却管显示出更佳的颗粒分布和二氧化碳去除效率。总体而言,降低温度可通过有利地改变反应平衡来改善 K2CO3 的性能。
{"title":"CFD modeling of CO2 capture in a non-isothermal circulating fluidized bed riser using K2CO3 solid sorbent","authors":"Amolwan Sornvichai ,&nbsp;Muhammad Adnan ,&nbsp;Nouman Ahmad ,&nbsp;Ratchanon Piemjaiswang ,&nbsp;Pornpote Piumsomboon ,&nbsp;Benjapon Chalermsinsuwan","doi":"10.1016/j.jece.2024.114247","DOIUrl":"10.1016/j.jece.2024.114247","url":null,"abstract":"<div><div>The study investigates the use of potassium-based solid sorbents for CO<sub>2</sub> capture in a circulating fluidized bed reactor (CFBR), a promising technology in various industries. The numerical simulations were employed to explore the process of CO<sub>2</sub> capture in a three-dimensional (3D) CFBR using K<sub>2</sub>CO<sub>3</sub> adsorbents with a reactive multiphase Eulerian-Eulerian approach. After successfully validating the model for CO<sub>2</sub> removal concentration with the experimental data, the key parameters like cooling water temperature, flow rate, distance between cooling stages, diameter, and configuration of cooling tubes were analyzed to optimize K<sub>2</sub>CO<sub>3</sub> performance for CO<sub>2</sub> adsorption. Results show adjustments to these parameters can enhance CO<sub>2</sub> removal rates. Lowering cooling water temperature improves K<sub>2</sub>CO<sub>3</sub> performance but increases energy consumption. Increasing the cooling water flow rate slightly boosts CO<sub>2</sub> removal efficiency. Changes in cooling stage gaps have minimal impact on CO<sub>2</sub> removal, but larger cooling tube diameters enhance CO<sub>2</sub> removal rates by increasing heat transfer surface area. Different riser configurations affect CO<sub>2</sub> removal, with staggered cooling tube arrangements showing superior particle distribution and CO<sub>2</sub> removal efficiency. Overall, decreasing temperature improves K<sub>2</sub>CO<sub>3</sub> performance by favorably shifting reaction equilibrium.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114247"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly sensitive and selective L-lactate monitoring in complex matrices with a ratiometric fluorescent sensor RhB@Zn-MOF 利用比率荧光传感器 RhB@Zn-MOF 监测复杂基质中的高灵敏度和高选择性 L-乳酸盐
IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-09-24 DOI: 10.1016/j.jece.2024.114233
Bo Jing, Xinke Xu, Jingze Wang, Changyan Sun, Wenjun Li, Zhidong Chang
L-lactate is an essential biomarker in clinical diagnostics and food quality assessment. This study introduces a novel ratiometric fluorescence sensor, RhB@Zn-MOF, which was specifically designed for the sensitive and selective detection of L-lactate. Through the strategic incorporation of Rhodamine B (RhB) into Zn-MOF, RhB@Zn-MOF was synthesized, exhibiting dual-emission properties and could effectively distinguish L-lactate in complex biological and food matrices such as milk and sweat based on the competitive absorption mechanism. Notably, the sensor achieves a low detection limit of 0.091 μM and demonstrates excellent stability and reproducibility in varied conditions. Furthermore, the integration of the sensor with smartphone technology enables rapid, real-time analysis, showcasing potential applications in sports medicine, clinical environments, and the food industry.
在临床诊断和食品质量评估中,L-乳酸盐是一种重要的生物标志物。本研究介绍了一种新型比率荧光传感器 RhB@Zn-MOF,该传感器专门设计用于灵敏、选择性地检测 L-乳酸盐。通过在 Zn-MOF 中策略性地加入罗丹明 B (RhB),合成了 RhB@Zn-MOF,该传感器具有双发射特性,基于竞争性吸收机制,可有效区分牛奶和汗液等复杂生物和食品基质中的 L-乳酸盐。值得注意的是,该传感器实现了 0.091 μM 的低检测限,并在不同条件下表现出优异的稳定性和重现性。此外,该传感器与智能手机技术的整合实现了快速、实时的分析,展示了在运动医学、临床环境和食品工业中的潜在应用。
{"title":"Highly sensitive and selective L-lactate monitoring in complex matrices with a ratiometric fluorescent sensor RhB@Zn-MOF","authors":"Bo Jing,&nbsp;Xinke Xu,&nbsp;Jingze Wang,&nbsp;Changyan Sun,&nbsp;Wenjun Li,&nbsp;Zhidong Chang","doi":"10.1016/j.jece.2024.114233","DOIUrl":"10.1016/j.jece.2024.114233","url":null,"abstract":"<div><div>L-lactate is an essential biomarker in clinical diagnostics and food quality assessment. This study introduces a novel ratiometric fluorescence sensor, RhB@Zn-MOF, which was specifically designed for the sensitive and selective detection of L-lactate. Through the strategic incorporation of Rhodamine B (RhB) into Zn-MOF, RhB@Zn-MOF was synthesized, exhibiting dual-emission properties and could effectively distinguish L-lactate in complex biological and food matrices such as milk and sweat based on the competitive absorption mechanism. Notably, the sensor achieves a low detection limit of 0.091 μM and demonstrates excellent stability and reproducibility in varied conditions. Furthermore, the integration of the sensor with smartphone technology enables rapid, real-time analysis, showcasing potential applications in sports medicine, clinical environments, and the food industry.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114233"},"PeriodicalIF":7.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Environmental Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1