首页 > 最新文献

Journal of Ginseng Research最新文献

英文 中文
Identification of a key signaling network regulating perennating bud dormancy in Panax ginseng 人参常年芽休眠的关键信号网络的鉴定
IF 6.8 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2024-04-23 DOI: 10.1016/j.jgr.2024.04.004

Background

The cycle of seasonal dormancy of perennating buds is an essential adaptation of perennial plants to unfavorable winter conditions. Plant hormones are key regulators of this critical biological process, which is intricately connected with diverse internal and external factors. Recently, global warming has increased the frequency of aberrant temperature events that negatively affect the dormancy cycle of perennials. Although many studies have been conducted on the perennating organs of Panax ginseng, the molecular aspects of bud dormancy in this species remain largely unknown.

Methods

In this study, the molecular physiological responses of three P. ginseng cultivars with different dormancy break phenotypes in the spring were dissected using comparative genome-wide RNA-seq and network analyses. These analyses identified a key role for abscisic acid (ABA) activity in the regulation of bud dormancy. Gene set enrichment analysis revealed that a transcriptional network comprising stress-related hormone responses made a major contribution to the maintenance of dormancy.

Results

Increased expression levels of cold response and photosynthesis-related genes were associated with the transition from dormancy to active growth in perennating buds. Finally, the expression patterns of genes encoding ABA transporters, receptors (PYRs/PYLs), PROTEIN PHOSPHATASE 2Cs (PP2Cs), and DELLAs were highly correlated with different dormancy states in three P. ginseng cultivars.

Conclusion

This study provides evidence that ABA and stress signaling outputs are intricately connected with a key signaling network to regulate bud dormancy under seasonal conditions in the perennial plant P. ginseng.

背景常年花芽的季节性休眠周期是多年生植物对冬季不利条件的一种基本适应。植物激素是这一关键生物过程的关键调节因子,而这一过程又与各种内外因素密切相关。最近,全球变暖增加了异常温度事件的频率,对多年生植物的休眠周期产生了负面影响。本研究利用全基因组 RNA-seq 比较和网络分析方法,剖析了三个具有不同春季休眠表型的人参栽培品种的分子生理反应。这些分析确定了脱落酸(ABA)活性在芽休眠调控中的关键作用。基因组富集分析表明,由胁迫相关激素反应组成的转录网络对维持休眠做出了重要贡献。结果冷反应和光合作用相关基因表达水平的增加与常年芽从休眠向活跃生长的过渡有关。最后,编码 ABA 转运体、受体(PYRs/PYLs)、蛋白磷酸酶 2Cs (PP2Cs)和 DELLAs 的基因的表达模式与三个人参栽培品种的不同休眠状态高度相关。
{"title":"Identification of a key signaling network regulating perennating bud dormancy in Panax ginseng","authors":"","doi":"10.1016/j.jgr.2024.04.004","DOIUrl":"10.1016/j.jgr.2024.04.004","url":null,"abstract":"<div><h3>Background</h3><p>The cycle of seasonal dormancy of perennating buds is an essential adaptation of perennial plants to unfavorable winter conditions. Plant hormones are key regulators of this critical biological process, which is intricately connected with diverse internal and external factors. Recently, global warming has increased the frequency of aberrant temperature events that negatively affect the dormancy cycle of perennials. Although many studies have been conducted on the perennating organs of <em>Panax ginseng</em>, the molecular aspects of bud dormancy in this species remain largely unknown.</p></div><div><h3>Methods</h3><p>In this study, the molecular physiological responses of three <em>P. ginseng</em> cultivars with different dormancy break phenotypes in the spring were dissected using comparative genome-wide RNA-seq and network analyses. These analyses identified a key role for abscisic acid (ABA) activity in the regulation of bud dormancy. Gene set enrichment analysis revealed that a transcriptional network comprising stress-related hormone responses made a major contribution to the maintenance of dormancy.</p></div><div><h3>Results</h3><p>Increased expression levels of cold response and photosynthesis-related genes were associated with the transition from dormancy to active growth in perennating buds. Finally, the expression patterns of genes encoding ABA transporters, receptors (<em>PYR</em>s/<em>PYL</em>s), <em>PROTEIN PHOSPHATASE</em> 2Cs (<em>PP2C</em>s), and <em>DELLA</em>s were highly correlated with different dormancy states in three <em>P. ginseng</em> cultivars.</p></div><div><h3>Conclusion</h3><p>This study provides evidence that ABA and stress signaling outputs are intricately connected with a key signaling network to regulate bud dormancy under seasonal conditions in the perennial plant <em>P. ginseng</em>.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000836/pdfft?md5=1c47b5f59fd668282e1b50b0a8a22ad9&pid=1-s2.0-S1226845324000836-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140772345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Panax species and their bioactive components on allergic airway diseases 三七及其生物活性成分对过敏性气道疾病的影响
IF 6.3 2区 医学 Q1 Medicine Pub Date : 2024-04-21 DOI: 10.1016/j.jgr.2024.04.003
Dahee Shim , Yeeun Bak , Han-Gyu Choi , Seunghyun Lee , Sang Chul Park

Panax species include Panax ginseng Meyer, Panax quinquefolium L., Panax notoginseng, Panax japonicum, Panax trifolium, and Panax pseudoginseng, which contain bioactive components (BCs) such as ginsenosides and polysaccharides. Recently, growing evidence has revealed the pharmacological effects of Panax species and their BCs on allergic airway diseases (AADs), including allergic asthma (AA) and allergic rhinitis (AR). AADs are characterized by damaged epithelium, sustained acquired immune responses with enforced Th2 responses, allergen-specific IgE production, and enhanced production of histamine and leukotrienes by activated mast cells and basophils. In this review, we summarize how Panax species and their BCs modulate acquired immune responses involving interactions between dendritic cells and T cells, reduce the pro-inflammatory responses of epithelial cells, and reduce allergenic responses from basophils and mast cells in vitro. In addition, we highlight the current understanding of the alleviative effects of Panax species and their BCs against AA and AR in vivo. Moreover, we discuss the unmet needs of research and considerations for the treatment of patients to provide basic scientific knowledge for the treatment of AADs using Panax species and their BCs.

三七品种包括人参、五加参、三七、日本三七、三叶草和三七,其中含有人参皂甙和多糖等生物活性成分(BCs)。最近,越来越多的证据表明,三七及其生物活性成分对过敏性气道疾病(AADs),包括过敏性哮喘(AA)和过敏性鼻炎(AR)有药理作用。过敏性气道疾病的特点是上皮受损、持续的获得性免疫反应(Th2 反应增强)、过敏原特异性 IgE 的产生以及活化的肥大细胞和嗜碱性粒细胞产生的组胺和白三烯增多。在这篇综述中,我们总结了三七及其生物碱如何调节涉及树突状细胞和 T 细胞之间相互作用的获得性免疫反应、降低上皮细胞的促炎反应以及减少嗜碱性粒细胞和肥大细胞在体外产生的过敏原反应。此外,我们还强调了目前对三七及其生物碱在体内对 AA 和 AR 的缓解作用的理解。此外,我们还讨论了尚未满足的研究需求和治疗患者的注意事项,为使用三七及其生物碱治疗 AADs 提供基础科学知识。
{"title":"Effects of Panax species and their bioactive components on allergic airway diseases","authors":"Dahee Shim ,&nbsp;Yeeun Bak ,&nbsp;Han-Gyu Choi ,&nbsp;Seunghyun Lee ,&nbsp;Sang Chul Park","doi":"10.1016/j.jgr.2024.04.003","DOIUrl":"10.1016/j.jgr.2024.04.003","url":null,"abstract":"<div><p><em>Panax</em> species include <em>Panax ginseng</em> Meyer, <em>Panax quinquefolium</em> L., <em>Panax notoginseng</em>, <em>Panax japonicum</em>, <em>Panax trifolium</em>, and <em>Panax pseudoginseng</em>, which contain bioactive components (BCs) such as ginsenosides and polysaccharides. Recently, growing evidence has revealed the pharmacological effects of <em>Panax</em> species and their BCs on allergic airway diseases (AADs), including allergic asthma (AA) and allergic rhinitis (AR). AADs are characterized by damaged epithelium, sustained acquired immune responses with enforced Th2 responses, allergen-specific IgE production, and enhanced production of histamine and leukotrienes by activated mast cells and basophils. In this review, we summarize how <em>Panax</em> species and their BCs modulate acquired immune responses involving interactions between dendritic cells and T cells, reduce the pro-inflammatory responses of epithelial cells, and reduce allergenic responses from basophils and mast cells <em>in vitro</em>. In addition, we highlight the current understanding of the alleviative effects of <em>Panax</em> species and their BCs against AA and AR <em>in vivo</em>. Moreover, we discuss the unmet needs of research and considerations for the treatment of patients to provide basic scientific knowledge for the treatment of AADs using <em>Panax</em> species and their BCs.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000824/pdfft?md5=d090cd8faef66fbe31255e05236be1db&pid=1-s2.0-S1226845324000824-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140771746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human disease-related long noncoding RNAs: Impact of ginsenosides 与人类疾病相关的长非编码 RNA:人参皂苷的影响
IF 6.3 2区 医学 Q1 Medicine Pub Date : 2024-04-14 DOI: 10.1016/j.jgr.2024.04.002
Siyeon Jang , Hyeonjin Lee , Hyeon Woo Kim, Minjae Baek, Sanghyun Jung, Sun Jung Kim

Ginsenosides in ginseng are known for their potential health benefits, including antioxidant properties and their potential to exhibit anticancer effects. Besides a various range of coding genes, ginsenosides impose their efficacy by targeting noncoding RNAs. Long noncoding RNA (

lncRNA) has gained significant attention from both basic and clinical oncology fields due to its involvement in various cancer cell activities such as proliferation, apoptosis, metastasis, and autophagy. These events can be achieved either by lncRNA alone or in association with microRNAs or proteins. This review aims to summarize the diverse activities of lncRNAs that are regulated by ginsenosides, focusing on their role in regulating target genes through signaling pathways in human diseases. We highlight the results of studies on the expression profiles of lncRNAs induced by ginsenosides in efforts to inhibit cancer cell proliferation. Finally, we discuss the potential and challenges of utilizing lncRNAs as diagnostic markers for disease treatment.

众所周知,人参中的人参皂苷具有潜在的健康益处,包括抗氧化特性和潜在的抗癌作用。除了各种编码基因外,人参皂苷还通过靶向非编码 RNA 发挥功效。长非编码 RNA
{"title":"Human disease-related long noncoding RNAs: Impact of ginsenosides","authors":"Siyeon Jang ,&nbsp;Hyeonjin Lee ,&nbsp;Hyeon Woo Kim,&nbsp;Minjae Baek,&nbsp;Sanghyun Jung,&nbsp;Sun Jung Kim","doi":"10.1016/j.jgr.2024.04.002","DOIUrl":"10.1016/j.jgr.2024.04.002","url":null,"abstract":"<div><p>Ginsenosides in ginseng are known for their potential health benefits, including antioxidant properties and their potential to exhibit anticancer effects. Besides a various range of coding genes, ginsenosides impose their efficacy by targeting noncoding RNAs. Long noncoding RNA (</p><p>lncRNA) has gained significant attention from both basic and clinical oncology fields due to its involvement in various cancer cell activities such as proliferation, apoptosis, metastasis, and autophagy. These events can be achieved either by lncRNA alone or in association with microRNAs or proteins. This review aims to summarize the diverse activities of lncRNAs that are regulated by ginsenosides, focusing on their role in regulating target genes through signaling pathways in human diseases. We highlight the results of studies on the expression profiles of lncRNAs induced by ginsenosides in efforts to inhibit cancer cell proliferation. Finally, we discuss the potential and challenges of utilizing lncRNAs as diagnostic markers for disease treatment.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000800/pdfft?md5=d927b6ff2df667d06454614691ee6792&pid=1-s2.0-S1226845324000800-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting the DNA damage response (DDR) of cancer cells with natural compounds derived from Panax ginseng and other plants 利用从三七和其他植物中提取的天然化合物靶向癌细胞的 DNA 损伤反应(DDR)
IF 6.3 2区 医学 Q1 Medicine Pub Date : 2024-04-09 DOI: 10.1016/j.jgr.2024.04.001
SeokGyeong Choi, Minwook Shin, Woo-Young Kim
DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of “synthetic lethality” in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments. Natural compounds from traditional medicine, renowned for their anti-aging and anticarcinogenic properties, have garnered attention. Ginseng-derived compounds, in particular, exhibit anti-carcinogenic effects by suppressing reactive oxygen species (ROS) and protecting cells from DNA damage-induced carcinogenesis. However, the anticancer therapeutic effect of ginseng compounds has also been demonstrated by inducing DNA damage and blocking DDR. This review concentrates on the biphasic effects of ginseng compounds on DNA mutations—both inhibiting mutation accumulation and impairing DNA repair. Additionally, it explores other natural compounds targeting DDR directly, providing potential insights into enhancing cancer therapy efficacy.
DNA 损伤是癌症形成的驱动因素,它导致癌细胞修复机制受损,使癌细胞易受 DNA 损伤治疗方法的影响。癌症临床中出现了 "合成致死 "的概念,特别是随着 PARP 抑制剂的使用和 DNA 损伤反应(DDR)突变生物标志物的确定,强调了在癌症治疗中靶向 DDR 的重要性。目前正在开发针对基因组维护机制的新方法,以进一步提高癌症治疗的疗效。传统医药中的天然化合物以其抗衰老和抗癌特性而闻名,已引起人们的关注。特别是人参提取物,通过抑制活性氧(ROS)和保护细胞免受 DNA 损伤诱发的癌变,显示出抗癌作用。然而,人参化合物的抗癌治疗效果也通过诱导 DNA 损伤和阻断 DDR 得到了证实。本综述集中探讨了人参化合物对 DNA 变异的双相作用--既抑制突变积累,又损害 DNA 修复。此外,它还探讨了其他直接针对 DDR 的天然化合物,为提高癌症治疗效果提供了潜在的见解。
{"title":"Targeting the DNA damage response (DDR) of cancer cells with natural compounds derived from Panax ginseng and other plants","authors":"SeokGyeong Choi, Minwook Shin, Woo-Young Kim","doi":"10.1016/j.jgr.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.jgr.2024.04.001","url":null,"abstract":"DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of “synthetic lethality” in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments. Natural compounds from traditional medicine, renowned for their anti-aging and anticarcinogenic properties, have garnered attention. Ginseng-derived compounds, in particular, exhibit anti-carcinogenic effects by suppressing reactive oxygen species (ROS) and protecting cells from DNA damage-induced carcinogenesis. However, the anticancer therapeutic effect of ginseng compounds has also been demonstrated by inducing DNA damage and blocking DDR. This review concentrates on the biphasic effects of ginseng compounds on DNA mutations—both inhibiting mutation accumulation and impairing DNA repair. Additionally, it explores other natural compounds targeting DDR directly, providing potential insights into enhancing cancer therapy efficacy.","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Red ginseng extract inhibits lipopolysaccharide-induced platelet–leukocyte aggregates in mice 红参提取物可抑制脂多糖诱导的小鼠血小板-白细胞聚集
IF 6.3 2区 医学 Q1 Medicine Pub Date : 2024-04-07 DOI: 10.1016/j.jgr.2024.03.009
Yuan Yee Lee , Sung Dae Kim , Jin-Kyu Park , Won-Jae Lee , Jee Eun Han , Min-Soo Seo , Min-Goo Seo , Seulgi Bae , Dongmi Kwak , Evelyn Saba , Man Hee Rhee

Background

Platelet–leukocyte aggregates (PLAs) play important roles in cardiovascular disease and sepsis. Red ginseng extract (RGE) has been well-studied for its antiplatelet and anti-inflammatory activities. However, the potential inhibitory effects of RGE on PLA have not been investigated.

Methods

Six-week-old ICR mice were given oral gavage of RGE for 7 days, followed by an intraperitoneal injection of 15 mg/kg of lipopolysaccharide. Mice were euthanized 24 h later, and blood samples were collected for further analysis. Flow cytometry was utilized to sort populations of PLAs and platelet–neutrophil aggregates (PNAs). By using confocal microscopy, PNAs were validated. Morphological changes in platelets and leukocytes were visualized with scanning electron microscopy. Expressions of tissue factor (TF) and platelet factor 4 (PF4) were investigated using enzyme-linked immunosorbent assay.

Results

Populations of activated platelets, PLAs and PNAs, were significantly increased with LPS-induction. Treatment with 200 and 400 mg/kg of RGE decreased platelet activation. Moreover, the populations of PLAs and PNAs were reduced. PNAs were visible in the blood of septic mice, and this was attenuated by treatment with 400 mg/kg of RGE. Morphologically, sepsisinduced platelet activation and fibrin formation in the blood. This was reduced with RGE treatment. Sepsis-induced increase in the plasma levels of TF and PF4 was also reduced with RGE treatment.

Conclusion

This study shows that RGE is a potential therapeutic that reduces the activation of platelets and targets PLA and PNA formation. Detailed inhibitory mechanisms of RGE should be studied.

血小板-白细胞聚集体(PLA)在心血管疾病和败血症中发挥着重要作用。红参提取物(RGE)的抗血小板和抗炎活性已得到广泛研究。然而,红参提取物对聚乳酸的潜在抑制作用尚未得到研究。给六周大的 ICR 小鼠口服 RGE 7 天,然后腹腔注射 15 毫克/千克脂多糖。24 小时后对小鼠实施安乐死,并采集血液样本进行进一步分析。利用流式细胞术对血小板聚集体和血小板-中性粒细胞聚集体(PNA)进行分类。使用共聚焦显微镜对 PNAs 进行验证。用扫描电子显微镜观察血小板和白细胞的形态变化。使用酶联免疫吸附试验检测了组织因子(TF)和血小板因子 4(PF4)的表达。在 LPS 诱导下,活化血小板、PLA 和 PNA 的数量显著增加。使用 200 和 400 毫克/千克的 RGE 可降低血小板活化。此外,PLA 和 PNA 的数量也减少了。脓毒症小鼠的血液中可见 PNAs,使用 400 毫克/千克的 RGE 治疗可减轻这一现象。从形态上看,败血症会导致血小板活化和血液中纤维蛋白的形成。使用 RGE 治疗后,这种现象有所减少。经 RGE 治疗后,败血症引起的血浆中 TF 和 PF4 含量增加也有所减少。这项研究表明,RGE 是一种潜在的疗法,它能减少血小板的活化,并抑制 PLA 和 PNA 的形成。RGE 的详细抑制机制有待研究。
{"title":"Red ginseng extract inhibits lipopolysaccharide-induced platelet–leukocyte aggregates in mice","authors":"Yuan Yee Lee ,&nbsp;Sung Dae Kim ,&nbsp;Jin-Kyu Park ,&nbsp;Won-Jae Lee ,&nbsp;Jee Eun Han ,&nbsp;Min-Soo Seo ,&nbsp;Min-Goo Seo ,&nbsp;Seulgi Bae ,&nbsp;Dongmi Kwak ,&nbsp;Evelyn Saba ,&nbsp;Man Hee Rhee","doi":"10.1016/j.jgr.2024.03.009","DOIUrl":"10.1016/j.jgr.2024.03.009","url":null,"abstract":"<div><h3>Background</h3><p>Platelet–leukocyte aggregates (PLAs) play important roles in cardiovascular disease and sepsis. Red ginseng extract (RGE) has been well-studied for its antiplatelet and anti-inflammatory activities. However, the potential inhibitory effects of RGE on PLA have not been investigated.</p></div><div><h3>Methods</h3><p>Six-week-old ICR mice were given oral gavage of RGE for 7 days, followed by an intraperitoneal injection of 15 mg/kg of lipopolysaccharide. Mice were euthanized 24 h later, and blood samples were collected for further analysis. Flow cytometry was utilized to sort populations of PLAs and platelet–neutrophil aggregates (PNAs). By using confocal microscopy, PNAs were validated. Morphological changes in platelets and leukocytes were visualized with scanning electron microscopy. Expressions of tissue factor (TF) and platelet factor 4 (PF4) were investigated using enzyme-linked immunosorbent assay.</p></div><div><h3>Results</h3><p>Populations of activated platelets, PLAs and PNAs, were significantly increased with LPS-induction. Treatment with 200 and 400 mg/kg of RGE decreased platelet activation. Moreover, the populations of PLAs and PNAs were reduced. PNAs were visible in the blood of septic mice, and this was attenuated by treatment with 400 mg/kg of RGE. Morphologically, sepsisinduced platelet activation and fibrin formation in the blood. This was reduced with RGE treatment. Sepsis-induced increase in the plasma levels of TF and PF4 was also reduced with RGE treatment.</p></div><div><h3>Conclusion</h3><p>This study shows that RGE is a potential therapeutic that reduces the activation of platelets and targets PLA and PNA formation. Detailed inhibitory mechanisms of RGE should be studied.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000447/pdfft?md5=94c6c555295c7039d1d014bfad1b3ad7&pid=1-s2.0-S1226845324000447-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140580850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Korean Red Ginseng on the motor performance and ataxia 高丽红参对运动表现和共济失调的影响
IF 6.3 2区 医学 Q1 Medicine Pub Date : 2024-03-29 DOI: 10.1016/j.jgr.2024.03.008
Seunghyun Lee , Yeri Won , Manho Kim

This study presents a preliminary exploration into the effect of Korean Red Ginseng (KRG) on the cerebellum in individuals with cerebellar atrophy. Over a three month-long period, nine subjects received a 4.5g of KRG daily, with assessments including the ARS, ADAS-Cog, and FDG-PET/CT scans. Results revealed a notable improvement in ataxia and cognitive function without a significant correlation between them. PET/CT scans and SUVR analyses supported these findings, showing an increase in cerebellar glucose uptake after KRG intake. These outcomes suggest a potential pleiotropic effect of KRG on cerebellar function.

本研究初步探讨了高丽红参(KRG)对小脑萎缩患者小脑的影响。在长达三个月的时间里,九名受试者每天服用 4.5 克高丽红参,评估包括 ARS、ADAS-Cog 和 FDG-PET/CT 扫描。结果显示,共济失调和认知功能均有明显改善,但两者之间无明显关联。PET/CT 扫描和 SUVR 分析证实了这些发现,显示摄入 KRG 后小脑葡萄糖摄取量增加。这些结果表明,KRG 对小脑功能具有潜在的多效应。
{"title":"Effect of Korean Red Ginseng on the motor performance and ataxia","authors":"Seunghyun Lee ,&nbsp;Yeri Won ,&nbsp;Manho Kim","doi":"10.1016/j.jgr.2024.03.008","DOIUrl":"10.1016/j.jgr.2024.03.008","url":null,"abstract":"<div><p>This study presents a preliminary exploration into the effect of Korean Red Ginseng (KRG) on the cerebellum in individuals with cerebellar atrophy. Over a three month-long period, nine subjects received a 4.5g of KRG daily, with assessments including the ARS, ADAS-Cog, and FDG-PET/CT scans. Results revealed a notable improvement in ataxia and cognitive function without a significant correlation between them. PET/CT scans and SUVR analyses supported these findings, showing an increase in cerebellar glucose uptake after KRG intake. These outcomes suggest a potential pleiotropic effect of KRG on cerebellar function.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000435/pdfft?md5=76ecc9ec85af8f692908b3fb5d0705e6&pid=1-s2.0-S1226845324000435-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140401124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Korean Red Ginseng and Rb1 restore altered social interaction, gene expressions in the medial prefrontal cortex, and gut metabolites under post-weaning social isolation in mice 高丽红参和Rb1可恢复小鼠断奶后社会隔离下的社会互动、内侧前额叶皮层基因表达和肠道代谢物的改变
IF 6.8 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2024-03-25 DOI: 10.1016/j.jgr.2024.03.005

Background

Post-weaning social isolation (SI) reduces sociability, gene expressions including myelin genes in the medial prefrontal cortex (mPFC), and alters microbiome compositions in rodent models. Korean Red Ginseng (KRG) and its major ginsenoside Rb1 have been reported to affect myelin formation and gut metabolites. However, their effects under post-weaning SI have not been investigated. This study investigated the effects of KRG and Rb1 on sociability, gene expressions in the mPFC, and gut metabolites under post-weaning SI.

Methods

C57BL/6J mice were administered with water or KRG (150, 400 mg/kg) or Rb1 (0.1 mg/kg) under SI or regular environment (RE) for 2 weeks during the post-weaning period (P21–P35). After this period, mice underwent a sociability test, and then brains and ceca were collected for qPCR/immunohistochemistry and non-targeted metabolomics, respectively.

Results

SI reduced sociability compared to RE; however, KRG (400 mg/kg) and Rb1 significantly restored sociability under SI. In the mPFC, expressions of genes related to myelin, neurotransmitter, and oxidative stress were significantly reduced in mice under SI compared to RE conditions. Under SI, KRG and Rb1 recovered the altered expressions of several genes in the mPFC. In gut metabolomics, 313 metabolites were identified as significant among 3027 detected metabolites. Among the significantly changed metabolites in SI, some were recovered by KRG or Rb1, including metabolites related to stress axis, inflammation, and DNA damage.

Conclusion

Altered sociability, gene expression levels in the mPFC, and gut metabolites induced by two weeks of post-weaning SI were at least partially recovered by KRG and Rb1.

背景断奶后的社会隔离(SI)会降低啮齿动物模型的交际能力、基因表达(包括内侧前额叶皮层(mPFC)中的髓鞘基因),并改变微生物组的组成。据报道,高丽红参(KRG)及其主要人参皂苷 Rb1 会影响髓鞘的形成和肠道代谢物。然而,它们对断奶后 SI 的影响尚未得到研究。方法C57BL/6J小鼠断奶后(P21-P35)在SI或常规环境(RE)下给水或KRG(150、400 mg/kg)或Rb1(0.1 mg/kg),持续2周。结果与 RE 相比,SI 会降低小鼠的交际能力;但在 SI 环境下,KRG(400 mg/kg)和 Rb1 能显著恢复小鼠的交际能力。在 mPFC 中,与 RE 条件相比,SI 条件下小鼠髓鞘、神经递质和氧化应激相关基因的表达明显减少。在SI条件下,KRG和Rb1恢复了mPFC中几个基因表达的改变。在肠道代谢组学中,在3027个检测到的代谢物中,有313个代谢物被确定为重要代谢物。结论KRG和Rb1至少可以部分恢复断奶后两周SI引起的交际能力、mPFC基因表达水平和肠道代谢物的改变。
{"title":"Korean Red Ginseng and Rb1 restore altered social interaction, gene expressions in the medial prefrontal cortex, and gut metabolites under post-weaning social isolation in mice","authors":"","doi":"10.1016/j.jgr.2024.03.005","DOIUrl":"10.1016/j.jgr.2024.03.005","url":null,"abstract":"<div><h3>Background</h3><p>Post-weaning social isolation (SI) reduces sociability, gene expressions including myelin genes in the medial prefrontal cortex (mPFC), and alters microbiome compositions in rodent models. Korean Red Ginseng (KRG) and its major ginsenoside Rb1 have been reported to affect myelin formation and gut metabolites. However, their effects under post-weaning SI have not been investigated. This study investigated the effects of KRG and Rb1 on sociability, gene expressions in the mPFC, and gut metabolites under post-weaning SI.</p></div><div><h3>Methods</h3><p>C57BL/6J mice were administered with water or KRG (150, 400 mg/kg) or Rb1 (0.1 mg/kg) under SI or regular environment (RE) for 2 weeks during the post-weaning period (P21–P35). After this period, mice underwent a sociability test, and then brains and ceca were collected for qPCR/immunohistochemistry and non-targeted metabolomics, respectively.</p></div><div><h3>Results</h3><p>SI reduced sociability compared to RE; however, KRG (400 mg/kg) and Rb1 significantly restored sociability under SI. In the mPFC, expressions of genes related to myelin, neurotransmitter, and oxidative stress were significantly reduced in mice under SI compared to RE conditions. Under SI, KRG and Rb1 recovered the altered expressions of several genes in the mPFC. In gut metabolomics, 313 metabolites were identified as significant among 3027 detected metabolites. Among the significantly changed metabolites in SI, some were recovered by KRG or Rb1, including metabolites related to stress axis, inflammation, and DNA damage.</p></div><div><h3>Conclusion</h3><p>Altered sociability, gene expression levels in the mPFC, and gut metabolites induced by two weeks of post-weaning SI were at least partially recovered by KRG and Rb1.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S122684532400040X/pdfft?md5=055d9b20ea6db0b840443eee79ba49d0&pid=1-s2.0-S122684532400040X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140399251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and evaluation of proliposomes formulation for enhancing the oral bioavailability of ginsenosides 制备和评估用于提高人参皂苷口服生物利用度的脂质体制剂
IF 6.3 2区 医学 Q1 Medicine Pub Date : 2024-03-21 DOI: 10.1016/j.jgr.2024.03.004
Duy-Thuc Nguyen , Min-Hwan Kim , Min-Jun Baek , Nae-Won Kang , Dae-Duk Kim

Background

This research main objective was to evaluate a proliposomes (PLs) formulation for the enhancement of oral bioavailability of ginsenosides, using ginsenoside Rg3 (Rg3) as a marker.

Methods

A novel PLs formulation was prepared using a modified evaporation-on-matrix method. Soy phosphatidylcholine, Rg3-enriched extract, poloxamer 188 (Lutrol® F 68) and sorbitol were mixed and dissolved using a aqueous ethanolic solution, followed by the removal of ethanol and lyophilization. The characterization of Rg3-PLs formulations was performed by powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM) and in vitro release. The enhancement of oral bioavailability was investigated and analyzed by non-compartmental parameters after oral administration of the formulations.

Results

PXRD of Rg3-PLs indicated that Rg3 was transformed from crystalline into its amorphous form during the preparation process. The Rg3-encapsulated liposomes with vesicular-shaped morphology were generated after the reconstitution by gentle hand-shaking in water; they had a mean diameter of approximately 350 nm, a negative zeta potential (−28.6 mV) and a high entrapment efficiency (97.3%). The results of the in vitro release study exhibited that significantly more amount of Rg3 was released from the PLs formulation in comparison with that from the suspension of Rg3-enriched extract (control group). The pharmacokinetic parameters after oral administration of PLs formulation in rats showed an approximately 11.8-fold increase in the bioavailability of Rg3, compared to that of the control group.

Conclusion

The developed PLs formulation could be a favorable delivery system to improve the oral bioavailability of ginsenosides, including Rg3.

背景本研究的主要目的是以人参皂苷 Rg3(Rg3)为标记物,评估一种能提高人参皂苷口服生物利用度的脂质体(PLs)制剂。将大豆磷脂酰胆碱、富含 Rg3 的提取物、poloxamer 188(Lutrol® F 68)和山梨醇混合并用乙醇水溶液溶解,然后去除乙醇并冻干。通过粉末 X 射线衍射仪(PXRD)、透射电子显微镜(TEM)和体外释放法对 Rg3-PLs 制剂进行了表征。结果 Rg3-PLs 的 X 射线衍射表明,在制备过程中,Rg3 由晶体转变为无定形形式。在水中用手轻轻振荡重组后,Rg3包囊脂质体呈囊泡状,其平均直径约为350 nm,zeta电位为负(-28.6 mV),包封效率高(97.3%)。体外释放研究结果表明,与富含 Rg3 的提取物悬浮液(对照组)相比,PLs 制剂释放的 Rg3 量明显更多。大鼠口服 PLs 制剂后的药代动力学参数显示,与对照组相比,Rg3 的生物利用度提高了约 11.8 倍。
{"title":"Preparation and evaluation of proliposomes formulation for enhancing the oral bioavailability of ginsenosides","authors":"Duy-Thuc Nguyen ,&nbsp;Min-Hwan Kim ,&nbsp;Min-Jun Baek ,&nbsp;Nae-Won Kang ,&nbsp;Dae-Duk Kim","doi":"10.1016/j.jgr.2024.03.004","DOIUrl":"10.1016/j.jgr.2024.03.004","url":null,"abstract":"<div><h3>Background</h3><p>This research main objective was to evaluate a proliposomes (PLs) formulation for the enhancement of oral bioavailability of ginsenosides, using ginsenoside Rg3 (Rg3) as a marker.</p></div><div><h3>Methods</h3><p>A novel PLs formulation was prepared using a modified evaporation-on-matrix method. Soy phosphatidylcholine, Rg3-enriched extract, poloxamer 188 (Lutrol® F 68) and sorbitol were mixed and dissolved using a aqueous ethanolic solution, followed by the removal of ethanol and lyophilization. The characterization of Rg3-PLs formulations was performed by powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM) and <em>in vitro</em> release. The enhancement of oral bioavailability was investigated and analyzed by non-compartmental parameters after oral administration of the formulations.</p></div><div><h3>Results</h3><p>PXRD of Rg3-PLs indicated that Rg3 was transformed from crystalline into its amorphous form during the preparation process. The Rg3-encapsulated liposomes with vesicular-shaped morphology were generated after the reconstitution by gentle hand-shaking in water; they had a mean diameter of approximately 350 nm, a negative zeta potential (−28.6 mV) and a high entrapment efficiency (97.3%). The results of the <em>in vitro</em> release study exhibited that significantly more amount of Rg3 was released from the PLs formulation in comparison with that from the suspension of Rg3-enriched extract (control group). The pharmacokinetic parameters after oral administration of PLs formulation in rats showed an approximately 11.8-fold increase in the bioavailability of Rg3, compared to that of the control group.</p></div><div><h3>Conclusion</h3><p>The developed PLs formulation could be a favorable delivery system to improve the oral bioavailability of ginsenosides, including Rg3.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000393/pdfft?md5=55dec7f454bf53319a6a860fd375c787&pid=1-s2.0-S1226845324000393-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140278479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells 针对癌症干细胞的潜在抗癌剂--人参衍生化合物
IF 6.3 2区 医学 Q1 Medicine Pub Date : 2024-03-12 DOI: 10.1016/j.jgr.2024.03.003
Ji-Sun Lee, Ho-Young Lee
Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.
癌症干细胞(CSCs)是一种罕见的癌细胞亚群,具有类似干细胞的特征,包括通过对称或不对称分裂在多阶段系态中自我更新和分化,导致肿瘤的发生、异质性、进展和复发,对目前的抗癌疗法构成重大挑战。尽管 CSCs 在癌变和癌症进展中具有重要作用,但目前可用的抗癌疗法在根除 CSCs 方面存在局限性。此外,现有抗 CSC 药物的疗效和治疗窗口期有限,这表明有必要优化和开发针对 CSCs 的新型抗癌药物。人参历来被用于增强免疫力和缓解疲劳。人参悠久的使用历史证明了它的安全性,因此其潜在的药理特性(包括抗癌作用)也备受关注。一些研究已经确定了人参的生物活性成分,如人参皂苷(人参皂甙)和非皂苷化合物(如多糖、多乙酰和酚类化合物),以及它们的药理活性,包括抗氧化、抗癌、抗糖尿病、抗疲劳和神经保护作用。值得注意的是,最近有报告显示人参衍生化合物具有作为抗造血干细胞药物的潜力。这篇综述研究了 CSCs 的生物学特性,以及利用人参提取成分治疗 CSCs 癌症的努力,强调了人参提取成分在克服当前治疗局限性方面的作用。
{"title":"Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells","authors":"Ji-Sun Lee, Ho-Young Lee","doi":"10.1016/j.jgr.2024.03.003","DOIUrl":"https://doi.org/10.1016/j.jgr.2024.03.003","url":null,"abstract":"Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140152506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ginsenoside Rg1 alleviates vascular remodeling in hypoxia-induced pulmonary hypertension mice through the calpain-1/STAT3 signaling pathway 人参皂苷 Rg1 通过钙蛋白酶-1/STAT3 信号通路缓解缺氧诱导的肺动脉高压小鼠的血管重塑
IF 6.3 2区 医学 Q1 Medicine Pub Date : 2024-03-11 DOI: 10.1016/j.jgr.2024.03.001
Chenyang Ran , Meili Lu , Fang Zhao , Yi Hao , Xinyu Guo , Yunhan Li , Yuhong Su , Hongxin Wang

Background

Hypoxic pulmonary hypertension (HPH) is the main pathological change in vascular remodeling, a complex cardiopulmonary disease caused by hypoxia. Some research results have shown that ginsenoside Rg1 (Rg1) can improve vascular remodeling, but the effect and mechanism of Rg1 on hypoxia-induced pulmonary hypertension are not clear. The purpose of this study was to discuss the potential mechanism of action of Rg1 on HPH.

Methods

C57BL/6 mice, calpain-1 knockout mice and Pulmonary artery smooth muscle cells (PASMCs) were exposed to a low oxygen environment with or without different treatments. The effect of Rg1 and calpain-1 silencing on inflammation, fibrosis, proliferation and the protein expression levels of calpain-1, STAT3 and p-STAT3 were determined at the animal and cellular levels.

Results

At the mouse and cellular levels, hypoxia promotes inflammation, fibrosis, and cell proliferation, and the expression of calpain-1 and p-STAT3 is also increased. Ginsenoside Rg1 administration and calpain-1 knockdown, MDL-28170, and HY-13818 treatment showed protective effects on hypoxia-induced inflammation, fibrosis, and cell proliferation, which may be associated with the downregulation of calpain-1 and p-STAT3 expression in mice and cells. In addition, overexpression of calpain 1 increased p-STAT3 expression, accelerating the onset of inflammation, fibrosis and cell proliferation in hypoxic PASMCs.

Conclusion

Ginsenoside Rg1 may ameliorate hypoxia-induced pulmonary vascular remodeling by suppressing the calpain-1/STAT3 signaling pathway.

缺氧性肺动脉高压(HPH)是血管重塑的主要病理变化,是由缺氧引起的一种复杂的心肺疾病。一些研究结果表明,人参皂苷Rg1(Rg1)可以改善血管重塑,但Rg1对缺氧诱发的肺动脉高压的作用和机制尚不清楚。本研究旨在探讨 Rg1 对肺动脉高压的潜在作用机制。将 C57BL/6 小鼠、钙蛋白酶-1 基因敲除小鼠和肺动脉平滑肌细胞(PASMCs)暴露在低氧环境中,并进行或不进行不同的处理。在动物和细胞水平测定了 Rg1 和钙蛋白酶-1 沉默对炎症、纤维化、增殖以及钙蛋白酶-1、STAT3 和 p-STAT3 蛋白表达水平的影响。在小鼠和细胞水平上,缺氧会促进炎症、纤维化和细胞增殖,钙蛋白酶-1和p-STAT3的表达也会增加。服用人参皂苷 Rg1 和敲除钙蛋白酶-1、MDL-28170 和 HY-13818 对缺氧诱导的炎症、纤维化和细胞增殖有保护作用,这可能与下调小鼠和细胞中钙蛋白酶-1 和 p-STAT3 的表达有关。此外,过表达钙蛋白酶 1 会增加 p-STAT3 的表达,加速缺氧 PASMCs 的炎症、纤维化和细胞增殖。人参皂苷 Rg1 可通过抑制钙蛋白酶 1/STAT3 信号通路,改善缺氧引起的肺血管重塑。
{"title":"Ginsenoside Rg1 alleviates vascular remodeling in hypoxia-induced pulmonary hypertension mice through the calpain-1/STAT3 signaling pathway","authors":"Chenyang Ran ,&nbsp;Meili Lu ,&nbsp;Fang Zhao ,&nbsp;Yi Hao ,&nbsp;Xinyu Guo ,&nbsp;Yunhan Li ,&nbsp;Yuhong Su ,&nbsp;Hongxin Wang","doi":"10.1016/j.jgr.2024.03.001","DOIUrl":"10.1016/j.jgr.2024.03.001","url":null,"abstract":"<div><h3>Background</h3><p>Hypoxic pulmonary hypertension (HPH) is the main pathological change in vascular remodeling, a complex cardiopulmonary disease caused by hypoxia. Some research results have shown that ginsenoside Rg1 (Rg1) can improve vascular remodeling, but the effect and mechanism of Rg1 on hypoxia-induced pulmonary hypertension are not clear. The purpose of this study was to discuss the potential mechanism of action of Rg1 on HPH.</p></div><div><h3>Methods</h3><p>C57BL/6 mice, calpain-1 knockout mice and Pulmonary artery smooth muscle cells (PASMCs) were exposed to a low oxygen environment with or without different treatments. The effect of Rg1 and calpain-1 silencing on inflammation, fibrosis, proliferation and the protein expression levels of calpain-1, STAT3 and p-STAT3 were determined at the animal and cellular levels.</p></div><div><h3>Results</h3><p>At the mouse and cellular levels, hypoxia promotes inflammation, fibrosis, and cell proliferation, and the expression of calpain-1 and p-STAT3 is also increased. Ginsenoside Rg1 administration and calpain-1 knockdown, MDL-28170, and HY-13818 treatment showed protective effects on hypoxia-induced inflammation, fibrosis, and cell proliferation, which may be associated with the downregulation of calpain-1 and p-STAT3 expression in mice and cells. In addition, overexpression of calpain 1 increased p-STAT3 expression, accelerating the onset of inflammation, fibrosis and cell proliferation in hypoxic PASMCs.</p></div><div><h3>Conclusion</h3><p>Ginsenoside Rg1 may ameliorate hypoxia-induced pulmonary vascular remodeling by suppressing the calpain-1/STAT3 signaling pathway.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000368/pdfft?md5=5c8375528982f82bfdbdf52fa0197a72&pid=1-s2.0-S1226845324000368-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140152499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ginseng Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1