首页 > 最新文献

Journal of Nanotechnology最新文献

英文 中文
Production of Lactobionic Acid Using Gold Nanoparticles Synthesized with Fruit Myrciaria dubia Extract 以桃金娘提取物合成金纳米颗粒制备乳酸
IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-07-01 DOI: 10.1155/2023/5654802
Jeaneth M. Medina-Pérez, Melanie A. Zegarra-Zegarra, J. Villanueva-Salas, B. M. Salazar-Pinto, S. S. Flores-Calla, Angel G. Ramírez-Valverde, Hugo G. Jiménez-Pacheco, E. G. Gonzales-Condori
Lactobionic acid (LBA) is a polyhydroxy acid with attractive properties in the pharmaceutical, cosmetic, food, medical, and chemical industries, making it a versatile product with multiple applications, which supports the various studies aimed at its production by increasingly more simple, efficient, and environmentally friendly processes. For this reason, the purpose of this research was to synthesize gold nanoparticles (AuNPs) by a synthesis process using Myrciaria dubia (Camu camu) fruit extract. Subsequently, AuNPs were used to produce LBA from lactose. The results demonstrate that the Myrciaria dubia extract manages to synthesize AuNPs that were characterized by UV/vis spectrophotometry, energy-dispersive X-ray spectroscopy (EDX), and Zetasizer. LBA was quantified by FTIR-ATR spectroscopy and ion chromatography. The results showed that AuNPs succeeded in producing LBA from lactose showing the highest LBA production efficiency at a dose of 0.5 g/L and a temperature of 60°C. It has been shown that the AuNPs obtained by synthesis using the Myrciaria dubia extract efficiently catalyze the production of LBA from lactose, with a yield of 45.24%, which can be used to produce LBA for industrial or research purposes.
乳酸(LBA)是一种多羟基酸,在制药、化妆品、食品、医疗和化学工业中具有吸引人的特性,使其成为一种具有多种应用的多功能产品,它支持各种旨在通过越来越简单、高效和环保的工艺生产的研究。为此,本研究以桃金娘果实提取物为原料合成金纳米颗粒(AuNPs)。随后,aunp被用于从乳糖中产生LBA。结果表明,桃金娘提取物能够合成AuNPs,并通过紫外/可见分光光度法、能量色散x射线光谱(EDX)和Zetasizer对其进行了表征。采用FTIR-ATR光谱法和离子色谱法定量测定LBA。结果表明,AuNPs能成功地从乳糖中产生LBA,在0.5 g/L的剂量和60℃的温度下,产生LBA的效率最高。研究表明,利用桃金娘提取物合成的AuNPs能有效催化乳糖合成LBA,产率达45.24%,可用于工业或科研用途。
{"title":"Production of Lactobionic Acid Using Gold Nanoparticles Synthesized with Fruit Myrciaria dubia Extract","authors":"Jeaneth M. Medina-Pérez, Melanie A. Zegarra-Zegarra, J. Villanueva-Salas, B. M. Salazar-Pinto, S. S. Flores-Calla, Angel G. Ramírez-Valverde, Hugo G. Jiménez-Pacheco, E. G. Gonzales-Condori","doi":"10.1155/2023/5654802","DOIUrl":"https://doi.org/10.1155/2023/5654802","url":null,"abstract":"Lactobionic acid (LBA) is a polyhydroxy acid with attractive properties in the pharmaceutical, cosmetic, food, medical, and chemical industries, making it a versatile product with multiple applications, which supports the various studies aimed at its production by increasingly more simple, efficient, and environmentally friendly processes. For this reason, the purpose of this research was to synthesize gold nanoparticles (AuNPs) by a synthesis process using Myrciaria dubia (Camu camu) fruit extract. Subsequently, AuNPs were used to produce LBA from lactose. The results demonstrate that the Myrciaria dubia extract manages to synthesize AuNPs that were characterized by UV/vis spectrophotometry, energy-dispersive X-ray spectroscopy (EDX), and Zetasizer. LBA was quantified by FTIR-ATR spectroscopy and ion chromatography. The results showed that AuNPs succeeded in producing LBA from lactose showing the highest LBA production efficiency at a dose of 0.5 g/L and a temperature of 60°C. It has been shown that the AuNPs obtained by synthesis using the Myrciaria dubia extract efficiently catalyze the production of LBA from lactose, with a yield of 45.24%, which can be used to produce LBA for industrial or research purposes.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"8 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82742962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology 退火处理对反应等离子溅射技术制备的Bi2O3薄膜的晶体学、光学和电学特性的影响
IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-06-09 DOI: 10.1155/2023/8638512
S. J. Beden, Hassan A. Dumboos, M. K. Ismael, Mohanad Kadhim Mejbel
Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.
氧化铋(Bi2O3)在利用反应等离子溅射(RPS)技术辅助退火处理的测试薄膜方面引起了相当大的研究兴趣,从而可以开发出各种BixOx薄膜。利用扫描电子显微镜、相x射线衍射图、紫外可见光谱和直流双探针鉴定了薄膜的晶体结构,并评估了薄膜的光电性能。XRD分析表明,在30 ~ 35℃的碱玻璃衬底温度下,溅射时间为40 min,形成了具有非晶到多相结构的Bi2O3薄膜。在200、300、400和500℃退火热处理后,Bi2O3薄膜的晶体结构得到改善。然而,在较高的温度下会形成晶相(β-Bi2O3与δ-Bi2O3)的纳米结构。SEM图像显示透明颗粒受退火温度影响较大。纳米结构长102 ~ 510 nm,直径50 ~ 100 nm。Bi2O3薄膜的光学带隙和纳米结构在2.75 ~ 3.05 eV之间。退火温度的差异影响了晶体尺寸、光学带隙和表面粗糙度。结果表明,这些差异导致了Bi2O3结构的相变。电学计算表明,典型半导体薄膜的电导率在150 ~ 250℃退火温度下提高,在300 ~ 500℃退火温度下下降。
{"title":"The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology","authors":"S. J. Beden, Hassan A. Dumboos, M. K. Ismael, Mohanad Kadhim Mejbel","doi":"10.1155/2023/8638512","DOIUrl":"https://doi.org/10.1155/2023/8638512","url":null,"abstract":"Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"299 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78330003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Green Cerium Oxide Nanoparticles Using Plant Waste from Colocasia esculenta for Seed Germination of Mung Bean (Vigna radiata) 利用绿豆植物废料合成绿色氧化铈纳米颗粒用于绿豆种子萌发
IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-05-30 DOI: 10.1155/2023/9572025
Nor Monica Ahmad, Nor’ Aishah Hasan
Synthesis of cerium oxide (CeO2) nanoparticles (NPs) via biological approach has received a lot of interest to reduce the harmful effects of chemical synthesis. In the present study, Colocasia esculenta leaf extract facilitated the preparation of CeO2-NPs by using the sol-gel technique. The crystal structural of CeO2-NPs was proven by X-ray powder diffraction (XRD) investigation to be cubic with size of 2.94 nm according to Debye–Scherrer equation. As demonstrated in the transmission electron microscopy (TEM) image, CeO2-NPs have a spherical form with an average size of 2.04 nm which is almost consistent with a finding from XRD analysis. Energy dispersive X-ray (EDX) measurements exhibited high-intensity peaks attributed to Ce and oxygen and further proved the creation of CeO2-NPs. The Fourier transform infrared spectroscopy (FTIR) analysis revealed the presence of Ce-O stretching, indicating the formation of CeO2-NPs. Functional groups of O-H, C-O, and C=O peaks were found in a spectrum due to the phytochemical components that were responsible for reducing and stabilizing during the synthesis process of CeO2-NPs. The examined UV-visible spectra exhibited the absorbance peak at 213 nm. The synthesized NPs produced in this study were further investigated for mung bean seed germination, whereby the influence of grain germination and growth rate demonstrated the significant finding.
利用生物方法合成氧化铈纳米颗粒(CeO2)以减少化学合成的有害影响已引起人们的广泛关注。本研究以土芋叶提取物为原料,采用溶胶-凝胶法制备CeO2-NPs。根据Debye-Scherrer方程,x射线粉末衍射(XRD)证实CeO2-NPs的晶体结构为立方结构,尺寸为2.94 nm。透射电子显微镜(TEM)图像显示,CeO2-NPs呈球形,平均尺寸为2.04 nm,与XRD分析结果基本一致。能量色散x射线(EDX)测量显示出归因于Ce和氧的高强度峰,进一步证明了CeO2-NPs的产生。傅里叶变换红外光谱(FTIR)分析显示Ce-O拉伸的存在,表明CeO2-NPs的形成。由于在CeO2-NPs合成过程中负责还原和稳定的植物化学成分,在光谱中发现了O- h、C-O和C=O的官能团。紫外可见光谱在213 nm处出现吸光度峰。进一步研究了合成的NPs对绿豆种子萌发的影响,发现籽粒萌发率和生长速率对绿豆种子萌发的影响具有显著性。
{"title":"Synthesis of Green Cerium Oxide Nanoparticles Using Plant Waste from Colocasia esculenta for Seed Germination of Mung Bean (Vigna radiata)","authors":"Nor Monica Ahmad, Nor’ Aishah Hasan","doi":"10.1155/2023/9572025","DOIUrl":"https://doi.org/10.1155/2023/9572025","url":null,"abstract":"Synthesis of cerium oxide (CeO2) nanoparticles (NPs) via biological approach has received a lot of interest to reduce the harmful effects of chemical synthesis. In the present study, Colocasia esculenta leaf extract facilitated the preparation of CeO2-NPs by using the sol-gel technique. The crystal structural of CeO2-NPs was proven by X-ray powder diffraction (XRD) investigation to be cubic with size of 2.94 nm according to Debye–Scherrer equation. As demonstrated in the transmission electron microscopy (TEM) image, CeO2-NPs have a spherical form with an average size of 2.04 nm which is almost consistent with a finding from XRD analysis. Energy dispersive X-ray (EDX) measurements exhibited high-intensity peaks attributed to Ce and oxygen and further proved the creation of CeO2-NPs. The Fourier transform infrared spectroscopy (FTIR) analysis revealed the presence of Ce-O stretching, indicating the formation of CeO2-NPs. Functional groups of O-H, C-O, and C=O peaks were found in a spectrum due to the phytochemical components that were responsible for reducing and stabilizing during the synthesis process of CeO2-NPs. The examined UV-visible spectra exhibited the absorbance peak at 213 nm. The synthesized NPs produced in this study were further investigated for mung bean seed germination, whereby the influence of grain germination and growth rate demonstrated the significant finding.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"362 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78977187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Multilayers CdS Nanocrystalline Thin Films on the Performance of Dye-Sensitized Solar Cells 多层CdS纳米晶薄膜对染料敏化太阳能电池性能的影响
IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-05-23 DOI: 10.1155/2023/7998917
A. A. Hussain, Haider Abdulelah, A. H. Amteghy, Raed A. Dheyab, Ban Hamdan AlMulla
Due to relatively low price and nontoxicity of photovoltaic (PV) systems, dye-sensitized solar cells (DSSCs) recently gained a lot of attention in terms of improving their performance and longevity. Because most of the major elements are impacted by their separate production and layering procedures, the substances in DSSCs are critical to achieving these goals. Methylene blue dye sensitizer-based solar cells were effectively constructed in this work, and DSSC performance was assessed. The morphologies of nanocrystalline CdS thin films were investigated by the FE-SEM machine, and then XRD patterns of 1 layer, 2 layers, and 3 layers of nanocrystalline CdS thin films were analyzed. The thicknesses of the prepared samples were about 391 nm, 457 nm, and 912 nm for 1, 2, and 3 layers of nanocrystalline CdS thin film, respectively. J-V characteristics of the multilayer CdS thin films have been studied under a 100 mW/cm2 sunlight source. The experimental results revealed that the highest power conversion efficiency of a 3 layer porous-nanowall CdS/MB device was about 0.47%.
由于光伏(PV)系统价格低廉且无毒,染料敏化太阳能电池(DSSCs)近年来在提高其性能和寿命方面受到了广泛关注。由于大多数主要元素都受到各自生产和分层过程的影响,因此DSSCs中的物质对于实现这些目标至关重要。本文构建了基于亚甲基蓝染料敏化剂的太阳能电池,并对DSSC的性能进行了评估。利用FE-SEM对纳米晶CdS薄膜的形貌进行了研究,并对1层、2层和3层纳米晶CdS薄膜的XRD谱图进行了分析。制备的1层、2层和3层纳米晶CdS薄膜的厚度分别约为391nm、457nm和912nm。在100mw /cm2的太阳光照射下,研究了多层CdS薄膜的J-V特性。实验结果表明,3层多孔纳米壁CdS/MB器件的最高功率转换效率约为0.47%。
{"title":"Effect of Multilayers CdS Nanocrystalline Thin Films on the Performance of Dye-Sensitized Solar Cells","authors":"A. A. Hussain, Haider Abdulelah, A. H. Amteghy, Raed A. Dheyab, Ban Hamdan AlMulla","doi":"10.1155/2023/7998917","DOIUrl":"https://doi.org/10.1155/2023/7998917","url":null,"abstract":"Due to relatively low price and nontoxicity of photovoltaic (PV) systems, dye-sensitized solar cells (DSSCs) recently gained a lot of attention in terms of improving their performance and longevity. Because most of the major elements are impacted by their separate production and layering procedures, the substances in DSSCs are critical to achieving these goals. Methylene blue dye sensitizer-based solar cells were effectively constructed in this work, and DSSC performance was assessed. The morphologies of nanocrystalline CdS thin films were investigated by the FE-SEM machine, and then XRD patterns of 1 layer, 2 layers, and 3 layers of nanocrystalline CdS thin films were analyzed. The thicknesses of the prepared samples were about 391 nm, 457 nm, and 912 nm for 1, 2, and 3 layers of nanocrystalline CdS thin film, respectively. J-V characteristics of the multilayer CdS thin films have been studied under a 100 mW/cm2 sunlight source. The experimental results revealed that the highest power conversion efficiency of a 3 layer porous-nanowall CdS/MB device was about 0.47%.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"27 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78833992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Thermodynamics of Silicon Nanowire Growth under Unintended Oxidation of Catalytic Particles 催化颗粒意外氧化下硅纳米线生长的热力学
IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-05-20 DOI: 10.1155/2023/3485793
Valeriy A. Nebol’sin, E. Levchenko, V. Yuryev, N. Swaikat
In this paper, we focus on the thermodynamics of redox reactions occurring during the vapor-liquid-solid (VLS) growth of silicon nanowires (NWs) with the participation of liquid solutions of metal catalysts. The growth of NWs is difficult with the participation of Ti, Al, and Mg particles; this is because in this case, the drops of the metal catalyst are strongly oxidized and crystals either do not form at all or are characterized by instability in the direction of growth. However, the particles of Cu, Ni, and Fe give a much more stable growth of NWs. We have also established that if the oxide film of catalytic particles is formed by the basic metal oxides, then the silicon-NWs' growth slows down. In this work, we have concluded that only metals with a lower chemical affinity for O2 than Si are applicable as catalysts for the NWs' growth.
本文主要研究了在金属催化剂的液体溶液参与下,硅纳米线的气-液-固(VLS)生长过程中氧化还原反应的热力学。在Ti、Al和Mg颗粒的参与下,NWs很难生长;这是因为在这种情况下,金属催化剂的液滴被强烈氧化,晶体要么根本不形成,要么以生长方向不稳定为特征。然而,Cu、Ni和Fe的颗粒使NWs的生长更加稳定。我们还确定,如果催化颗粒的氧化膜是由碱性金属氧化物形成的,那么硅- nws的生长就会减慢。在这项工作中,我们已经得出结论,只有对O2的化学亲和力低于Si的金属才能作为NWs生长的催化剂。
{"title":"Thermodynamics of Silicon Nanowire Growth under Unintended Oxidation of Catalytic Particles","authors":"Valeriy A. Nebol’sin, E. Levchenko, V. Yuryev, N. Swaikat","doi":"10.1155/2023/3485793","DOIUrl":"https://doi.org/10.1155/2023/3485793","url":null,"abstract":"In this paper, we focus on the thermodynamics of redox reactions occurring during the vapor-liquid-solid (VLS) growth of silicon nanowires (NWs) with the participation of liquid solutions of metal catalysts. The growth of NWs is difficult with the participation of Ti, Al, and Mg particles; this is because in this case, the drops of the metal catalyst are strongly oxidized and crystals either do not form at all or are characterized by instability in the direction of growth. However, the particles of Cu, Ni, and Fe give a much more stable growth of NWs. We have also established that if the oxide film of catalytic particles is formed by the basic metal oxides, then the silicon-NWs' growth slows down. In this work, we have concluded that only metals with a lower chemical affinity for O2 than Si are applicable as catalysts for the NWs' growth.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"47 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88582538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dexamethasone-Loaded Pseudo-Protein Nanoparticles for Ocular Drug Delivery: Evaluation of Drug Encapsulation Efficiency and Drug Release 含地塞米松的假蛋白质纳米颗粒眼部给药:药物包封效率和药物释放的评价
IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-05-08 DOI: 10.1155/2023/8827248
T. Kantaria, Tengiz Kantaria, P. Heiduschka, N. Eter, D. Tugushi, R. Katsarava
Ophthalmic drug delivery for treating various eye diseases still remains a challenge in ophthalmology. One perspective way of overcoming this problem is to use nanoscale biodegradable drug carriers that are able to safely deliver pharmaceuticals directly to the locus of disease and maintain a therapeutic concentration of drug for a long time. The goal of the present study was the preparation of drug- (dexamethasone-, DEX-) loaded pseudo-protein nanoparticles (NPs) and investigation of drug encapsulation efficiency and drug release kinetics. DEX-loaded pseudo-protein NPs (DEX-NPs) were successfully prepared by the nanoprecipitation method. DEX-NPs were characterized by size (average diameter, AD), size distribution (polydispersity index, PDI), and surface charge (zeta-potential, ZP) using the dynamic light scattering technique. DEX encapsulation characteristics were determined using the UV-spectrophotometric method, and kinetics of DEX release from DEX-NPs was studied according to the dialysis method in PBS at 37°C. The obtained results showed that size of DEX-NPs varies within 143.6–164.1 nm depending on DEX content during the preparation. DEX incorporation characteristics were determined—encapsulation efficiency (EE) and actual drug loading (DL) were high enough and reached 55.1 and 10.2%, respectively. The kinetics of DEX release from DEX-NPs showed a typical biphasic release pattern—an initial rapid (burst) release and further much more continuous slow release. Based on the obtained data, we can conclude that the elaborated DEX-NPs have potential for the application in ophthalmology as ocular drug delivery nanocarriers.
治疗各种眼病的眼科药物递送仍然是眼科的一个挑战。克服这一问题的一种前景方法是使用纳米级生物可降解药物载体,这种载体能够安全地将药物直接输送到疾病部位,并长期保持药物的治疗浓度。本研究的目的是制备负载药物(地塞米松、去氧苄啶)的伪蛋白质纳米颗粒(NPs),并研究其包封效率和药物释放动力学。采用纳米沉淀法成功制备了负载dex的伪蛋白NPs (DEX-NPs)。采用动态光散射技术对DEX-NPs进行了尺寸(平均直径,AD)、尺寸分布(多分散性指数,PDI)和表面电荷(ζ电位,ZP)表征。采用紫外分光光度法测定DEX的包封特性,并采用37℃PBS透析法研究DEX- nps中DEX的释放动力学。结果表明,DEX- nps的粒径随DEX含量的变化在143.6 ~ 164.1 nm之间。测定了DEX的掺入特性——包封率(EE)和实际载药量(DL)足够高,分别达到55.1和10.2%。DEX- nps释放DEX的动力学表现为典型的双相释放模式,即最初的快速(爆发)释放和进一步的连续缓慢释放。根据所获得的数据,我们可以得出结论,精心制作的DEX-NPs具有作为眼部药物递送纳米载体在眼科应用的潜力。
{"title":"Dexamethasone-Loaded Pseudo-Protein Nanoparticles for Ocular Drug Delivery: Evaluation of Drug Encapsulation Efficiency and Drug Release","authors":"T. Kantaria, Tengiz Kantaria, P. Heiduschka, N. Eter, D. Tugushi, R. Katsarava","doi":"10.1155/2023/8827248","DOIUrl":"https://doi.org/10.1155/2023/8827248","url":null,"abstract":"Ophthalmic drug delivery for treating various eye diseases still remains a challenge in ophthalmology. One perspective way of overcoming this problem is to use nanoscale biodegradable drug carriers that are able to safely deliver pharmaceuticals directly to the locus of disease and maintain a therapeutic concentration of drug for a long time. The goal of the present study was the preparation of drug- (dexamethasone-, DEX-) loaded pseudo-protein nanoparticles (NPs) and investigation of drug encapsulation efficiency and drug release kinetics. DEX-loaded pseudo-protein NPs (DEX-NPs) were successfully prepared by the nanoprecipitation method. DEX-NPs were characterized by size (average diameter, AD), size distribution (polydispersity index, PDI), and surface charge (zeta-potential, ZP) using the dynamic light scattering technique. DEX encapsulation characteristics were determined using the UV-spectrophotometric method, and kinetics of DEX release from DEX-NPs was studied according to the dialysis method in PBS at 37°C. The obtained results showed that size of DEX-NPs varies within 143.6–164.1 nm depending on DEX content during the preparation. DEX incorporation characteristics were determined—encapsulation efficiency (EE) and actual drug loading (DL) were high enough and reached 55.1 and 10.2%, respectively. The kinetics of DEX release from DEX-NPs showed a typical biphasic release pattern—an initial rapid (burst) release and further much more continuous slow release. Based on the obtained data, we can conclude that the elaborated DEX-NPs have potential for the application in ophthalmology as ocular drug delivery nanocarriers.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"132 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89728091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Study on the Cotton Fabrics with Photoinduced Reversibly Switchable Wettability 光致可逆可调润湿性棉织物的研究
IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-04-27 DOI: 10.1155/2023/8422293
Caining Zhang, Xuman Wang
Superhydrophobic cotton fabric with photoinduced reversibly switchable wettability was prepared by a coating of the hydrophobic copolymer and α-Fe2O3 nanoparticles. The surface morphology of the fabric was observed by scanning electron microscope (SEM). The wettability of the surface was tested under UV illumination and after storage in the dark. The chemical composition of the cotton fabric surfaces before and after UV illumination was analyzed using an X-ray photoelectron spectroscope (XPS) and FTIR. The experimental results showed that the prepared cotton fabric exhibited the excellent superhydrophobic property with a contact angle (CA) of 157.3 ± 2.9°, and became superhydrophilic after UV illumination for 64 h. The surface wettability reverted back to its initial superhydrophobic state after being stored in the dark for 30 d. Based on the XPS and FTIR analyses, the possible mechanism was discussed, and the switchable wettability was caused by the content change of the hydroxyl groups on the α-Fe2O3 surface. Moreover, the superhydrophobic cotton fabric also became superhydrophilic after sunlight illumination for 120 h.
采用α-Fe2O3纳米粒子包覆该疏水共聚物,制备了具有光致可逆可切换润湿性的超疏水棉织物。利用扫描电镜(SEM)观察织物的表面形貌。在紫外线照射下和在黑暗中储存后,测试了表面的润湿性。利用x射线光电子能谱(XPS)和红外光谱(FTIR)分析了紫外光照射前后棉织物表面的化学成分。实验结果表明,制备的棉织物具有优异的超疏水性,接触角(CA)为157.3±2.9°,经紫外光照射64 h后,织物具有超亲水性。在黑暗中保存30 d后,表面润湿性恢复到最初的超疏水状态。通过XPS和FTIR分析,探讨了α-Fe2O3表面羟基含量变化引起可切换润湿性的可能机理。此外,超疏水棉织物在阳光照射120 h后也变得超亲水。
{"title":"Study on the Cotton Fabrics with Photoinduced Reversibly Switchable Wettability","authors":"Caining Zhang, Xuman Wang","doi":"10.1155/2023/8422293","DOIUrl":"https://doi.org/10.1155/2023/8422293","url":null,"abstract":"Superhydrophobic cotton fabric with photoinduced reversibly switchable wettability was prepared by a coating of the hydrophobic copolymer and α-Fe2O3 nanoparticles. The surface morphology of the fabric was observed by scanning electron microscope (SEM). The wettability of the surface was tested under UV illumination and after storage in the dark. The chemical composition of the cotton fabric surfaces before and after UV illumination was analyzed using an X-ray photoelectron spectroscope (XPS) and FTIR. The experimental results showed that the prepared cotton fabric exhibited the excellent superhydrophobic property with a contact angle (CA) of 157.3 ± 2.9°, and became superhydrophilic after UV illumination for 64 h. The surface wettability reverted back to its initial superhydrophobic state after being stored in the dark for 30 d. Based on the XPS and FTIR analyses, the possible mechanism was discussed, and the switchable wettability was caused by the content change of the hydroxyl groups on the α-Fe2O3 surface. Moreover, the superhydrophobic cotton fabric also became superhydrophilic after sunlight illumination for 120 h.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"30 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87827656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile Synthesis and Application of Ag-NPs for Controlling Antibiotic-ResistantPseudomonas spp. and Bacillus spp. in a Poultry Farm Environment Ag-NPs在家禽养殖环境中控制耐药假单胞菌和芽孢杆菌的简易合成及应用
IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-04-20 DOI: 10.1155/2023/6260066
Aminur Rahman, H. Rasid, Md. Isahak Ali, Nymul Yeachin, M. Alam, K. S. Hossain, M. A. Kafi
This study synthesized silver nanoparticles (Ag-NPs) using silver nitrate (AgNO3) as the ion source and sodium tripolyphosphate (STPP) as reducing as well as capping agents. The synthesized Ag-NPs were confirmed initially using Ag-NPs specific λmax at 410 nm with UV-Vis spectrophotometry and homogenously distributed, 100–300 nm size, and round-shaped particles were realized through atomic force microscopy (AFM) and transmission electron microscopy (TEM) image analysis. The various reaction condition-based studies revealed 0.01 M AgNO3 yields maximum particle after 4 h reduction with 1% STPP. Bacillus spp. (n = 23/90) and Pseudomonas spp. (n = 26/90) were isolated from three different poultry farms for evaluating the antibacterial activity of Ag-NPs. Among the PCR confirmed isolates, 52% (12/23) Bacillus spp. were resistant to ten antibiotics and 65% (17/26) Pseudomonas spp. were resistant to eleven antibiotics. The representative resistant isolates were subjected to antibacterial evaluation of synthesized Ag-NPs following the well diffusion method, revealing the maximum sensitive zone of inhibition 19 ± 0.2 mm against Bacillus spp. and 17 ± 0.38 mm against Pseudomonas spp. The minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of Ag-NPs were 2.1 μg/ml and 8.4 μg/ml, respectively, for broad-spectrum application. Finally, the biocompatibility was determined by observing the viability of Ag-NP-treated BHK-21 cell through trypan blue-based exclusion assay revealing nonsignificant decreased of cell viability ≤2MIC doses. Thus, the synthesized Ag-NPs were proven as biocompatible and sensitive to both Gram-positive and Gram-negative bacteria of the poultry farm environmental samples.
本研究以硝酸银(AgNO3)为离子源,三聚磷酸钠(STPP)为还原和封盖剂,合成了银纳米颗粒(Ag-NPs)。通过紫外-可见分光光度法对合成的Ag-NPs在410 nm处的特异性λmax进行初步验证,并通过原子力显微镜(AFM)和透射电子显微镜(TEM)图像分析实现了100-300 nm的均匀分布和圆形颗粒。各种反应条件下的研究表明,以1%的STPP还原4 h后,得到的AgNO3颗粒最大,为0.01 M。从3个不同的家禽养殖场分离到芽孢杆菌(n = 23/90)和假单胞菌(n = 26/90),评价Ag-NPs的抗菌活性。其中,52%(12/23)的芽孢杆菌对10种抗生素耐药,65%(17/26)的假单胞菌对11种抗生素耐药。采用孔扩散法对具有代表性的耐药菌株进行抑菌评价,对芽孢杆菌和假单胞菌的最大抑制区分别为19±0.2 mm和17±0.38 mm,最低抑菌浓度(MIC)和最低细菌浓度(MBC)分别为2.1 μg/ml和8.4 μg/ml,适合广谱应用。最后,通过台锥蓝排斥实验观察ag - np处理后的BHK-21细胞的活性,发现≤2MIC剂量的BHK-21细胞活性无显著下降。结果表明,所合成的Ag-NPs对禽场环境样品的革兰氏阳性菌和革兰氏阴性菌均具有生物相容性和敏感性。
{"title":"Facile Synthesis and Application of Ag-NPs for Controlling Antibiotic-ResistantPseudomonas spp. and Bacillus spp. in a Poultry Farm Environment","authors":"Aminur Rahman, H. Rasid, Md. Isahak Ali, Nymul Yeachin, M. Alam, K. S. Hossain, M. A. Kafi","doi":"10.1155/2023/6260066","DOIUrl":"https://doi.org/10.1155/2023/6260066","url":null,"abstract":"This study synthesized silver nanoparticles (Ag-NPs) using silver nitrate (AgNO3) as the ion source and sodium tripolyphosphate (STPP) as reducing as well as capping agents. The synthesized Ag-NPs were confirmed initially using Ag-NPs specific λmax at 410 nm with UV-Vis spectrophotometry and homogenously distributed, 100–300 nm size, and round-shaped particles were realized through atomic force microscopy (AFM) and transmission electron microscopy (TEM) image analysis. The various reaction condition-based studies revealed 0.01 M AgNO3 yields maximum particle after 4 h reduction with 1% STPP. Bacillus spp. (n = 23/90) and Pseudomonas spp. (n = 26/90) were isolated from three different poultry farms for evaluating the antibacterial activity of Ag-NPs. Among the PCR confirmed isolates, 52% (12/23) Bacillus spp. were resistant to ten antibiotics and 65% (17/26) Pseudomonas spp. were resistant to eleven antibiotics. The representative resistant isolates were subjected to antibacterial evaluation of synthesized Ag-NPs following the well diffusion method, revealing the maximum sensitive zone of inhibition 19 ± 0.2 mm against Bacillus spp. and 17 ± 0.38 mm against Pseudomonas spp. The minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of Ag-NPs were 2.1 μg/ml and 8.4 μg/ml, respectively, for broad-spectrum application. Finally, the biocompatibility was determined by observing the viability of Ag-NP-treated BHK-21 cell through trypan blue-based exclusion assay revealing nonsignificant decreased of cell viability ≤2MIC doses. Thus, the synthesized Ag-NPs were proven as biocompatible and sensitive to both Gram-positive and Gram-negative bacteria of the poultry farm environmental samples.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"16 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83395901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Size and Morphology-Mediated Antiproliferative Activity of Hydroxyapatite Nanoparticles in Human Breast Cancer Cells 大小和形态介导的羟基磷灰石纳米颗粒在人乳腺癌细胞中的抗增殖活性
IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-04-18 DOI: 10.1155/2023/5381158
Moeko Fukada, T. Chhetri, Agasthya Suresh, Anandhi Upendran, Z. Afrasiabi
Hydroxyapatite nanoparticles (nHAPs) have been recognized for potent antitumor effects in certain cancer cells, making them good candidates as drug delivery agents and tumor therapeutics with fewer than normal side effects. This study is aimed to correlate cell proliferation inhibition with the size and morphology of nHAPs in a human breast cancer cell line as well as in normal tissue cells. We present our in vitro experimental evidence that nHAPs with sizes smaller than 50 nm have high inhibitory activity against human MCF-7 breast cancer cell lines. Based on our experimental data, normal fibroblast cells (NIH 3T3) were relatively more viable upon treatment with the nanoconstructs. The present study indicates that nHAPs can be engineered as nontoxic specific inhibitors as efficient breast cancer therapeutics in humans.
羟基磷灰石纳米颗粒(nHAPs)在某些癌细胞中具有强大的抗肿瘤作用,使其成为药物递送剂和肿瘤治疗药物的良好候选者,副作用小于正常。本研究旨在研究人类乳腺癌细胞系和正常组织细胞中nhap的大小和形态与细胞增殖抑制的关系。我们提出了我们的体外实验证据,证明尺寸小于50 nm的nhap对人MCF-7乳腺癌细胞系具有很高的抑制活性。根据我们的实验数据,正常成纤维细胞(NIH 3T3)在纳米结构处理后相对更有活力。目前的研究表明,nhap可以被设计成无毒的特异性抑制剂,作为有效的人类乳腺癌治疗药物。
{"title":"Size and Morphology-Mediated Antiproliferative Activity of Hydroxyapatite Nanoparticles in Human Breast Cancer Cells","authors":"Moeko Fukada, T. Chhetri, Agasthya Suresh, Anandhi Upendran, Z. Afrasiabi","doi":"10.1155/2023/5381158","DOIUrl":"https://doi.org/10.1155/2023/5381158","url":null,"abstract":"Hydroxyapatite nanoparticles (nHAPs) have been recognized for potent antitumor effects in certain cancer cells, making them good candidates as drug delivery agents and tumor therapeutics with fewer than normal side effects. This study is aimed to correlate cell proliferation inhibition with the size and morphology of nHAPs in a human breast cancer cell line as well as in normal tissue cells. We present our in vitro experimental evidence that nHAPs with sizes smaller than 50 nm have high inhibitory activity against human MCF-7 breast cancer cell lines. Based on our experimental data, normal fibroblast cells (NIH 3T3) were relatively more viable upon treatment with the nanoconstructs. The present study indicates that nHAPs can be engineered as nontoxic specific inhibitors as efficient breast cancer therapeutics in humans.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"18 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85538855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Properties of Magnetic-Luminescent Fe3O4@ZnO/C Nanocomposites 磁致发光Fe3O4@ZnO/C纳米复合材料的合成与性能
IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-04-08 DOI: 10.1155/2023/2381623
Astuti, S. Arief, Muldarisnur, Zulhadjri, R. A. Usna
A Fe3O4@ZnO/C nanocomposite with a core-shell structure was synthesized using the co-precipitation method. To prevent the aggregation of the Fe3O4 magnetic particles, polyethylene glycol (PEG) was added. The X-ray diffractometer (XRD) results confirmed the formation of Fe3O4 and ZnO phases, with Fe3O4 having a cubic crystal system and ZnO having a hexagonal crystal system. Carbon in Fe3O4@ZnO/C had no effect on the crystal structure of Fe3O4@ZnO. Images from transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that the nanocomposite formed a core-shell structure. The Fourier transform infrared (FTIR) spectra verified the presence of bonds among ZnO, Fe3O4, and carbon. The appearance of the stretching vibration of the C≡C bond on the Fe3O4@ZnO/C sample revealed the nanocomposites’ carbon coupling. Photoluminescence (PL) spectroscopy was used to characterize the optical properties of the nanocomposites. Based on the results of the PL, the sample absorption of visible light was in the wavelength range of 400–700 nm. The photoluminescence of Fe3O4@ZnO differed from that of the Fe3O4@ZnO/C, especially in the deep-level emission (DLE) band. There was a phenomenon of broadening and shift of the band at a shorter wavelength, namely, in the blue wavelength region. Magnetic properties were characterized by vibrating-sample magnetometry (VSM). Based on the VSM results, the sample coupled with carbon exhibited a decrease in magnetic saturation. The presence of carbon changed photon energy into thermal energy. So, this material, apart from being a bioimaging material, can also be developed as a photothermal therapy material.
采用共沉淀法合成了具有核壳结构的Fe3O4@ZnO/C纳米复合材料。为了防止Fe3O4磁性颗粒的聚集,加入了聚乙二醇(PEG)。x射线衍射(XRD)结果证实了Fe3O4和ZnO相的形成,Fe3O4为立方晶系,ZnO为六方晶系。Fe3O4@ZnO/C中的碳对Fe3O4@ZnO的晶体结构没有影响。透射电子显微镜(TEM)和扫描电子显微镜(SEM)图像显示,纳米复合材料形成核-壳结构。傅里叶变换红外光谱(FTIR)证实了ZnO、Fe3O4和碳之间存在键。在Fe3O4@ZnO/C样品上C≡C键的拉伸振动的出现揭示了纳米复合材料的碳偶联。利用光致发光(PL)光谱对纳米复合材料的光学性能进行了表征。从PL的结果可以看出,样品对可见光的吸收波长范围为400 ~ 700 nm。Fe3O4@ZnO的光致发光与Fe3O4@ZnO/C的光致发光存在差异,特别是在深能级发射(DLE)波段。在较短的波长,即蓝色波长区域,存在波段加宽和移位的现象。用振动样品磁强计(VSM)表征了其磁性能。基于VSM的结果,与碳耦合的样品表现出磁饱和度的降低。碳的存在使光子能量转化为热能。因此,该材料除了作为生物成像材料外,还可以开发为光热治疗材料。
{"title":"Synthesis and Properties of Magnetic-Luminescent Fe3O4@ZnO/C Nanocomposites","authors":"Astuti, S. Arief, Muldarisnur, Zulhadjri, R. A. Usna","doi":"10.1155/2023/2381623","DOIUrl":"https://doi.org/10.1155/2023/2381623","url":null,"abstract":"A Fe3O4@ZnO/C nanocomposite with a core-shell structure was synthesized using the co-precipitation method. To prevent the aggregation of the Fe3O4 magnetic particles, polyethylene glycol (PEG) was added. The X-ray diffractometer (XRD) results confirmed the formation of Fe3O4 and ZnO phases, with Fe3O4 having a cubic crystal system and ZnO having a hexagonal crystal system. Carbon in Fe3O4@ZnO/C had no effect on the crystal structure of Fe3O4@ZnO. Images from transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that the nanocomposite formed a core-shell structure. The Fourier transform infrared (FTIR) spectra verified the presence of bonds among ZnO, Fe3O4, and carbon. The appearance of the stretching vibration of the C≡C bond on the Fe3O4@ZnO/C sample revealed the nanocomposites’ carbon coupling. Photoluminescence (PL) spectroscopy was used to characterize the optical properties of the nanocomposites. Based on the results of the PL, the sample absorption of visible light was in the wavelength range of 400–700 nm. The photoluminescence of Fe3O4@ZnO differed from that of the Fe3O4@ZnO/C, especially in the deep-level emission (DLE) band. There was a phenomenon of broadening and shift of the band at a shorter wavelength, namely, in the blue wavelength region. Magnetic properties were characterized by vibrating-sample magnetometry (VSM). Based on the VSM results, the sample coupled with carbon exhibited a decrease in magnetic saturation. The presence of carbon changed photon energy into thermal energy. So, this material, apart from being a bioimaging material, can also be developed as a photothermal therapy material.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"1 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88852837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1