Willem Bonnaffé, Alain Danet, Camille Leclerc, Victor Frossard, Eric Edeline, Arnaud Sentis
Nutrient enrichment and climate warming threaten freshwater systems. Metabolic theory and the paradox of enrichment predict that both stressors independently can lead to simpler food-webs having fewer nodes, shorter food-chains and lower connectance, but cancel each other's effects when simultaneously present. Yet, these theoretical predictions remain untested in complex natural systems. We inferred the food-web structure of 256 lakes and 373 streams from standardized fish community samplings in France. Contrary to theoretical predictions, we found that warming shortens fish food-chain length and that this effect was magnified in enriched streams and lakes. Additionally, lakes experiencing enrichment exhibit lower connectance in their fish food-webs. Our study suggests that warming and enrichment interact to magnify food-web simplification in nature, raising further concerns about the fate of freshwater systems as climate change effects will dramatically increase in the coming decades.
{"title":"The interaction between warming and enrichment accelerates food-web simplification in freshwater systems","authors":"Willem Bonnaffé, Alain Danet, Camille Leclerc, Victor Frossard, Eric Edeline, Arnaud Sentis","doi":"10.1111/ele.14480","DOIUrl":"10.1111/ele.14480","url":null,"abstract":"<p>Nutrient enrichment and climate warming threaten freshwater systems. Metabolic theory and the paradox of enrichment predict that both stressors independently can lead to simpler food-webs having fewer nodes, shorter food-chains and lower connectance, but cancel each other's effects when simultaneously present. Yet, these theoretical predictions remain untested in complex natural systems. We inferred the food-web structure of 256 lakes and 373 streams from standardized fish community samplings in France. Contrary to theoretical predictions, we found that warming shortens fish food-chain length and that this effect was magnified in enriched streams and lakes. Additionally, lakes experiencing enrichment exhibit lower connectance in their fish food-webs. Our study suggests that warming and enrichment interact to magnify food-web simplification in nature, raising further concerns about the fate of freshwater systems as climate change effects will dramatically increase in the coming decades.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 8","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14480","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cailan Jeynes-Smith, Michael Bode, Robyn P. Araujo
Resilient ecological systems are more likely to persist and function in the Anthropocene. Current methods for estimating an ecosystem's resilience rely on accurately parameterized ecosystem models, which is a significant empirical challenge. In this paper, we adapt tools from biochemical kinetics to identify ecological networks that exhibit ‘structural resilience’, a strong form of resilience that is solely a property of the network structure and is independent of model parameters. We undertake an exhaustive search for structural resilience across all three-species ecological networks, under a generalized Lotka-Volterra modelling framework. Out of 20,000 possible network structures, approximately 2% display structural resilience. The properties of these networks provide important insights into the mechanisms that could promote resilience in ecosystems, provide new theoretical avenues for qualitative modelling approaches and provide a foundation for identifying robust forms of ecological resilience in large, realistic ecological networks.
{"title":"Identifying and explaining resilience in ecological networks","authors":"Cailan Jeynes-Smith, Michael Bode, Robyn P. Araujo","doi":"10.1111/ele.14484","DOIUrl":"10.1111/ele.14484","url":null,"abstract":"<p>Resilient ecological systems are more likely to persist and function in the Anthropocene. Current methods for estimating an ecosystem's resilience rely on accurately parameterized ecosystem models, which is a significant empirical challenge. In this paper, we adapt tools from biochemical kinetics to identify ecological networks that exhibit ‘structural resilience’, a strong form of resilience that is solely a property of the network structure and is independent of model parameters. We undertake an exhaustive search for structural resilience across all three-species ecological networks, under a generalized Lotka-Volterra modelling framework. Out of 20,000 possible network structures, approximately 2% display structural resilience. The properties of these networks provide important insights into the mechanisms that could promote resilience in ecosystems, provide new theoretical avenues for qualitative modelling approaches and provide a foundation for identifying robust forms of ecological resilience in large, realistic ecological networks.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 8","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14484","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin G. Freeman, Eliot T. Miller, Matthew Strimas-Mackey
The hypothesis that species' ranges are limited by interspecific competition has motivated decades of debate, but a general answer remains elusive. Here we test this hypothesis for lowland tropical birds by examining species' precipitation niche breadths. We focus on precipitation because it—not temperature—is the dominant climate variable that shapes the biota of the lowland tropics. We used 3.6 million fine-scale citizen science records from eBird to measure species' precipitation niche breadths in 19 different regions across the globe. Consistent with the predictions of the interspecific competition hypothesis, multiple lines of evidence show that species have narrower precipitation niches in regions with more species. This means species inhabit more specialized precipitation niches in species-rich regions. We predict this niche specialization should make tropical species in high diversity regions disproportionately vulnerable to changes in precipitation regimes; preliminary empirical evidence is consistent with this prediction.
{"title":"Interspecific competition shapes bird species' distributions along tropical precipitation gradients","authors":"Benjamin G. Freeman, Eliot T. Miller, Matthew Strimas-Mackey","doi":"10.1111/ele.14487","DOIUrl":"10.1111/ele.14487","url":null,"abstract":"<p>The hypothesis that species' ranges are limited by interspecific competition has motivated decades of debate, but a general answer remains elusive. Here we test this hypothesis for lowland tropical birds by examining species' precipitation niche breadths. We focus on precipitation because it—not temperature—is the dominant climate variable that shapes the biota of the lowland tropics. We used 3.6 million fine-scale citizen science records from eBird to measure species' precipitation niche breadths in 19 different regions across the globe. Consistent with the predictions of the interspecific competition hypothesis, multiple lines of evidence show that species have narrower precipitation niches in regions with more species. This means species inhabit more specialized precipitation niches in species-rich regions. We predict this niche specialization should make tropical species in high diversity regions disproportionately vulnerable to changes in precipitation regimes; preliminary empirical evidence is consistent with this prediction.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 8","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141858352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cover image is based on the Letter Diversity inhibits foliar fungal diseases in grasslands: Potential mechanisms and temperature dependence by Peng Zhang et al., https://doi.org/10.1111/ele.14435.