首页 > 最新文献

Journal of Fungi最新文献

英文 中文
Regulation of Conidiation and Aflatoxin B1 Biosynthesis by a Blue Light Sensor LreA in Aspergillus flavus 黄曲霉中的蓝光传感器 LreA 对萌发和黄曲霉毒素 B1 合成的调控
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-13 DOI: 10.3390/jof10090650
Kunzhi Jia, Yipu Jia, Qianhua Zeng, Zhaoqi Yan, Shihua Wang
Conidia are important for the dispersal of Aspergillus flavus, which usually generates aflatoxin B1 (AFB1) and poses a threat to the safety of agricultural food. The development of conidia is usually susceptible to changes in environmental conditions, such as nutritional status and light. However, how the light signal is involved in the conidiation in A. flavus is still unknown. In this study, LreA was identified to respond to blue light and mediate the promotion of conidiation in A. flavus, which is related to the central development pathway. At the same time, blue light inhibited the biosynthesis of AFB1, which was mediated by LreA and attributed to the transcriptional regulation of aflR and aflS expression. Our findings disclosed the function and mechanism of the blue light sensor LreA in regulating conidiation and AFB1 biosynthesis, which is beneficial for the prevention and control of A. flavus and mycotoxins.
分生孢子对黄曲霉菌的传播非常重要,黄曲霉菌通常会产生黄曲霉毒素 B1(AFB1),对农业食品安全构成威胁。分生孢子的发育通常易受营养状况和光照等环境条件变化的影响。然而,光信号如何参与黄曲霉的分生仍是未知数。本研究发现,LreA 能对蓝光做出反应,并介导黄曲霉分生孢子的发生,这与黄曲霉的中心发育途径有关。同时,蓝光抑制了 AFB1 的生物合成,这也是由 LreA 介导的,并归因于 aflR 和 aflS 表达的转录调控。我们的研究结果揭示了蓝光传感器LreA调控分生和AFB1生物合成的功能和机制,有利于黄曲霉和霉菌毒素的防控。
{"title":"Regulation of Conidiation and Aflatoxin B1 Biosynthesis by a Blue Light Sensor LreA in Aspergillus flavus","authors":"Kunzhi Jia, Yipu Jia, Qianhua Zeng, Zhaoqi Yan, Shihua Wang","doi":"10.3390/jof10090650","DOIUrl":"https://doi.org/10.3390/jof10090650","url":null,"abstract":"Conidia are important for the dispersal of Aspergillus flavus, which usually generates aflatoxin B1 (AFB1) and poses a threat to the safety of agricultural food. The development of conidia is usually susceptible to changes in environmental conditions, such as nutritional status and light. However, how the light signal is involved in the conidiation in A. flavus is still unknown. In this study, LreA was identified to respond to blue light and mediate the promotion of conidiation in A. flavus, which is related to the central development pathway. At the same time, blue light inhibited the biosynthesis of AFB1, which was mediated by LreA and attributed to the transcriptional regulation of aflR and aflS expression. Our findings disclosed the function and mechanism of the blue light sensor LreA in regulating conidiation and AFB1 biosynthesis, which is beneficial for the prevention and control of A. flavus and mycotoxins.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"124 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Analysis of Natural Products Biosynthetic Diversity Encoded in Fungal Genomes 真菌基因组中编码的天然产品生物合成多样性的全球分析
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-13 DOI: 10.3390/jof10090653
Shu Zhang, Guohui Shi, Xinran Xu, Xu Guo, Sijia Li, Zhiyuan Li, Qi Wu, Wen-Bing Yin
Fungal secondary metabolites (SMs) represent an invaluable source of therapeutic drugs. Genomics-based approaches to SM discovery have revealed a vast and largely untapped biosynthetic potential within fungal genomes. Here, we used the publicly available fungal genome sequences from the NCBI public database, as well as tools such as antiSMASH, BIG-SLiCE, etc., to analyze a total of 11,598 fungal genomes, identifying 293,926 biosynthetic gene clusters (BGCs), which were subsequently categorized into 26,825 gene cluster families (GCFs). It was discovered that only a tiny fraction, less than 1%, of these GCFs could be mapped to known natural products (NPs). Some GCFs that only contain a single BGC internally are crucial for the biodiversity of fungal biosynthesis. Evident patterns emerged from our analysis, revealing popular taxa as prominent sources of both actual and potential biosynthetic diversity. Our study also suggests that the genus rank distribution of GCF is generally consistent with NP diversity. It is noteworthy that genera Xylaria, Hypoxylon, Colletotrichum, Diaporthe, Nemania, and Calonectria appear to possess a higher potential for SM synthesis. In addition, 7213 BGCs match possible known compound structures, and homologous gene clusters of well-known drugs can be located in different genera, facilitating the development of derivatives that share structural similarity to these drugs and may potentially possess similar biological activity. Our study demonstrated the various types of fungi with mining potential, assisting researchers in prioritizing their research efforts and avoiding duplicate mining of known resources to further explore fungal NP producers.
真菌次生代谢物(SMs)是治疗药物的宝贵来源。基于基因组学的次生代谢物发现方法揭示了真菌基因组中巨大且基本未开发的生物合成潜力。在这里,我们利用 NCBI 公共数据库中公开的真菌基因组序列,以及 antiSMASH、BIG-SLiCE 等工具,分析了总共 11,598 个真菌基因组,识别出 293,926 个生物合成基因簇(BGC),随后将其归类为 26,825 个基因簇家族(GCF)。研究发现,在这些基因簇家族中,只有很小一部分(不到 1%)能与已知的天然产物(NPs)进行映射。一些内部只包含一个BGC的GCF对真菌生物合成的生物多样性至关重要。我们的分析得出了明显的模式,揭示了热门类群是实际和潜在生物合成多样性的主要来源。我们的研究还表明,GCF 的属级分布与 NP 多样性基本一致。值得注意的是,Xylaria、Hypoxylon、Colletotrichum、Diaporthe、Nemania 和 Calonectria 属似乎具有较高的 SM 合成潜力。此外,有 7213 个 BGC 与可能的已知化合物结构相匹配,而且知名药物的同源基因簇可能位于不同的菌属中,这有助于开发与这些药物结构相似并可能具有类似生物活性的衍生物。我们的研究展示了具有挖掘潜力的各类真菌,有助于研究人员确定研究工作的优先次序,避免重复挖掘已知资源,进一步探索真菌 NP 生产者。
{"title":"Global Analysis of Natural Products Biosynthetic Diversity Encoded in Fungal Genomes","authors":"Shu Zhang, Guohui Shi, Xinran Xu, Xu Guo, Sijia Li, Zhiyuan Li, Qi Wu, Wen-Bing Yin","doi":"10.3390/jof10090653","DOIUrl":"https://doi.org/10.3390/jof10090653","url":null,"abstract":"Fungal secondary metabolites (SMs) represent an invaluable source of therapeutic drugs. Genomics-based approaches to SM discovery have revealed a vast and largely untapped biosynthetic potential within fungal genomes. Here, we used the publicly available fungal genome sequences from the NCBI public database, as well as tools such as antiSMASH, BIG-SLiCE, etc., to analyze a total of 11,598 fungal genomes, identifying 293,926 biosynthetic gene clusters (BGCs), which were subsequently categorized into 26,825 gene cluster families (GCFs). It was discovered that only a tiny fraction, less than 1%, of these GCFs could be mapped to known natural products (NPs). Some GCFs that only contain a single BGC internally are crucial for the biodiversity of fungal biosynthesis. Evident patterns emerged from our analysis, revealing popular taxa as prominent sources of both actual and potential biosynthetic diversity. Our study also suggests that the genus rank distribution of GCF is generally consistent with NP diversity. It is noteworthy that genera Xylaria, Hypoxylon, Colletotrichum, Diaporthe, Nemania, and Calonectria appear to possess a higher potential for SM synthesis. In addition, 7213 BGCs match possible known compound structures, and homologous gene clusters of well-known drugs can be located in different genera, facilitating the development of derivatives that share structural similarity to these drugs and may potentially possess similar biological activity. Our study demonstrated the various types of fungi with mining potential, assisting researchers in prioritizing their research efforts and avoiding duplicate mining of known resources to further explore fungal NP producers.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"23 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Myosin-V Myo51 and Alpha-Actinin Ain1p Cooperate during Contractile Ring Assembly and Disassembly in Fission Yeast Cytokinesis 在裂殖酵母细胞分裂过程中,肌球蛋白-V Myo51和α-肌动蛋白Ain1p在收缩环的组装和解体过程中相互配合
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-12 DOI: 10.3390/jof10090647
Zoe L. Tyree, Kimberly Bellingham-Johnstun, Jessica Martinez-Baird, Caroline Laplante
Cytokinesis is driven in part by the constriction of a ring of actin filaments, myosin motors and other proteins. In fission yeast, three myosins contribute to cytokinesis including a Myosin-V Myo51. As Myosin-Vs typically carry cargo along actin filaments, the role of Myo51 in cytokinesis remains unclear. The previous work suggests that Myo51 may crosslink actin filaments. We hypothesized that if Myo51 crosslinks actin filaments, cells carrying double deletions of ain1, which encodes the crosslinker alpha-actinin, and myo51 (∆ain1 ∆myo51 cells) will exhibit more severe cytokinesis phenotypes than cells with the single ∆ain1 mutation. Contrary to our expectations, we found that the loss of Myo51 in ∆ain1 cells partially rescued the severity of the node clumping phenotype measured in ∆ain1 cells. Furthermore, we describe a normal process of contractile ring “shedding”, the appearance of fragments of ring material extending away from the contractile ring along the ingressing septum that occurs in the second half of constriction. We measured that ∆ain1 ∆myo51 cells exhibit premature and exaggerated shedding. Our work suggests that Myo51 is not a simple actin filament crosslinker. Instead, a role in effective node motion better recapitulates its function during ring assembly and disassembly.
细胞分裂的部分驱动力来自于肌动蛋白丝、肌球蛋白马达和其他蛋白质环的收缩。在裂殖酵母中,有三种肌球蛋白参与了细胞分裂,其中包括肌球蛋白-V Myo51。由于肌球蛋白-V通常沿着肌动蛋白丝携带货物,因此Myo51在细胞运动中的作用仍不清楚。之前的研究表明,Myo51 可能会交联肌动蛋白丝。我们假设,如果Myo51交联肌动蛋白丝,那么携带编码交联剂α-肌动蛋白的ain1和Myo51双缺失的细胞(Δain1 Δmyo51细胞)将比携带单一Δain1突变的细胞表现出更严重的细胞分裂表型。与我们的预期相反,我们发现Δain1 细胞中 Myo51 的缺失部分缓解了Δain1 细胞中测出的结节聚集表型的严重性。此外,我们还描述了收缩环 "脱落 "的正常过程,即在收缩的后半段,收缩环材料碎片沿着进入的隔膜向外延伸。我们测量到,∆ain1 ∆myo51 细胞表现出过早和夸张的脱落。我们的研究结果表明,Myo51并不是简单的肌动蛋白丝交联剂。相反,它在有效节点运动中的作用更好地再现了其在环组装和解体过程中的功能。
{"title":"The Myosin-V Myo51 and Alpha-Actinin Ain1p Cooperate during Contractile Ring Assembly and Disassembly in Fission Yeast Cytokinesis","authors":"Zoe L. Tyree, Kimberly Bellingham-Johnstun, Jessica Martinez-Baird, Caroline Laplante","doi":"10.3390/jof10090647","DOIUrl":"https://doi.org/10.3390/jof10090647","url":null,"abstract":"Cytokinesis is driven in part by the constriction of a ring of actin filaments, myosin motors and other proteins. In fission yeast, three myosins contribute to cytokinesis including a Myosin-V Myo51. As Myosin-Vs typically carry cargo along actin filaments, the role of Myo51 in cytokinesis remains unclear. The previous work suggests that Myo51 may crosslink actin filaments. We hypothesized that if Myo51 crosslinks actin filaments, cells carrying double deletions of ain1, which encodes the crosslinker alpha-actinin, and myo51 (∆ain1 ∆myo51 cells) will exhibit more severe cytokinesis phenotypes than cells with the single ∆ain1 mutation. Contrary to our expectations, we found that the loss of Myo51 in ∆ain1 cells partially rescued the severity of the node clumping phenotype measured in ∆ain1 cells. Furthermore, we describe a normal process of contractile ring “shedding”, the appearance of fragments of ring material extending away from the contractile ring along the ingressing septum that occurs in the second half of constriction. We measured that ∆ain1 ∆myo51 cells exhibit premature and exaggerated shedding. Our work suggests that Myo51 is not a simple actin filament crosslinker. Instead, a role in effective node motion better recapitulates its function during ring assembly and disassembly.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"156 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Gene Phylogenetic Analyses Reveals Heteroxylaria Gen. Nov. and New Contributions to Xylariaceae (Ascomycota) from China 多基因系统发育分析揭示中国新异藻属和对木犀属(子囊菌科)的新贡献
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-11 DOI: 10.3390/jof10090645
An-Hong Zhu, Zi-Kun Song, Jun-Fang Wang, Hao-Wen Guan, Zhi Qu, Hai-Xia Ma
An in-depth study of the phylogenetic relationships of Xylaria species associated with nutshells of fruits and seeds within the genus Xylaria and related genera of Xylaceaecea was conducted in China. The multi-gene phylogenetic analyses were carried out based on ITS, RPB2, and TUB sequences of 100 species of 16 known genera in Xylariaceae around the world. Based on molecular phylogenetic analyses, morphological observations, and ecological habitats, a new genus, Heteroxylaria, is established to accommodate four new species, viz. H. cordiicola, H. juglandicola, H. meliicola, and H. terminaliicola, and four new combinations, viz. H. oxyacanthae, H. palmicola, H. reevesiae, and H. rohrensis. The genus is characterized by cylindrical stromata with conspicuous to inconspicuous perithecial mounds, surface black, having brown to dark brown ascospores with a germ slit, and it grows on nutshell of fruits. The combined ITS+RPB2+TUB sequence dataset of representative taxa in the Xylariaceae demonstrate that Heteroxylaria is grouped with Hypocreodendron but forms a monophyletic lineage. All novelties described herein are morphologically illustrated and compared to similar species and phylogeny is investigated to establish new genera and species.
在中国对木犀属(Xylaria)和木犀科(Xylaceaecea)相关属中与果实和种子果壳相关的木犀属(Xylaria)物种的系统发生关系进行了深入研究。基于ITS、RPB2和TUB序列,对全球已知的16个木犀属100个物种进行了多基因系统发育分析。根据分子系统进化分析、形态观察和生态习性,建立了一个新属 Heteroxylaria,包括四个新种,即 H. cordiicola、H. juglandicola、H. meliicola 和 H. terminaliicola,以及四个新组合,即 H. oxyacanthae、H. palmicola、H. reevesiae 和 H. rohrensis。该属的特征是圆柱形基质,有明显至不明显的壳丘,表面黑色,有褐色至深褐色的带胚芽裂缝的放线孢子,生长在果实的果壳上。木犀科代表性类群的 ITS+RPB2+TUB 序列组合数据集表明,Heteroxylaria 与 Hypocreodendron 同属一个类群,但形成一个单系。本文描述的所有新种都有形态学图解,并与相似种进行了比较,通过系统发育研究建立了新属和新种。
{"title":"Multi-Gene Phylogenetic Analyses Reveals Heteroxylaria Gen. Nov. and New Contributions to Xylariaceae (Ascomycota) from China","authors":"An-Hong Zhu, Zi-Kun Song, Jun-Fang Wang, Hao-Wen Guan, Zhi Qu, Hai-Xia Ma","doi":"10.3390/jof10090645","DOIUrl":"https://doi.org/10.3390/jof10090645","url":null,"abstract":"An in-depth study of the phylogenetic relationships of Xylaria species associated with nutshells of fruits and seeds within the genus Xylaria and related genera of Xylaceaecea was conducted in China. The multi-gene phylogenetic analyses were carried out based on ITS, RPB2, and TUB sequences of 100 species of 16 known genera in Xylariaceae around the world. Based on molecular phylogenetic analyses, morphological observations, and ecological habitats, a new genus, Heteroxylaria, is established to accommodate four new species, viz. H. cordiicola, H. juglandicola, H. meliicola, and H. terminaliicola, and four new combinations, viz. H. oxyacanthae, H. palmicola, H. reevesiae, and H. rohrensis. The genus is characterized by cylindrical stromata with conspicuous to inconspicuous perithecial mounds, surface black, having brown to dark brown ascospores with a germ slit, and it grows on nutshell of fruits. The combined ITS+RPB2+TUB sequence dataset of representative taxa in the Xylariaceae demonstrate that Heteroxylaria is grouped with Hypocreodendron but forms a monophyletic lineage. All novelties described herein are morphologically illustrated and compared to similar species and phylogeny is investigated to establish new genera and species.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"53 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-Wide Identification and Expression Analysis of the Cys2His2 Zinc Finger Protein Gene Family in Flammulina filiformis 丝状褐藻中 Cys2His2 锌指蛋白基因家族的全基因组鉴定和表达分析
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-11 DOI: 10.3390/jof10090644
Zongjun Tong, Xing Han, Xinlian Duan, Junbin Lin, Jie Chen, Jihong Xiao, Ying Gan, Bingcheng Gan, Junjie Yan
Zinc finger proteins (ZFPs) are essential transcription factors in eukaryotes, particularly the extensively studied C2H2 family, which is known for its involvement in various biological processes. This research provides a thorough examination and analysis of the C2H2-ZFP gene family in Flammulina filiformis. Using bioinformatics tools, 58 FfC2H2-ZFP genes spread across 11 chromosomes were identified and scrutinized in detail for their gene structures, protein characteristics, and phylogenetic relationships. The study of phylogenetics and synteny sheds light on the evolutionary relationships among C2H2-ZFPs in F. filiformis and other fungi, revealing a complex evolutionary past. The identification of conserved cis-regulatory elements in the gene promoter regions suggests intricate functionalities, particularly in the developmental and stress response pathways. By utilizing RNA-seq and qRT-PCR techniques, the expression patterns of these genes were explored across different developmental stages and tissues of F. filiformis, unveiling distinct expression profiles. Notably, significant expression variations were observed in the stipe elongation region and pilei of various sizes, indicating potential roles in fruiting body morphogenesis. This study enhances our knowledge of the C2H2-ZFP gene family in F. filiformis and lays the groundwork for future investigations into their regulatory mechanisms and applications in fungal biology and biotechnology.
锌指蛋白(ZFP)是真核生物中重要的转录因子,尤其是被广泛研究的 C2H2 家族,因其参与各种生物过程而闻名。本研究对丝状褐藻中的 C2H2-ZFP 基因家族进行了深入研究和分析。利用生物信息学工具,确定了分布在 11 条染色体上的 58 个 FfC2H2-ZFP 基因,并详细研究了它们的基因结构、蛋白质特征和系统发育关系。对系统发育和同源关系的研究揭示了丝状真菌和其他真菌中 C2H2-ZFP 的进化关系,揭示了复杂的进化历史。在基因启动子区域发现的保守顺式调控元件表明它们具有复杂的功能,尤其是在发育和应激反应途径中。通过利用 RNA-seq 和 qRT-PCR 技术,探索了这些基因在丝核菌不同发育阶段和组织中的表达模式,揭示了不同的表达谱。值得注意的是,在柄伸长区和不同大小的绒毛中观察到了明显的表达变化,这表明这些基因在子实体形态发生过程中发挥着潜在的作用。这项研究增进了我们对丝状真菌中 C2H2-ZFP 基因家族的了解,为今后研究其调控机制以及在真菌生物学和生物技术中的应用奠定了基础。
{"title":"Genome-Wide Identification and Expression Analysis of the Cys2His2 Zinc Finger Protein Gene Family in Flammulina filiformis","authors":"Zongjun Tong, Xing Han, Xinlian Duan, Junbin Lin, Jie Chen, Jihong Xiao, Ying Gan, Bingcheng Gan, Junjie Yan","doi":"10.3390/jof10090644","DOIUrl":"https://doi.org/10.3390/jof10090644","url":null,"abstract":"Zinc finger proteins (ZFPs) are essential transcription factors in eukaryotes, particularly the extensively studied C2H2 family, which is known for its involvement in various biological processes. This research provides a thorough examination and analysis of the C2H2-ZFP gene family in Flammulina filiformis. Using bioinformatics tools, 58 FfC2H2-ZFP genes spread across 11 chromosomes were identified and scrutinized in detail for their gene structures, protein characteristics, and phylogenetic relationships. The study of phylogenetics and synteny sheds light on the evolutionary relationships among C2H2-ZFPs in F. filiformis and other fungi, revealing a complex evolutionary past. The identification of conserved cis-regulatory elements in the gene promoter regions suggests intricate functionalities, particularly in the developmental and stress response pathways. By utilizing RNA-seq and qRT-PCR techniques, the expression patterns of these genes were explored across different developmental stages and tissues of F. filiformis, unveiling distinct expression profiles. Notably, significant expression variations were observed in the stipe elongation region and pilei of various sizes, indicating potential roles in fruiting body morphogenesis. This study enhances our knowledge of the C2H2-ZFP gene family in F. filiformis and lays the groundwork for future investigations into their regulatory mechanisms and applications in fungal biology and biotechnology.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"62 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Genome-Based Average Nucleotide Identity Calculation for Identification of Twelve Yeast Species 评估基于基因组的平均核苷酸同一性计算方法,以鉴定 12 个酵母菌种
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-11 DOI: 10.3390/jof10090646
Claudia Cortimiglia, Javier Alonso-Del-Real, Mireya Viviana Belloso Daza, Amparo Querol, Giovanni Iacono, Pier Sandro Cocconcelli
Classifying a yeast strain into a recognized species is not always straightforward. Currently, the taxonomic delineation of yeast strains involves multiple approaches covering phenotypic characteristics and molecular methodologies, including genome-based analysis. The aim of this study was to evaluate the suitability of the Average Nucleotide Identity (ANI) calculation through FastANI, a tool created for bacterial species identification, for the assignment of strains to some yeast species. FastANI, the alignment of in silico-extracted D1/D2 sequences of LSU rRNA, and multiple alignments of orthologous genes (MAOG) were employed to analyze 644 assemblies from 12 yeast genera, encompassing various species, and on a dataset of hybrid Saccharomyces species. Overall, the analysis showed high consistency between results obtained with FastANI and MAOG, although, FastANI proved to be more discriminating than the other two methods applied to genomic sequences. In particular, FastANI was effective in distinguishing between strains belonging to different species, defining clear boundaries between them (cutoff: 94–96%). Our results show that FastANI is a reliable method for attributing a known yeast species to a particular strain. Moreover, although hybridization events make species discrimination more complex, it was revealed to be useful in the identification of these cases. We suggest its inclusion as a key component in a comprehensive approach to species delineation. Using this approach with a larger number of yeasts would validate it as a rapid technique to identify yeasts based on whole genome sequences.
将酵母菌株归入一个公认的物种并非总是那么简单。目前,酵母菌株的分类划分涉及多种方法,包括表型特征和分子方法(包括基于基因组的分析)。本研究的目的是评估通过用于细菌物种鉴定的工具 FastANI 计算平均核苷酸同一性(ANI)是否适用于将菌株归入某些酵母物种。利用 FastANI、硅提取的 LSU rRNA D1/D2 序列的比对以及同源基因的多重比对(MAOG),分析了来自 12 个酵母属(包括多个物种)的 644 个集合,以及酵母杂交种的数据集。总体而言,分析结果表明,FastANI 和 MAOG 所获得的结果具有很高的一致性,但事实证明,FastANI 比其他两种方法对基因组序列的判别能力更强。尤其是,FastANI 能有效区分属于不同菌种的菌株,在它们之间划出清晰的界限(截止值:94-96%)。我们的研究结果表明,FastANI 是将已知酵母菌种归属于特定菌株的可靠方法。此外,尽管杂交事件使物种鉴别变得更加复杂,但它在这些情况的鉴别中还是很有用的。我们建议将其作为物种划分综合方法的关键组成部分。在更多的酵母菌中使用这种方法将验证它是一种基于全基因组序列快速鉴定酵母菌的技术。
{"title":"Evaluating the Genome-Based Average Nucleotide Identity Calculation for Identification of Twelve Yeast Species","authors":"Claudia Cortimiglia, Javier Alonso-Del-Real, Mireya Viviana Belloso Daza, Amparo Querol, Giovanni Iacono, Pier Sandro Cocconcelli","doi":"10.3390/jof10090646","DOIUrl":"https://doi.org/10.3390/jof10090646","url":null,"abstract":"Classifying a yeast strain into a recognized species is not always straightforward. Currently, the taxonomic delineation of yeast strains involves multiple approaches covering phenotypic characteristics and molecular methodologies, including genome-based analysis. The aim of this study was to evaluate the suitability of the Average Nucleotide Identity (ANI) calculation through FastANI, a tool created for bacterial species identification, for the assignment of strains to some yeast species. FastANI, the alignment of in silico-extracted D1/D2 sequences of LSU rRNA, and multiple alignments of orthologous genes (MAOG) were employed to analyze 644 assemblies from 12 yeast genera, encompassing various species, and on a dataset of hybrid Saccharomyces species. Overall, the analysis showed high consistency between results obtained with FastANI and MAOG, although, FastANI proved to be more discriminating than the other two methods applied to genomic sequences. In particular, FastANI was effective in distinguishing between strains belonging to different species, defining clear boundaries between them (cutoff: 94–96%). Our results show that FastANI is a reliable method for attributing a known yeast species to a particular strain. Moreover, although hybridization events make species discrimination more complex, it was revealed to be useful in the identification of these cases. We suggest its inclusion as a key component in a comprehensive approach to species delineation. Using this approach with a larger number of yeasts would validate it as a rapid technique to identify yeasts based on whole genome sequences.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"27 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Septin Organization and Dynamics for Budding Yeast Cytokinesis 芽殖酵母细胞分裂的蛋白酶组织和动力学
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-09 DOI: 10.3390/jof10090642
Maritzaida Varela Salgado, Simonetta Piatti
Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces cerevisiae, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity. Yeast septins form a collar at the division site that undergoes major dynamic transitions during the cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the implications of their dynamic remodelling for cell division.
细胞分裂是有丝分裂后细胞质分裂生成两个子细胞的过程,是细胞周期的关键阶段。成功的细胞分裂必须与染色体分离相协调,并且需要对多个过程进行精细的协调,例如肌动蛋白环的收缩、膜的重组,以及真菌中细胞壁的沉积。在通常被称为芽殖酵母的酿酒酵母中,隔膜蛋白在细胞分裂的控制过程中扮演着关键的角色,它协助细胞分裂机械在分裂部位的组装并控制其活动。酵母隔膜在分裂部位形成一个环,在细胞周期中会发生重大的动态变化。这篇综述讨论了隔膜在酵母细胞分裂中的功能、它们的调控以及它们的动态重塑对细胞分裂的影响。
{"title":"Septin Organization and Dynamics for Budding Yeast Cytokinesis","authors":"Maritzaida Varela Salgado, Simonetta Piatti","doi":"10.3390/jof10090642","DOIUrl":"https://doi.org/10.3390/jof10090642","url":null,"abstract":"Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces cerevisiae, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity. Yeast septins form a collar at the division site that undergoes major dynamic transitions during the cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the implications of their dynamic remodelling for cell division.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"12 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Kelch Repeat Protein VdKeR1 Is Essential for Development, Ergosterol Metabolism, and Virulence in Verticillium dahliae Kelch 重复蛋白 VdKeR1 对大丽轮枝菌的发育、麦角甾醇代谢和毒性至关重要
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-09 DOI: 10.3390/jof10090643
Wen-Li Xia, Zhe Zheng, Feng-Mao Chen
Verticillium dahliae is a soil-borne fungal pathogen that can cause severe vascular wilt in many plant species. Kelch repeat proteins are essential for fungal growth, resistance, and virulence. However, the function of the Kelch repeat protein family in V. dahliae is unclear. In this study, a Kelch repeat domain-containing protein DK185_4252 (VdLs.17 VDAG_08647) included in the conserved VdPKS9 gene cluster was identified and named VdKeR1. Phylogenetic analysis demonstrated a high degree of evolutionary conservation of VdKeR1 and its homologs among fungi. The experimental results showed that the absence of VdKeR1 impaired vegetative growth, microsclerotia development, and pathogenicity of V. dahliae. Osmotic and cell wall stress analyses suggested that VdKeR1-deleted mutants were more tolerant to NaCl, sorbitol, CR, and CFW, while more sensitive to H2O2 and SDS. In addition, analyses of the relative expression level of sqe and the content of squalene and ergosterol showed that VdKeR1 mediates the synthesis of squalene and ergosterol by positively regulating the activity of squalene epoxidase. In conclusion, these results indicated that VdKeR1 was involved in the growth, stress resistance, pathogenicity, and ergosterol metabolism of V. dahliae. Investigating VdKeR1 provided theoretical and experimental foundations for subsequent control of Verticillium wilt.
大丽轮枝菌(Verticillium dahliae)是一种土传真菌病原体,可导致多种植物严重维管束枯萎。Kelch 重复蛋白对真菌的生长、抗性和毒力至关重要。然而,Kelch 重复蛋白家族在大丽花病毒中的功能尚不清楚。本研究鉴定了包含在保守的 VdPKS9 基因簇中的含 Kelch 重复结构域的蛋白 DK185_4252 (VdLs.17 VDAG_08647),并将其命名为 VdKeR1。系统进化分析表明,VdKeR1 及其同源物在真菌中具有高度的进化保守性。实验结果表明,VdKeR1的缺失会影响大丽花病毒的无性生长、小硬菌丝的发育和致病性。渗透胁迫和细胞壁胁迫分析表明,缺失 VdKeR1 的突变体对 NaCl、山梨醇、CR 和 CFW 更耐受,而对 H2O2 和 SDS 更敏感。此外,对 sqe 的相对表达水平以及角鲨烯和麦角甾醇含量的分析表明,VdKeR1 通过正向调节角鲨烯环氧化酶的活性来介导角鲨烯和麦角甾醇的合成。总之,这些结果表明,VdKeR1 参与了大丽花病毒的生长、抗逆性、致病性和麦角固醇代谢。对 VdKeR1 的研究为以后防治轮纹枯萎病提供了理论和实验基础。
{"title":"The Kelch Repeat Protein VdKeR1 Is Essential for Development, Ergosterol Metabolism, and Virulence in Verticillium dahliae","authors":"Wen-Li Xia, Zhe Zheng, Feng-Mao Chen","doi":"10.3390/jof10090643","DOIUrl":"https://doi.org/10.3390/jof10090643","url":null,"abstract":"Verticillium dahliae is a soil-borne fungal pathogen that can cause severe vascular wilt in many plant species. Kelch repeat proteins are essential for fungal growth, resistance, and virulence. However, the function of the Kelch repeat protein family in V. dahliae is unclear. In this study, a Kelch repeat domain-containing protein DK185_4252 (VdLs.17 VDAG_08647) included in the conserved VdPKS9 gene cluster was identified and named VdKeR1. Phylogenetic analysis demonstrated a high degree of evolutionary conservation of VdKeR1 and its homologs among fungi. The experimental results showed that the absence of VdKeR1 impaired vegetative growth, microsclerotia development, and pathogenicity of V. dahliae. Osmotic and cell wall stress analyses suggested that VdKeR1-deleted mutants were more tolerant to NaCl, sorbitol, CR, and CFW, while more sensitive to H2O2 and SDS. In addition, analyses of the relative expression level of sqe and the content of squalene and ergosterol showed that VdKeR1 mediates the synthesis of squalene and ergosterol by positively regulating the activity of squalene epoxidase. In conclusion, these results indicated that VdKeR1 was involved in the growth, stress resistance, pathogenicity, and ergosterol metabolism of V. dahliae. Investigating VdKeR1 provided theoretical and experimental foundations for subsequent control of Verticillium wilt.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating Uncertainty: Managing Influenza-Associated Invasive Pulmonary Aspergillosis in an Intensive Care Unit 驾驭不确定性:在重症监护病房管理流感相关侵袭性肺曲霉菌病
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-07 DOI: 10.3390/jof10090639
Giacomo Casalini, Andrea Giacomelli, Laura Galimberti, Riccardo Colombo, Laura Milazzo, Dario Cattaneo, Antonio Castelli, Spinello Antinori
We present a challenging case of a patient admitted to an intensive care unit with influenza-associated pulmonary aspergillosis (IAPA). The clinical course was characterised by refractory fungal pneumonia and tracheobronchitis, suspected drug-induced liver injury due to triazole antifungals, and secondary bacterial infections with multidrug-resistant microorganisms, resulting in a fatal outcome despite the optimisation of antifungal treatment through therapeutic drug monitoring. This case underscores the complexity that clinicians face in managing critically ill patients with invasive fungal infections.
我们介绍了一例因流感相关肺曲霉菌病(IAPA)入住重症监护病房的棘手病例。患者的临床病程主要表现为难治性真菌肺炎和气管支气管炎、三唑类抗真菌药物引起的疑似药物性肝损伤以及耐多药微生物引起的继发性细菌感染,尽管通过治疗药物监测对抗真菌治疗进行了优化,但患者仍最终死亡。该病例凸显了临床医生在管理患有侵袭性真菌感染的重症患者时所面临的复杂性。
{"title":"Navigating Uncertainty: Managing Influenza-Associated Invasive Pulmonary Aspergillosis in an Intensive Care Unit","authors":"Giacomo Casalini, Andrea Giacomelli, Laura Galimberti, Riccardo Colombo, Laura Milazzo, Dario Cattaneo, Antonio Castelli, Spinello Antinori","doi":"10.3390/jof10090639","DOIUrl":"https://doi.org/10.3390/jof10090639","url":null,"abstract":"We present a challenging case of a patient admitted to an intensive care unit with influenza-associated pulmonary aspergillosis (IAPA). The clinical course was characterised by refractory fungal pneumonia and tracheobronchitis, suspected drug-induced liver injury due to triazole antifungals, and secondary bacterial infections with multidrug-resistant microorganisms, resulting in a fatal outcome despite the optimisation of antifungal treatment through therapeutic drug monitoring. This case underscores the complexity that clinicians face in managing critically ill patients with invasive fungal infections.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"33 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three New Truffle Species (Tuber, Tuberaceae, Pezizales, and Ascomycota) from Yunnan, China, and Multigen Phylogenetic Arrangement within the Melanosporum Group 中国云南的三个松露新种(块菌目、块菌科、子囊菌目和子囊菌科)以及黑孢菌组内的多基因系统发育排列
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-07 DOI: 10.3390/jof10090640
Rui Wang, Gangqiang Dong, Yupin Li, Ruixue Wang, Shimei Yang, Jing Yuan, Xuedan Xie, Xiaofei Shi, Juanbing Yu, Jesús Pérez-Moreno, Fuqiang Yu, Shanping Wan
Based on a multi-locus phylogeny of a combined dataset of ITS, LSU, tef1-α, and rpb2 and comprehensive morphological analyses, we describe three new species from the Melanosporum group of genus Tuber and synonymize T. pseudobrumale and T. melanoexcavatum. Phylogenetically, the three newly described species, T. yunnanense, T. melanoumbilicatum and T. microexcavatum, differ significantly in genetic distance from any previously known species. Morphologically, T. yunnanense is distinctly different from its closest phylogenetically related species, T. longispinosum, due to its long shuttle-shape spores (average the ratio of spore length to spore width for all spores (Qm) = 1.74). Tuber melanoumbilicatum differs from the other species in having a cavity and long shuttle-shaped spores (Qm = 1.65). Although T. microexcavatum sampled ascomata have relatively low maturity, they can be distinguished from its closely related species T. pseudobrumale by the ascomata size, surface warts, and spore number per asci; additionally, phylogenetic analysis supports it as a new species. In addition, molecular analysis from 22 newly collected specimens and Genebank data indicate that T. pseudobrumale and T. melanoexcavatum are clustered into a single well-supported clade (Bootstrap (BS) = 100, posterior probabilities (PP) = 1.0); and morphological characteristics do not differ. Therefore, based on the above evidence and publication dates, we conclude that T. melanoexcavatum is a synonym of T. pseudobrumale. By taking into account current knowledge and combining the molecular, multigene phylogenetic clade arrangement and morphological data, we propose that the Melanosporum group should be divided into four subgroups. Diagnostic morphological features and an identification key of all known species in the Melanosporum group are also included. Finally, we also provide some additions to the knowledge of the characterization of T. pseudobrumale, T. variabilisporum, and T. pseudohimalayense included in subgroup 1 of the Melanosporum group.
基于ITS、LSU、tef1-α和rpb2组合数据集的多焦点系统发生以及综合形态学分析,我们描述了块茎属Melanosporum组的3个新种,并将T. pseudobrumale和T. melanoexcavatum同名。在系统发育上,这三个新描述的物种(T. yunnanense、T. melanoumbilicatum和T. microexcavatum)与之前已知的任何物种在遗传距离上都有显著差异。从形态上看,云南块菌(T. yunnanense)与其系统发育关系最密切的种--长梭形块菌(T. longispinosum)明显不同,因为它的孢子呈长梭形(所有孢子的平均孢子长度与孢子宽度之比(Qm)= 1.74)。Tuber melanoumbilicatum 与其他物种的不同之处在于它有一个空腔和长梭形孢子(Qm = 1.65)。虽然取样的 T. microexcavatum 的子囊成熟度相对较低,但可通过子囊大小、表面疣和每个子囊的孢子数将其与近缘种 T. pseudobrumale 区分开来;此外,系统发育分析也支持将其作为一个新种。此外,对 22 份新采集标本的分子分析和基因库数据表明,T. pseudobrumale 和 T. melanoexcavatum 被聚类为一个支持良好的支系(Bootstrap (BS) = 100, posterior probabilities (PP) = 1.0);且形态特征无差异。因此,根据上述证据和发表日期,我们认为 T. melanoexcavatum 是 T. pseudobrumale 的异名。考虑到现有知识,并结合分子、多基因系统发生支系排列和形态学数据,我们建议将 Melanosporum 组划分为四个亚组。此外,我们还提供了所有已知 Melanosporum 类物种的形态诊断特征和鉴定检索表。最后,我们还对 Melanosporum 组 1 亚群中的 T. pseudobrumale、T. variabilisporum 和 T. pseudohimalayense 的特征进行了补充。
{"title":"Three New Truffle Species (Tuber, Tuberaceae, Pezizales, and Ascomycota) from Yunnan, China, and Multigen Phylogenetic Arrangement within the Melanosporum Group","authors":"Rui Wang, Gangqiang Dong, Yupin Li, Ruixue Wang, Shimei Yang, Jing Yuan, Xuedan Xie, Xiaofei Shi, Juanbing Yu, Jesús Pérez-Moreno, Fuqiang Yu, Shanping Wan","doi":"10.3390/jof10090640","DOIUrl":"https://doi.org/10.3390/jof10090640","url":null,"abstract":"Based on a multi-locus phylogeny of a combined dataset of ITS, LSU, tef1-α, and rpb2 and comprehensive morphological analyses, we describe three new species from the Melanosporum group of genus Tuber and synonymize T. pseudobrumale and T. melanoexcavatum. Phylogenetically, the three newly described species, T. yunnanense, T. melanoumbilicatum and T. microexcavatum, differ significantly in genetic distance from any previously known species. Morphologically, T. yunnanense is distinctly different from its closest phylogenetically related species, T. longispinosum, due to its long shuttle-shape spores (average the ratio of spore length to spore width for all spores (Qm) = 1.74). Tuber melanoumbilicatum differs from the other species in having a cavity and long shuttle-shaped spores (Qm = 1.65). Although T. microexcavatum sampled ascomata have relatively low maturity, they can be distinguished from its closely related species T. pseudobrumale by the ascomata size, surface warts, and spore number per asci; additionally, phylogenetic analysis supports it as a new species. In addition, molecular analysis from 22 newly collected specimens and Genebank data indicate that T. pseudobrumale and T. melanoexcavatum are clustered into a single well-supported clade (Bootstrap (BS) = 100, posterior probabilities (PP) = 1.0); and morphological characteristics do not differ. Therefore, based on the above evidence and publication dates, we conclude that T. melanoexcavatum is a synonym of T. pseudobrumale. By taking into account current knowledge and combining the molecular, multigene phylogenetic clade arrangement and morphological data, we propose that the Melanosporum group should be divided into four subgroups. Diagnostic morphological features and an identification key of all known species in the Melanosporum group are also included. Finally, we also provide some additions to the knowledge of the characterization of T. pseudobrumale, T. variabilisporum, and T. pseudohimalayense included in subgroup 1 of the Melanosporum group.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"21 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Fungi
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1