The research’s purpose was to apply air nanobubbles in washing sewage of a soft drink bottling plant. The methodology used was pre-experimental and applied. The air nanobubbles were applied in the 3 samples of 20 liters of washing sewage of a Soft drink bottling plant, from which 2 samples were extracted: one at 45 minutes and another at 90 minutes after starting treatment. The results showed that air nanobubbles reduced the concentration of: conductivity by 8.4% (from 2500 mS/cm to 2290 mS/cm), turbidity by 71.97% (from 152 NTU to 42.6 NTU), BOD5 by 99.89% (from 1892.7 mg/L to 1.9 mg/L) and COD in 99.13% (from 3681 mg/L to 32 mg/L).
{"title":"Application of air nanobubbles in washing sewage of a Soft drink bottling plant [Aplicación de nanoburbujas de aire en aguas residuales de lavado de una Embotelladora de Bebidas Carbonatadas]","authors":"Thalia Nuñez, Jhonny Valverde Flores","doi":"10.32829/NANOJ.V3I1.85","DOIUrl":"https://doi.org/10.32829/NANOJ.V3I1.85","url":null,"abstract":"The research’s purpose was to apply air nanobubbles in washing sewage of a soft drink bottling plant. The methodology used was pre-experimental and applied. The air nanobubbles were applied in the 3 samples of 20 liters of washing sewage of a Soft drink bottling plant, from which 2 samples were extracted: one at 45 minutes and another at 90 minutes after starting treatment. The results showed that air nanobubbles reduced the concentration of: conductivity by 8.4% (from 2500 mS/cm to 2290 mS/cm), turbidity by 71.97% (from 152 NTU to 42.6 NTU), BOD5 by 99.89% (from 1892.7 mg/L to 1.9 mg/L) and COD in 99.13% (from 3681 mg/L to 32 mg/L).","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"79 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80336281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arising awareness of health hazards due to long-term exposure of fluoride has led researchers to seek for more innovative strategies to eliminate excess fluoride in drinking water. Fluoride-bearing chemicals in both natural and anthropogenic sources contaminate drinking water, which mainly cause for human fluoride ingestion. Hence, developing sustainable approaches toward alleviation is essential. Among many emerging techniques of defluoridation, nanotechnological approaches stand out owing to its high efficiency, and hence, as in many areas, nanotechnology for excess fluoride removal in water is gaining ground compared to other conventional adsorbents and process. The present review focuses on some of the advanced and recent nanoadsorbents including their strengths and shortcomings (e.g., CNT, LDH, graphene-based nanomaterials, and magnetic nanomaterials) and other processes involving nanotechnology while discussing basic aspects of hydrochemistry of fluoride and geological conditions leading for water fluoride contamination. Considering all the findings in survey, it is evident that developing more sustainable techniques is essential rather than conducting batch-type experiments solely.
{"title":"Fluoride in Drinking Water and Nanotechnological Approaches for Eliminating Excess Fluoride","authors":"Ruwanthi W. Premathilaka, N. D. Liyanagedera","doi":"10.1155/2019/2192383","DOIUrl":"https://doi.org/10.1155/2019/2192383","url":null,"abstract":"Arising awareness of health hazards due to long-term exposure of fluoride has led researchers to seek for more innovative strategies to eliminate excess fluoride in drinking water. Fluoride-bearing chemicals in both natural and anthropogenic sources contaminate drinking water, which mainly cause for human fluoride ingestion. Hence, developing sustainable approaches toward alleviation is essential. Among many emerging techniques of defluoridation, nanotechnological approaches stand out owing to its high efficiency, and hence, as in many areas, nanotechnology for excess fluoride removal in water is gaining ground compared to other conventional adsorbents and process. The present review focuses on some of the advanced and recent nanoadsorbents including their strengths and shortcomings (e.g., CNT, LDH, graphene-based nanomaterials, and magnetic nanomaterials) and other processes involving nanotechnology while discussing basic aspects of hydrochemistry of fluoride and geological conditions leading for water fluoride contamination. Considering all the findings in survey, it is evident that developing more sustainable techniques is essential rather than conducting batch-type experiments solely.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"49 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72586796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. H. Nnamdi, T. Briggs, Oluwaseun Olusola Togunde, H. Obanya
Background. The effect of nanoparticles (NPs) on aquatic environments is poorly studied. Aim. This study evaluates the toxicity of joint effects of these different metal nanoparticles and their bulk in mixtures (Al2O3, CuO, and SiO2) on fish using histological biomarker. Materials and Methods. The bulk and nano sizes of three salts (Al2O3, CuO, and SiO2) were used. Nanosizes ranged from 25 nm to 100 nm. The juvenile fishes of Clarias gariepinus (mean Length: 12.3 ± 3.5 cm; mean weight: 18.52 ± 6.41 g) were used for the acute and chronic toxicity tests. They were exposed to 7 mg/L each of the bulk and nano sizes of the three metallic oxides either singly or in mixtures for 28 days. The basis for the sublethal concentration was that the 96 hr acute toxicity of the varied sizes of the three metallic oxides was nontoxic up to the concentrations of 100 mg/L with no significant mortality at the highest exposure concentrations. The gills were collected for histopathology. Results. Of the three metal oxide nanoparticles, SiO was the most toxic, with histopathological alteration index (HAI) of 20.0, followed by nano-CuO (HAI, 10.0) and nano-Al2O3 (HAI, 2.0). In single exposure, the gill alterations include high frequencies of erosion of gill lamella (EGL), hypertrophy (HPT), oedema (OD), and necrosis (N). Less damage was observed at the combination of the metal oxide nanoparticles of SiO + Al2O3, SiO + CuO and SiO + Al2O3 + CuO in equal (1 : 1—HAI, 2 and 6; 1 : 1 : 1—HAI, 6) and unequal ratios (1 : 2—HAI, 16 and 6; 2 : 1—HAI, 8 and 6). Similarly, all bulk combinations were also antagonistic except for the equal ratio of bulk CuO (HAI, 20) and bulk Al2O3 (HAI, 10) that gave additive effect with HAI of 32. Conclusion. The joint actions of nano Al2O3 and CuO with SiO produced a low toxic effect, unlike the high toxicity of their single trials; this also indicates that nano Al2O3 and CuO are antagonists. Similarly, among the bulk metal oxides (SiO, Al2O3, and CuO), CuO was the most toxic. Bulk SiO and Al2O3 are antagonistic on the effects of CuO on the fish gill. There is need to properly document the ecological implications of nanoparticles in the aquatic environment.
{"title":"Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinus","authors":"A. H. Nnamdi, T. Briggs, Oluwaseun Olusola Togunde, H. Obanya","doi":"10.1155/2019/7686597","DOIUrl":"https://doi.org/10.1155/2019/7686597","url":null,"abstract":"Background. The effect of nanoparticles (NPs) on aquatic environments is poorly studied. Aim. This study evaluates the toxicity of joint effects of these different metal nanoparticles and their bulk in mixtures (Al2O3, CuO, and SiO2) on fish using histological biomarker. Materials and Methods. The bulk and nano sizes of three salts (Al2O3, CuO, and SiO2) were used. Nanosizes ranged from 25 nm to 100 nm. The juvenile fishes of Clarias gariepinus (mean Length: 12.3 ± 3.5 cm; mean weight: 18.52 ± 6.41 g) were used for the acute and chronic toxicity tests. They were exposed to 7 mg/L each of the bulk and nano sizes of the three metallic oxides either singly or in mixtures for 28 days. The basis for the sublethal concentration was that the 96 hr acute toxicity of the varied sizes of the three metallic oxides was nontoxic up to the concentrations of 100 mg/L with no significant mortality at the highest exposure concentrations. The gills were collected for histopathology. Results. Of the three metal oxide nanoparticles, SiO was the most toxic, with histopathological alteration index (HAI) of 20.0, followed by nano-CuO (HAI, 10.0) and nano-Al2O3 (HAI, 2.0). In single exposure, the gill alterations include high frequencies of erosion of gill lamella (EGL), hypertrophy (HPT), oedema (OD), and necrosis (N). Less damage was observed at the combination of the metal oxide nanoparticles of SiO + Al2O3, SiO + CuO and SiO + Al2O3 + CuO in equal (1 : 1—HAI, 2 and 6; 1 : 1 : 1—HAI, 6) and unequal ratios (1 : 2—HAI, 16 and 6; 2 : 1—HAI, 8 and 6). Similarly, all bulk combinations were also antagonistic except for the equal ratio of bulk CuO (HAI, 20) and bulk Al2O3 (HAI, 10) that gave additive effect with HAI of 32. Conclusion. The joint actions of nano Al2O3 and CuO with SiO produced a low toxic effect, unlike the high toxicity of their single trials; this also indicates that nano Al2O3 and CuO are antagonists. Similarly, among the bulk metal oxides (SiO, Al2O3, and CuO), CuO was the most toxic. Bulk SiO and Al2O3 are antagonistic on the effects of CuO on the fish gill. There is need to properly document the ecological implications of nanoparticles in the aquatic environment.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"70 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82713596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper describes a simple method to pattern nanoparticles on planar surfaces using the antifouling property of poly(ethylene glycol) monolayers deposited from a solution on the native oxide of titanium. Atomic force microcopy was used to pattern the poly(ethylene glycol) monolayers producing protein active sites on the protein-resistant surface. Patterns with different sizes have been generated by shaving the monolayers with different repetitions. Friction force microscopy was used to image the patterns. The smallest patterns are 50 nm and the largest patterns are 500 nm at full width half maximum. The smallest pattern was produced with one shave, whereas the largest pattern was produced by shaving the monolayers 112 times. Protein-coated nanoparticles were immobilised on the shaved (protein active) part of the monolayers by dipping the patterned samples into a solution that contains 2% by volume protein-functionalized nanoparticles with a nominal diameter of 40 nm. Atomic force microscopy was used to take a topographic image of the samples. The topographic image showed that the protein-functionalized nanoparticles were attached onto the shaved part of the substrate but not on the poly(ethylene glycol)-covered part of the substrate. The level of aggregation of the nanoparticles was also investigated from the topographic image. The section analysis of the topographic image of the nanoparticle patterns showed a height of 40 nm which proved that only a monolayer of particles were deposited on the shaved part of the monolayer.
{"title":"A Simple Method for Patterning Nanoparticles on Planar Surfaces","authors":"G. Tizazu","doi":"10.1155/2019/8263878","DOIUrl":"https://doi.org/10.1155/2019/8263878","url":null,"abstract":"This paper describes a simple method to pattern nanoparticles on planar surfaces using the antifouling property of poly(ethylene glycol) monolayers deposited from a solution on the native oxide of titanium. Atomic force microcopy was used to pattern the poly(ethylene glycol) monolayers producing protein active sites on the protein-resistant surface. Patterns with different sizes have been generated by shaving the monolayers with different repetitions. Friction force microscopy was used to image the patterns. The smallest patterns are 50 nm and the largest patterns are 500 nm at full width half maximum. The smallest pattern was produced with one shave, whereas the largest pattern was produced by shaving the monolayers 112 times. Protein-coated nanoparticles were immobilised on the shaved (protein active) part of the monolayers by dipping the patterned samples into a solution that contains 2% by volume protein-functionalized nanoparticles with a nominal diameter of 40 nm. Atomic force microscopy was used to take a topographic image of the samples. The topographic image showed that the protein-functionalized nanoparticles were attached onto the shaved part of the substrate but not on the poly(ethylene glycol)-covered part of the substrate. The level of aggregation of the nanoparticles was also investigated from the topographic image. The section analysis of the topographic image of the nanoparticle patterns showed a height of 40 nm which proved that only a monolayer of particles were deposited on the shaved part of the monolayer.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77294592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multiwalled carbon nanotubes (MWCNTs) have been synthesized on thin gold (Au) films using thermal chemical vapor deposition (CVD). The films were evolved to catalytic Au nanoparticles (Au NPs) by plasma argon (Ar) ion bombardment with a direct current (DC) power of 216 W. The characteristics of the MWCNTs grown on Au catalysts are strongly dependent on the growth temperature in thermal CVD process. The MWCNTs were then purified by oxidation (550°C) and acid treatments (3 : 1 H2SO4/HNO3). After purifying the MWCNTs, they were dispersed in deionized water (DI water) under continuous sonication. The MWCNT solution was then ultrasonically dissolved in a conducting polymer mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to prepare for an electronic ink. The ink was deposited onto the flexible and transparent plastic substrates such as polyethylene terephthalate (PET) with fabricated silver interdigitated electrode using two methods such as drop-casting and inkjet printing to compare in the detection of ammonia (NH3) and other volatile organic compounds (VOCs) at room temperature. Based on the results, the gas response, sensitivity, and selectivity properties of MWCNT-PEDOT:PSS gas sensor for NH3 detection are significantly enhanced by using inkjet printing technique. The sensing mechanism of fabricated gas sensor exposed to NH3 has been also proposed based on the swelling behaviour of polymer due to the diffusion of NH3 molecules into the polymer matrix. For the MWCNTs, they were mentioned as the conductive pathways for the enhancement of gas-sensing signals.
{"title":"Growth of MWCNTs on Plasma Ion-Bombarded Thin Gold Films and Their Enhancements of Ammonia-Sensing Properties Using Inkjet Printing","authors":"U. Pakdee, Ananya Thaibunnak","doi":"10.1155/2019/3424915","DOIUrl":"https://doi.org/10.1155/2019/3424915","url":null,"abstract":"Multiwalled carbon nanotubes (MWCNTs) have been synthesized on thin gold (Au) films using thermal chemical vapor deposition (CVD). The films were evolved to catalytic Au nanoparticles (Au NPs) by plasma argon (Ar) ion bombardment with a direct current (DC) power of 216 W. The characteristics of the MWCNTs grown on Au catalysts are strongly dependent on the growth temperature in thermal CVD process. The MWCNTs were then purified by oxidation (550°C) and acid treatments (3 : 1 H2SO4/HNO3). After purifying the MWCNTs, they were dispersed in deionized water (DI water) under continuous sonication. The MWCNT solution was then ultrasonically dissolved in a conducting polymer mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to prepare for an electronic ink. The ink was deposited onto the flexible and transparent plastic substrates such as polyethylene terephthalate (PET) with fabricated silver interdigitated electrode using two methods such as drop-casting and inkjet printing to compare in the detection of ammonia (NH3) and other volatile organic compounds (VOCs) at room temperature. Based on the results, the gas response, sensitivity, and selectivity properties of MWCNT-PEDOT:PSS gas sensor for NH3 detection are significantly enhanced by using inkjet printing technique. The sensing mechanism of fabricated gas sensor exposed to NH3 has been also proposed based on the swelling behaviour of polymer due to the diffusion of NH3 molecules into the polymer matrix. For the MWCNTs, they were mentioned as the conductive pathways for the enhancement of gas-sensing signals.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"16 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75219644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Mondal, Bhuvaneshwari Balasubramaniam, Ankur Gupta, Abdellatif Ait Lahcen, M. Kwiatkowski
{"title":"Carbon Nanostructures for Energy and Sensing Applications","authors":"K. Mondal, Bhuvaneshwari Balasubramaniam, Ankur Gupta, Abdellatif Ait Lahcen, M. Kwiatkowski","doi":"10.1155/2019/1454327","DOIUrl":"https://doi.org/10.1155/2019/1454327","url":null,"abstract":"","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"185 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2019-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80563160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reusable photocatalytic polyacrylonitrile membrane-supported cadmium sulphide/titanium dioxide hybrid nanoparticles (CdS/TiO2-PAN) were prepared using a dry-wet phase inversion technique. Scanning electron microscopy (SEM) analysis revealed that the photocatalytic membranes had a porous sublayer, a compact top layer, and that, some of the nanoparticles were not encapsulated by the membranes. The average crystallite sizes of the CdS, TiO2, and CdS/TiO2 hybrid nanoparticles were 3.41 nm, 10.47 nm, and 12.17 nm, respectively. The combination of CdS and TiO2 nanoparticles led to a red shift (band gap; ca. 2.6 eV) of the absorption band and extended the optical absorption spectrum into the visible region relative to TiO2. The photocatalytic activity of CdS/TiO2-PAN membranes was explored in the degradation of methylene blue dye under visible light irradiation, and the results revealed that the best photocatalytic performance was achieved by 0.1 g CdS/TiO2-PAN photocatalytic membrane with 5% loading of the CdS/TiO2 hybrid nanoparticles, which degraded 66.29% of methylene blue in 210 minutes at 25°C and pH 8.5. It was found that the optimum loading of nanoparticles in the membranes was 0.1 g. All the photocatalytic membranes showed an insignificant decrease in the photocatalytic activity when used repeatedly. According to literature, CdS/TiO2-PAN photocatalytic membranes have not been prepared before for the purpose of treating simulated wastewater.
{"title":"Visible Light-Active CdS/TiO2 Hybrid Nanoparticles Immobilized on Polyacrylonitrile Membranes for the Photodegradation of Dyes in Water","authors":"P. Nyamukamba, M. Moloto, H. Mungondori","doi":"10.1155/2019/5135618","DOIUrl":"https://doi.org/10.1155/2019/5135618","url":null,"abstract":"Reusable photocatalytic polyacrylonitrile membrane-supported cadmium sulphide/titanium dioxide hybrid nanoparticles (CdS/TiO2-PAN) were prepared using a dry-wet phase inversion technique. Scanning electron microscopy (SEM) analysis revealed that the photocatalytic membranes had a porous sublayer, a compact top layer, and that, some of the nanoparticles were not encapsulated by the membranes. The average crystallite sizes of the CdS, TiO2, and CdS/TiO2 hybrid nanoparticles were 3.41 nm, 10.47 nm, and 12.17 nm, respectively. The combination of CdS and TiO2 nanoparticles led to a red shift (band gap; ca. 2.6 eV) of the absorption band and extended the optical absorption spectrum into the visible region relative to TiO2. The photocatalytic activity of CdS/TiO2-PAN membranes was explored in the degradation of methylene blue dye under visible light irradiation, and the results revealed that the best photocatalytic performance was achieved by 0.1 g CdS/TiO2-PAN photocatalytic membrane with 5% loading of the CdS/TiO2 hybrid nanoparticles, which degraded 66.29% of methylene blue in 210 minutes at 25°C and pH 8.5. It was found that the optimum loading of nanoparticles in the membranes was 0.1 g. All the photocatalytic membranes showed an insignificant decrease in the photocatalytic activity when used repeatedly. According to literature, CdS/TiO2-PAN photocatalytic membranes have not been prepared before for the purpose of treating simulated wastewater.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"10 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78281399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianzhong Lin, Mingzhou Yu, M. Seipenbusch, X. Ku, Yu Feng
{"title":"Nanofluidics and Nanofluids","authors":"Jianzhong Lin, Mingzhou Yu, M. Seipenbusch, X. Ku, Yu Feng","doi":"10.1155/2019/8767624","DOIUrl":"https://doi.org/10.1155/2019/8767624","url":null,"abstract":"","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"49 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76649846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Highly luminescent carbon dots (C-dots) were synthesized by the one-pot simple hydrothermal method directly from lemon juice using different temperatures, time, aging of precursors, and diluted solvents to control the luminescence of C‐dots. The obtained C-dots were characterized by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectrophotometry, dynamic light scattering, ultraviolet-visible spectrophotometry, and photoluminescent spectrophotometry. The results show that C‐dots had strong green light emission with quantum yield in the range of 14.86 to 24.89% as a function of hydrothermal temperatures. Furthermore, light emission that is dependent on hydrothermal time, aging of precursor, and diluted solvent was observed. These results suggest that the C‐dots have potential application in optoelectronics and bioimaging.
{"title":"Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice","authors":"B. Hoan, P. D. Tam, Vuong-Hung Pham","doi":"10.1155/2019/2852816","DOIUrl":"https://doi.org/10.1155/2019/2852816","url":null,"abstract":"Highly luminescent carbon dots (C-dots) were synthesized by the one-pot simple hydrothermal method directly from lemon juice using different temperatures, time, aging of precursors, and diluted solvents to control the luminescence of C‐dots. The obtained C-dots were characterized by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectrophotometry, dynamic light scattering, ultraviolet-visible spectrophotometry, and photoluminescent spectrophotometry. The results show that C‐dots had strong green light emission with quantum yield in the range of 14.86 to 24.89% as a function of hydrothermal temperatures. Furthermore, light emission that is dependent on hydrothermal time, aging of precursor, and diluted solvent was observed. These results suggest that the C‐dots have potential application in optoelectronics and bioimaging.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"55 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85477233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Increased antibiotic resistance of microorganisms as well as the need to reduce health-care costs necessitates the production of new antimicrobials at lower costs. For this reason, this study was aimed to optimize the synthesis of magnesium oxide nanoparticles with the greatest antibacterial activity. In this study, 9 experiments containing different proportions of the factors (magnesium nitrate, NaOH, and stirring time) effective in the synthesis of magnesium oxide nanoparticles were designed using the Taguchi method. Magnesium oxide nanoparticles were synthesized using the coprecipitation method, and their antibacterial activity was evaluated using colony-forming unit (CFU) and disk diffusion. Morphology, crystalline structure, and size of synthesized nanoparticles were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The optimum conditions (0.2 M magnesium nitrate, 2 M NaOH, and 90 min stirring time) for the synthesis of magnesium oxide nanoparticles with the greatest antibacterial activity were determined using the Taguchi method. The results of colony-forming unit and disk diffusion revealed the optimal antibacterial activity of synthesized nanoparticles against Staphylococcus aureus and Escherichia coli bacteria. The results obtained from FTIR and XRD analyses confirmed the synthesis of nanoparticles with favorable conditions. Also, according to the SEM image, the average size of synthesized nanoparticles was determined to be about 21 nm. According to the results, magnesium oxide nanoparticles can significantly reduce the number of Gram-positive and Gram-negative bacteria and can be used as an appropriate alternative to commonly used antibacterial compounds in order to tackle drug resistance among pathogens.
微生物对抗生素耐药性的增加以及降低保健费用的需要要求以较低的成本生产新的抗微生物药物。因此,本研究旨在优化合成具有最大抗菌活性的氧化镁纳米颗粒。本研究采用田口法设计了9个实验,分别采用不同比例的硝酸镁、氢氧化钠和搅拌时间对氧化镁纳米颗粒的合成有影响。采用共沉淀法合成了氧化镁纳米颗粒,并采用菌落形成单元(CFU)和圆盘扩散法对其抗菌活性进行了评价。利用傅里叶变换红外(FTIR)、x射线衍射(XRD)和扫描电子显微镜(SEM)对合成纳米颗粒的形貌、晶体结构和尺寸进行了研究。采用田口法确定了0.2 M硝酸镁、2 M NaOH、搅拌时间为90 min的氧化镁纳米颗粒的最佳制备条件。集落形成单元和圆盘扩散结果表明,合成的纳米颗粒对金黄色葡萄球菌和大肠杆菌的抗菌活性最佳。红外光谱(FTIR)和x射线衍射(XRD)分析结果证实了纳米颗粒的合成条件良好。此外,根据SEM图像,合成的纳米颗粒的平均尺寸约为21 nm。结果表明,氧化镁纳米颗粒可以显著减少革兰氏阳性和革兰氏阴性细菌的数量,可以作为常用抗菌化合物的合适替代品,以解决病原体的耐药性问题。
{"title":"Optimized Synthesis of Magnesium Oxide Nanoparticles as Bactericidal Agents","authors":"M. Imani, M. Safaei","doi":"10.1155/2019/6063832","DOIUrl":"https://doi.org/10.1155/2019/6063832","url":null,"abstract":"Increased antibiotic resistance of microorganisms as well as the need to reduce health-care costs necessitates the production of new antimicrobials at lower costs. For this reason, this study was aimed to optimize the synthesis of magnesium oxide nanoparticles with the greatest antibacterial activity. In this study, 9 experiments containing different proportions of the factors (magnesium nitrate, NaOH, and stirring time) effective in the synthesis of magnesium oxide nanoparticles were designed using the Taguchi method. Magnesium oxide nanoparticles were synthesized using the coprecipitation method, and their antibacterial activity was evaluated using colony-forming unit (CFU) and disk diffusion. Morphology, crystalline structure, and size of synthesized nanoparticles were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The optimum conditions (0.2 M magnesium nitrate, 2 M NaOH, and 90 min stirring time) for the synthesis of magnesium oxide nanoparticles with the greatest antibacterial activity were determined using the Taguchi method. The results of colony-forming unit and disk diffusion revealed the optimal antibacterial activity of synthesized nanoparticles against Staphylococcus aureus and Escherichia coli bacteria. The results obtained from FTIR and XRD analyses confirmed the synthesis of nanoparticles with favorable conditions. Also, according to the SEM image, the average size of synthesized nanoparticles was determined to be about 21 nm. According to the results, magnesium oxide nanoparticles can significantly reduce the number of Gram-positive and Gram-negative bacteria and can be used as an appropriate alternative to commonly used antibacterial compounds in order to tackle drug resistance among pathogens.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"24 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83893978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}