Jakub Szymkowiak, Jessie Foest, Andrew Hacket-Pain, Valentin Journé, Davide Ascoli, Michał Bogdziewicz
Spatial synchrony may be tail-dependent, meaning it is stronger for peaks rather than troughs, or vice versa. High interannual variation in seed production in perennial plants, called masting, can be synchronized at subcontinental scales, triggering extensive resource pulses or famines. We used data from 99 populations of European beech (Fagus sylvatica) to examine whether masting synchrony differs between mast peaks and years of seed scarcity. Our results revealed that seed scarcity occurs simultaneously across the majority of the species range, extending to populations separated by distances up to 1800 km. Mast peaks were spatially synchronized at distances up to 1000 km and synchrony was geographically concentrated in northeastern Europe. Extensive synchrony in the masting lower tail means that famines caused by beech seed scarcity are amplified by their extensive spatial synchrony, with diverse consequences for food web functioning and climate change biology.
{"title":"Tail-dependence of masting synchrony results in continent-wide seed scarcity","authors":"Jakub Szymkowiak, Jessie Foest, Andrew Hacket-Pain, Valentin Journé, Davide Ascoli, Michał Bogdziewicz","doi":"10.1111/ele.14474","DOIUrl":"10.1111/ele.14474","url":null,"abstract":"<p>Spatial synchrony may be tail-dependent, meaning it is stronger for peaks rather than troughs, or vice versa. High interannual variation in seed production in perennial plants, called masting, can be synchronized at subcontinental scales, triggering extensive resource pulses or famines. We used data from 99 populations of European beech (<i>Fagus sylvatica</i>) to examine whether masting synchrony differs between mast peaks and years of seed scarcity. Our results revealed that seed scarcity occurs simultaneously across the majority of the species range, extending to populations separated by distances up to 1800 km. Mast peaks were spatially synchronized at distances up to 1000 km and synchrony was geographically concentrated in northeastern Europe. Extensive synchrony in the masting lower tail means that famines caused by beech seed scarcity are amplified by their extensive spatial synchrony, with diverse consequences for food web functioning and climate change biology.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 7","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam Tomašových, Michał Kowalewski, Rafał Nawrot, Daniele Scarponi, Martin Zuschin
Species diversity increases with the temporal grain of samples according to the species–time relationship (STR), impacting palaeoecological analyses because the temporal grain (time averaging) of fossil assemblages varies by several orders of magnitude. We predict a positive relation between total abundance and sample size-independent diversity (ADR) in fossil assemblages because an increase in time averaging, determined by a decreasing sediment accumulation, should increase abundance and depress species dominance. We demonstrate that, in contrast to negative ADR of non-averaged living assemblages, the ADR of Holocene fossil assemblages is positive, unconditionally or when conditioned on the energy availability gradient. However, the positive fossil ADR disappears when conditioned on sediment accumulation, demonstrating that ADR is a signature of diversity scaling induced by variable time averaging. Conditioning ADR on sediment accumulation can identify and remove the scaling effect caused by time averaging, providing an avenue for unbiased biodiversity comparisons across space and time.
{"title":"Abundance–diversity relationship as a unique signature of temporal scaling in the fossil record","authors":"Adam Tomašových, Michał Kowalewski, Rafał Nawrot, Daniele Scarponi, Martin Zuschin","doi":"10.1111/ele.14470","DOIUrl":"10.1111/ele.14470","url":null,"abstract":"<p>Species diversity increases with the temporal grain of samples according to the species–time relationship (STR), impacting palaeoecological analyses because the temporal grain (time averaging) of fossil assemblages varies by several orders of magnitude. We predict a positive relation between total abundance and sample size-independent diversity (ADR) in fossil assemblages because an increase in time averaging, determined by a decreasing sediment accumulation, should increase abundance and depress species dominance. We demonstrate that, in contrast to negative ADR of non-averaged living assemblages, the ADR of Holocene fossil assemblages is positive, unconditionally or when conditioned on the energy availability gradient. However, the positive fossil ADR disappears when conditioned on sediment accumulation, demonstrating that ADR is a signature of diversity scaling induced by variable time averaging. Conditioning ADR on sediment accumulation can identify and remove the scaling effect caused by time averaging, providing an avenue for unbiased biodiversity comparisons across space and time.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 7","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengfei Dang, Miaomiao Zhang, Xinli Chen, Michel Loreau, J. Emmett Duffy, Xin'e Li, Shuyue Wen, Xiaoqing Han, Lechen Liao, Tiantian Huang, Chenxi Wan, Xiaoliang Qin, Kadambot H. M. Siddique, Bernhard Schmid
The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE—a critical but previously unexamined aspect of biodiversity–ecosystem functioning.
{"title":"Plant diversity decreases greenhouse gas emissions by increasing soil and plant carbon storage in terrestrial ecosystems","authors":"Pengfei Dang, Miaomiao Zhang, Xinli Chen, Michel Loreau, J. Emmett Duffy, Xin'e Li, Shuyue Wen, Xiaoqing Han, Lechen Liao, Tiantian Huang, Chenxi Wan, Xiaoliang Qin, Kadambot H. M. Siddique, Bernhard Schmid","doi":"10.1111/ele.14469","DOIUrl":"10.1111/ele.14469","url":null,"abstract":"<p>The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO<sub>2</sub>), nitrous oxide (N<sub>2</sub>O) and methane (CH<sub>4</sub>). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N<sub>2</sub>O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO<sub>2</sub> emissions, CH<sub>4</sub> emissions or CH<sub>4</sub> uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE—a critical but previously unexamined aspect of biodiversity–ecosystem functioning.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 7","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alicia Mastretta-Yanes, Jessica M. da Silva, Catherine E. Grueber, Luis Castillo-Reina, Viktoria Köppä, Brenna R. Forester, W. Chris Funk, Myriam Heuertz, Fumiko Ishihama, Rebecca Jordan, Joachim Mergeay, Ivan Paz-Vinas, Victor Julio Rincon-Parra, Maria Alejandra Rodriguez-Morales, Libertad Arredondo-Amezcua, Gaëlle Brahy, Matt DeSaix, Lily Durkee, Ashley Hamilton, Margaret E. Hunter, Austin Koontz, Iris Lang, María Camila Latorre-Cárdenas, Tanya Latty, Alexander Llanes-Quevedo, Anna J. MacDonald, Meg Mahoney, Caitlin Miller, Juan Francisco Ornelas, Santiago Ramírez-Barahona, Erica Robertson, Isa-Rita M. Russo, Metztli Arcila Santiago, Robyn E. Shaw, Glenn M. Shea, Per Sjögren-Gulve, Emma Suzuki Spence, Taylor Stack, Sofía Suárez, Akio Takenaka, Henrik Thurfjell, Sheela Turbek, Marlien van der Merwe, Fleur Visser, Ana Wegier, Georgina Wood, Eugenia Zarza, Linda Laikre, Sean Hoban
Under the recently adopted Kunming-Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA-based data. However, demonstrating their feasibility requires addressing the methodological challenges of using data gathered from diverse sources, across diverse taxonomic groups, and for countries of varying socio-economic status and biodiversity levels. Here, we assess the genetic indicators for 919 taxa, representing 5271 populations across nine countries, including megadiverse countries and developing economies. Eighty-three percent of the taxa assessed had data available to calculate at least one indicator. Our results show that although the majority of species maintain most populations, 58% of species have populations too small to maintain genetic diversity. Moreover, genetic indicator values suggest that IUCN Red List status and other initiatives fail to assess genetic status, highlighting the critical importance of genetic indicators.
{"title":"Multinational evaluation of genetic diversity indicators for the Kunming-Montreal Global Biodiversity Framework","authors":"Alicia Mastretta-Yanes, Jessica M. da Silva, Catherine E. Grueber, Luis Castillo-Reina, Viktoria Köppä, Brenna R. Forester, W. Chris Funk, Myriam Heuertz, Fumiko Ishihama, Rebecca Jordan, Joachim Mergeay, Ivan Paz-Vinas, Victor Julio Rincon-Parra, Maria Alejandra Rodriguez-Morales, Libertad Arredondo-Amezcua, Gaëlle Brahy, Matt DeSaix, Lily Durkee, Ashley Hamilton, Margaret E. Hunter, Austin Koontz, Iris Lang, María Camila Latorre-Cárdenas, Tanya Latty, Alexander Llanes-Quevedo, Anna J. MacDonald, Meg Mahoney, Caitlin Miller, Juan Francisco Ornelas, Santiago Ramírez-Barahona, Erica Robertson, Isa-Rita M. Russo, Metztli Arcila Santiago, Robyn E. Shaw, Glenn M. Shea, Per Sjögren-Gulve, Emma Suzuki Spence, Taylor Stack, Sofía Suárez, Akio Takenaka, Henrik Thurfjell, Sheela Turbek, Marlien van der Merwe, Fleur Visser, Ana Wegier, Georgina Wood, Eugenia Zarza, Linda Laikre, Sean Hoban","doi":"10.1111/ele.14461","DOIUrl":"10.1111/ele.14461","url":null,"abstract":"<p>Under the recently adopted Kunming-Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA-based data. However, demonstrating their feasibility requires addressing the methodological challenges of using data gathered from diverse sources, across diverse taxonomic groups, and for countries of varying socio-economic status and biodiversity levels. Here, we assess the genetic indicators for 919 taxa, representing 5271 populations across nine countries, including megadiverse countries and developing economies. Eighty-three percent of the taxa assessed had data available to calculate at least one indicator. Our results show that although the majority of species maintain most populations, 58% of species have populations too small to maintain genetic diversity. Moreover, genetic indicator values suggest that IUCN Red List status and other initiatives fail to assess genetic status, highlighting the critical importance of genetic indicators.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 7","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14461","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clara Marino, Lysandre Journiac, Chunlong Liu, Jonathan M. Jeschke, Céline Bellard
A branch of island biogeography has emerged to explain alien species diversity in the light of the biogeographic and anthropogenic context, yet overlooking the functional and phylogenetic facets. Evaluating alien and native birds of 407 oceanic islands worldwide, we built structural equation models to assess the direct and indirect influence of biotic, geographic, and anthropogenic contexts on alien functional diversity (FD) and phylogenetic diversity (PD). We found that alien taxonomic richness was the main predictor of both diversities. Anthropogenic factors, including colonization pressure, associated with classic biogeographical variables also strongly influenced alien FD and PD. Specifically, habitat modification and human connectivity markedly drove alien FD, especially when controlled by taxonomic richness, whereas the human population size, gross domestic product, and native PD were crucial at explaining alien PD. Our findings suggest that humans not only shape taxonomic richness but also other facets of alien diversity in a complex way.
{"title":"The anthropocene biogeography of alien birds on islands: Drivers of their functional and phylogenetic diversities","authors":"Clara Marino, Lysandre Journiac, Chunlong Liu, Jonathan M. Jeschke, Céline Bellard","doi":"10.1111/ele.14465","DOIUrl":"10.1111/ele.14465","url":null,"abstract":"<p>A branch of island biogeography has emerged to explain alien species diversity in the light of the biogeographic and anthropogenic context, yet overlooking the functional and phylogenetic facets. Evaluating alien and native birds of 407 oceanic islands worldwide, we built structural equation models to assess the direct and indirect influence of biotic, geographic, and anthropogenic contexts on alien functional diversity (FD) and phylogenetic diversity (PD). We found that alien taxonomic richness was the main predictor of both diversities. Anthropogenic factors, including colonization pressure, associated with classic biogeographical variables also strongly influenced alien FD and PD. Specifically, habitat modification and human connectivity markedly drove alien FD, especially when controlled by taxonomic richness, whereas the human population size, gross domestic product, and native PD were crucial at explaining alien PD. Our findings suggest that humans not only shape taxonomic richness but also other facets of alien diversity in a complex way.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 6","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14465","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James A. Orr, Samuel J. Macaulay, Adriana Mordente, Benjamin Burgess, Dania Albini, Julia G. Hunn, Katherin Restrepo-Sulez, Ramesh Wilson, Anne Schechner, Aoife M. Robertson, Bethany Lee, Blake R. Stuparyk, Delezia Singh, Isobel O'Loughlin, Jeremy J. Piggott, Jiangqiu Zhu, Khuong V. Dinh, Louise C. Archer, Marcin Penk, Minh Thi Thuy Vu, Noël P. D. Juvigny-Khenafou, Peiyu Zhang, Philip Sanders, Ralf B. Schäfer, Rolf D. Vinebrooke, Sabine Hilt, Thomas Reed, Michelle C. Jackson
Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.
{"title":"Studying interactions among anthropogenic stressors in freshwater ecosystems: A systematic review of 2396 multiple-stressor experiments","authors":"James A. Orr, Samuel J. Macaulay, Adriana Mordente, Benjamin Burgess, Dania Albini, Julia G. Hunn, Katherin Restrepo-Sulez, Ramesh Wilson, Anne Schechner, Aoife M. Robertson, Bethany Lee, Blake R. Stuparyk, Delezia Singh, Isobel O'Loughlin, Jeremy J. Piggott, Jiangqiu Zhu, Khuong V. Dinh, Louise C. Archer, Marcin Penk, Minh Thi Thuy Vu, Noël P. D. Juvigny-Khenafou, Peiyu Zhang, Philip Sanders, Ralf B. Schäfer, Rolf D. Vinebrooke, Sabine Hilt, Thomas Reed, Michelle C. Jackson","doi":"10.1111/ele.14463","DOIUrl":"10.1111/ele.14463","url":null,"abstract":"<p>Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 6","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14463","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Tucker Gilman, Mark R. Muldoon, Spyridon Megremis, David L. Robertson, Nina Chanishvili, Nikolaos G. Papadopoulos
Microbiomes are ecosystems, and their stability can impact the health of their hosts. Theory predicts that predators influence ecosystem stability. Phages are key predators of bacteria in microbiomes, but phages are unusual predators because many have lysogenic life cycles. It has been hypothesized that lysogeny can destabilize microbiomes, but lysogeny has no direct analog in classical ecological theory, and no formal theory exists. We studied the stability of computationally simulated microbiomes with different numbers of temperate (lysogenic) and virulent (obligate lytic) phage species. Bacterial populations were more likely to fluctuate over time when there were more temperate phages species. After disturbances, bacterial populations returned to their pre-disturbance densities more slowly when there were more temperate phage species, but cycles engendered by disturbances dampened more slowly when there were more virulent phage species. Our work offers the first formal theory linking lysogeny to microbiome stability.
{"title":"Lysogeny destabilizes computationally simulated microbiomes","authors":"R. Tucker Gilman, Mark R. Muldoon, Spyridon Megremis, David L. Robertson, Nina Chanishvili, Nikolaos G. Papadopoulos","doi":"10.1111/ele.14464","DOIUrl":"https://doi.org/10.1111/ele.14464","url":null,"abstract":"<p>Microbiomes are ecosystems, and their stability can impact the health of their hosts. Theory predicts that predators influence ecosystem stability. Phages are key predators of bacteria in microbiomes, but phages are unusual predators because many have lysogenic life cycles. It has been hypothesized that lysogeny can destabilize microbiomes, but lysogeny has no direct analog in classical ecological theory, and no formal theory exists. We studied the stability of computationally simulated microbiomes with different numbers of temperate (lysogenic) and virulent (obligate lytic) phage species. Bacterial populations were more likely to fluctuate over time when there were more temperate phages species. After disturbances, bacterial populations returned to their pre-disturbance densities more slowly when there were more temperate phage species, but cycles engendered by disturbances dampened more slowly when there were more virulent phage species. Our work offers the first formal theory linking lysogeny to microbiome stability.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 6","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14464","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amy K. Wray, Marcus Z. Peery, Jade M. Kochanski, Emma Pelton, Daniel L. Lindner, Claudio Gratton
In North America, white-nose syndrome (WNS) has caused precipitous declines in hibernating bat populations, raising the question of whether the rapid loss of arthropodivorous bats may affect the abundance of their prey. During the summers of 2015–2018 (1 year after the arrival of WNS in Wisconsin, USA), we performed intensive arthropod black-light trapping, ultrasonic acoustic monitoring, and emergence counts at 10 little brown (Myotis lucifugus) and big brown (Eptesicus fuscus) bat maternity roosts with paired control sites. For little brown bats, which are severely affected by WNS, roost counts declined by 95% over the four-year period, compared to a 38% decline in big brown bat roost counts. Total arthropod abundance decreased by 49%, although decreases among common little brown bat prey were less severe. Our natural predator exclusion experiment supports existing evidence that bats can have measurable trophic impacts on arthropod communities, primarily via top-down effects on common prey.
{"title":"Heterogenous effects of bat declines from white-nose syndrome on arthropods","authors":"Amy K. Wray, Marcus Z. Peery, Jade M. Kochanski, Emma Pelton, Daniel L. Lindner, Claudio Gratton","doi":"10.1111/ele.14437","DOIUrl":"https://doi.org/10.1111/ele.14437","url":null,"abstract":"<p>In North America, white-nose syndrome (WNS) has caused precipitous declines in hibernating bat populations, raising the question of whether the rapid loss of arthropodivorous bats may affect the abundance of their prey. During the summers of 2015–2018 (1 year after the arrival of WNS in Wisconsin, USA), we performed intensive arthropod black-light trapping, ultrasonic acoustic monitoring, and emergence counts at 10 little brown (<i>Myotis lucifugus</i>) and big brown (<i>Eptesicus fuscus</i>) bat maternity roosts with paired control sites. For little brown bats, which are severely affected by WNS, roost counts declined by 95% over the four-year period, compared to a 38% decline in big brown bat roost counts. Total arthropod abundance decreased by 49%, although decreases among common little brown bat prey were less severe. Our natural predator exclusion experiment supports existing evidence that bats can have measurable trophic impacts on arthropod communities, primarily via top-down effects on common prey.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 6","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Justine A. Smith, Megan E. McDaniels, Scott D. Peacor, Ellen C. Bolas, Michael J. Cherry, Nathan J. Dorn, Olivia K. Feldman, David L. Kimbro, Emily K. Leonhardt, Nicole E. Peckham, Michael J. Sheriff, Kaitlyn M. Gaynor
Human activities catalyse risk avoidance behaviours in wildlife across taxa and systems. However, the broader ecological significance of human-induced risk perception remains unclear, with a limited understanding of how phenotypic responses scale up to affect population or community dynamics. We present a framework informed by predator–prey ecology to predict the occurrence of non-consumptive effects (NCE) and trait-mediated indirect effects (TMIE) of anthropogenic disturbances. We report evidence from a comprehensive review of the different types of human-induced behavioural and physiological phenotypic changes and their influence on vital rates and population parameters in wildlife. Evidence for human-induced NCEs and TMIEs is mixed, with half of published studies finding a relationship between human activities, phenotypic change and population outcomes. The net effects of anthropogenic NCEs and TMIEs depend on the mismatch between the phenotypic response and the lethality of human activity. However, strong research biases in taxa, systems, human disturbance types and demographic measures prevent unified inference about the prevalence of population responses to human activities. Coexistence with and conservation of wildlife requires additional research linking human-induced phenotypic change to population and community outcomes.
{"title":"Population and community consequences of perceived risk from humans in wildlife","authors":"Justine A. Smith, Megan E. McDaniels, Scott D. Peacor, Ellen C. Bolas, Michael J. Cherry, Nathan J. Dorn, Olivia K. Feldman, David L. Kimbro, Emily K. Leonhardt, Nicole E. Peckham, Michael J. Sheriff, Kaitlyn M. Gaynor","doi":"10.1111/ele.14456","DOIUrl":"https://doi.org/10.1111/ele.14456","url":null,"abstract":"<p>Human activities catalyse risk avoidance behaviours in wildlife across taxa and systems. However, the broader ecological significance of human-induced risk perception remains unclear, with a limited understanding of how phenotypic responses scale up to affect population or community dynamics. We present a framework informed by predator–prey ecology to predict the occurrence of non-consumptive effects (NCE) and trait-mediated indirect effects (TMIE) of anthropogenic disturbances. We report evidence from a comprehensive review of the different types of human-induced behavioural and physiological phenotypic changes and their influence on vital rates and population parameters in wildlife. Evidence for human-induced NCEs and TMIEs is mixed, with half of published studies finding a relationship between human activities, phenotypic change and population outcomes. The net effects of anthropogenic NCEs and TMIEs depend on the mismatch between the phenotypic response and the lethality of human activity. However, strong research biases in taxa, systems, human disturbance types and demographic measures prevent unified inference about the prevalence of population responses to human activities. Coexistence with and conservation of wildlife requires additional research linking human-induced phenotypic change to population and community outcomes.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 6","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14456","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel de Celis, María José Fernández-Alonso, Ignacio Belda, Carlos García, Raúl Ochoa-Hueso, Javier Palomino, Brajesh K. Singh, Yue Yin, Jun-Tao Wang, Luis Abdala-Roberts, Fernando D. Alfaro, Diego Angulo-Pérez, Manoj-Kumar Arthikala, Jason Corwin, Duan Gui-Lan, Antonio Hernandez-Lopez, Kalpana Nanjareddy, Babak Pasari, Teresa Quijano-Medina, Daniela S. Rivera, Salar Shaaf, Pankaj Trivedi, Qingwen Yang, Eli Zaady, Yong-Guan Zhu, Manuel Delgado-Baquerizo, Rubén Milla, Pablo García-Palacios
The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence—a comparison between rhizosphere and bulk soil samples—on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.
{"title":"The abundant fraction of soil microbiomes regulates the rhizosphere function in crop wild progenitors","authors":"Miguel de Celis, María José Fernández-Alonso, Ignacio Belda, Carlos García, Raúl Ochoa-Hueso, Javier Palomino, Brajesh K. Singh, Yue Yin, Jun-Tao Wang, Luis Abdala-Roberts, Fernando D. Alfaro, Diego Angulo-Pérez, Manoj-Kumar Arthikala, Jason Corwin, Duan Gui-Lan, Antonio Hernandez-Lopez, Kalpana Nanjareddy, Babak Pasari, Teresa Quijano-Medina, Daniela S. Rivera, Salar Shaaf, Pankaj Trivedi, Qingwen Yang, Eli Zaady, Yong-Guan Zhu, Manuel Delgado-Baquerizo, Rubén Milla, Pablo García-Palacios","doi":"10.1111/ele.14462","DOIUrl":"https://doi.org/10.1111/ele.14462","url":null,"abstract":"<p>The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence—a comparison between rhizosphere and bulk soil samples—on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 6","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14462","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}