Pub Date : 2020-01-01DOI: 10.22079/JMSR.2019.105700.1257
M. Shirazi, A. Kargari, D. Bastani, Mansoureh Soleimani, L. Fatehi
In this work, sweeping gas membrane distillation (SGMD) process was used for concentrating of glucose syrup. The main questions in this work include: is SGMD process practical for concentrating of glucose solution prior the fermentation step in bioethanol process?. and are the commercially available hydrophobic membranes sufficient enough to develop the SGMD process in pilot scale for this issue?. To answer these questions, SGMD process was performed using three commercial membranes made of PP, PVDF and PTFE. All membranes characterized using scanning electron and atomic force microscopes for their morphological and topographical features. Important operating parameters including feed temperature (45-65O C), feed flow rate (400-800 mL/min), feed concentration (10-50 g/L), and gas flow rate (0.113-0.453 N.m3 /h) were studied for their effects on the permeate flux and the optimized parameters were then reported. Moreover, the influence of three flow arrangements of SGMD module (co-current, counter-current and cross-current) on the permeate flux was studied. The best performance (the highest permeate flux and rejection) was achieved when the PTFE membrane (0.22 µm) was used under the optimum operating conditions (feed temperature: 65o C; feed flow rate: 600 mL/min; gas flow rate: 0.453 N.m3 /h; feed flow channel depth: 2 mm; and the cross-current flow arrangement). Results indicated that SGMD process is a promising option for concentrating of the sugar syrup prior the fermentation step in the bioethanol production process.
{"title":"Study on commercial membranes and sweeping gas membrane distillation for concentrating of glucose syrup","authors":"M. Shirazi, A. Kargari, D. Bastani, Mansoureh Soleimani, L. Fatehi","doi":"10.22079/JMSR.2019.105700.1257","DOIUrl":"https://doi.org/10.22079/JMSR.2019.105700.1257","url":null,"abstract":"In this work, sweeping gas membrane distillation (SGMD) process was used for concentrating of glucose syrup. The main questions in this work include: is SGMD process practical for concentrating of glucose solution prior the fermentation step in bioethanol process?. and are the commercially available hydrophobic membranes sufficient enough to develop the SGMD process in pilot scale for this issue?. To answer these questions, SGMD process was performed using three commercial membranes made of PP, PVDF and PTFE. All membranes characterized using scanning electron and atomic force microscopes for their morphological and topographical features. Important operating parameters including feed temperature (45-65O C), feed flow rate (400-800 mL/min), feed concentration (10-50 g/L), and gas flow rate (0.113-0.453 N.m3 /h) were studied for their effects on the permeate flux and the optimized parameters were then reported. Moreover, the influence of three flow arrangements of SGMD module (co-current, counter-current and cross-current) on the permeate flux was studied. The best performance (the highest permeate flux and rejection) was achieved when the PTFE membrane (0.22 µm) was used under the optimum operating conditions (feed temperature: 65o C; feed flow rate: 600 mL/min; gas flow rate: 0.453 N.m3 /h; feed flow channel depth: 2 mm; and the cross-current flow arrangement). Results indicated that SGMD process is a promising option for concentrating of the sugar syrup prior the fermentation step in the bioethanol production process.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"47-57"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68130853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.22079/JMSR.2019.109807.1272
M. Kurihara
Seawater reverse osmosis desalination (SWRO) requires less energy compared with the distillation method and thus is an important technology except Middle Eastern countries whereenergy costs are higher. Recently, even Middle Eastern countries where the distillation method is still a major technology, have begun adopting the RO method in new desalinationplants in line with government policy and the trend is for the development of larger (in excess of half mega-ton per day or mega-ton per day size) so-called “Mega-SWRO” plants.With these trends in the global market, the requirements of sustainable SWRO desalination as green desalination for the 21st century are summarized under three subjects: 1) Energyresources:Renewable energy, 2) Seawater RO system: Advanced membrane and membrane system, 3) Reduction of marine pollution: Green desalination. The “Mega-ton Water System” projecthas been conducted to solve issues related to subjects 2) and 3) as Japanese national project.a. By combining a low pressure SWRO membrane and a low pressure two-stage high recovery SWRO system, 20% energy reduction was possible. And 30% energy saving in totalwas also possible as the SWRO-PRO hybrid system.b. For low environmental impact as green desalination, less chemical and less chemical cleaning for reliable operation have been established.c. Low-cost renewable energy, particularly solar energy, is now available to solve issues related to subject 1. By combining these sophisticated technologies, the cost of seawaterdesalination will be $ 0.50/ m3/day or less.
{"title":"Sustainable Seawater Reverse Osmosis Desalination as Green Desalination in the 21st Century","authors":"M. Kurihara","doi":"10.22079/JMSR.2019.109807.1272","DOIUrl":"https://doi.org/10.22079/JMSR.2019.109807.1272","url":null,"abstract":"Seawater reverse osmosis desalination (SWRO) requires less energy compared with the distillation method and thus is an important technology except Middle Eastern countries whereenergy costs are higher. Recently, even Middle Eastern countries where the distillation method is still a major technology, have begun adopting the RO method in new desalinationplants in line with government policy and the trend is for the development of larger (in excess of half mega-ton per day or mega-ton per day size) so-called “Mega-SWRO” plants.With these trends in the global market, the requirements of sustainable SWRO desalination as green desalination for the 21st century are summarized under three subjects: 1) Energyresources:Renewable energy, 2) Seawater RO system: Advanced membrane and membrane system, 3) Reduction of marine pollution: Green desalination. The “Mega-ton Water System” projecthas been conducted to solve issues related to subjects 2) and 3) as Japanese national project.a. By combining a low pressure SWRO membrane and a low pressure two-stage high recovery SWRO system, 20% energy reduction was possible. And 30% energy saving in totalwas also possible as the SWRO-PRO hybrid system.b. For low environmental impact as green desalination, less chemical and less chemical cleaning for reliable operation have been established.c. Low-cost renewable energy, particularly solar energy, is now available to solve issues related to subject 1. By combining these sophisticated technologies, the cost of seawaterdesalination will be $ 0.50/ m3/day or less.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"20-29"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68131031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.22079/JMSR.2019.112286.1279
M. Amin, P. Goh, A. Ismail
This study investigated the effect of Cloisite15A (C15A) organoclay in the substrate layer on the performance of reverse osmosis (RO) membranes. The substrate of the RO membranes was modified using different loading of C15A (ranging from 0.3 - 0.7 wt%) within polysulfone (PSf) substrate and the polyamide (PA) selective layer was formed on the top. Effect of the modified substrate layer on the water flux and salt rejection of the nanocomposite membrane was investigated. The chemical property, morphology, and topography of the membrane surface were characterized by ATR-FTIR, SEM, AFM and contact angle analyzer. The modified membranes showed significantly enhanced pure water flux and salt solution permeability by 60.5 % and 44.3 %, respectively, without sacrificing the salt rejection.
{"title":"Effect of Organoclay on the Performance of Reverse Osmosis Membrane","authors":"M. Amin, P. Goh, A. Ismail","doi":"10.22079/JMSR.2019.112286.1279","DOIUrl":"https://doi.org/10.22079/JMSR.2019.112286.1279","url":null,"abstract":"This study investigated the effect of Cloisite15A (C15A) organoclay in the substrate layer on the performance of reverse osmosis (RO) membranes. The substrate of the RO membranes was modified using different loading of C15A (ranging from 0.3 - 0.7 wt%) within polysulfone (PSf) substrate and the polyamide (PA) selective layer was formed on the top. Effect of the modified substrate layer on the water flux and salt rejection of the nanocomposite membrane was investigated. The chemical property, morphology, and topography of the membrane surface were characterized by ATR-FTIR, SEM, AFM and contact angle analyzer. The modified membranes showed significantly enhanced pure water flux and salt solution permeability by 60.5 % and 44.3 %, respectively, without sacrificing the salt rejection.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"13-19"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68131231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.22079/JMSR.2019.112328.1281
A. E. Amooghin, S. Mirrezaei, Hamidreza Sanaeepur, M. Sharifzadeh
In this study, a time-dependent 2D axisymmetric model of a multilayer hollow fiber composite membrane for gas separation is proposed. In spite of the common multilayer membranes, which a dense layer coated on a porous support layer and subjected into the feed stream, here, the porous support is exposed to the feed gas. In this regard, the governing equations of species transport are developed for model domains and then solved by a finite element method (FEM). Gas permeation properties of pure H2 , O2 , N2 , CH4 , CO2 and He are calculated and validated with experimental data with good conformity. Obtained results indicate that with increasing the temperature, the permeability and diffusion coefficient increased while the solubility decreased. Moreover, the permeability and solubility variations with temperature for a heavier gas, CO2 , were higher than those for the lighter ones, while the diffusion coefficient variation with temperature for the lither gas, such as He, was more than the heavier ones. By increasing the CO2 feed stream temperature from 25 to 75°C, its permeability and diffusion coefficient increased respectively from 245 to 307 Barrer and from 205 to 282×10-12 m2 /s, while the CO2 solubility decreased from 0.85 to 0.76 cm3.cm3.bar1. In the case of He and for the same temperature variation range, its permeability and diffusion coefficient increased respectively from 39 to 42 Barrer and from 2180 to 2834 10-12 m2 /s, while the solubility of He decreased from 0.013 to 0.011 cm3 .cm-3.bar-1.
{"title":"Gas Permeation Modeling through a Multilayer Hollow Fiber Composite Membrane","authors":"A. E. Amooghin, S. Mirrezaei, Hamidreza Sanaeepur, M. Sharifzadeh","doi":"10.22079/JMSR.2019.112328.1281","DOIUrl":"https://doi.org/10.22079/JMSR.2019.112328.1281","url":null,"abstract":"In this study, a time-dependent 2D axisymmetric model of a multilayer hollow fiber composite membrane for gas separation is proposed. In spite of the common multilayer membranes, which a dense layer coated on a porous support layer and subjected into the feed stream, here, the porous support is exposed to the feed gas. In this regard, the governing equations of species transport are developed for model domains and then solved by a finite element method (FEM). Gas permeation properties of pure H2 , O2 , N2 , CH4 , CO2 and He are calculated and validated with experimental data with good conformity. Obtained results indicate that with increasing the temperature, the permeability and diffusion coefficient increased while the solubility decreased. Moreover, the permeability and solubility variations with temperature for a heavier gas, CO2 , were higher than those for the lighter ones, while the diffusion coefficient variation with temperature for the lither gas, such as He, was more than the heavier ones. By increasing the CO2 feed stream temperature from 25 to 75°C, its permeability and diffusion coefficient increased respectively from 245 to 307 Barrer and from 205 to 282×10-12 m2 /s, while the CO2 solubility decreased from 0.85 to 0.76 cm3.cm3.bar1. In the case of He and for the same temperature variation range, its permeability and diffusion coefficient increased respectively from 39 to 42 Barrer and from 2180 to 2834 10-12 m2 /s, while the solubility of He decreased from 0.013 to 0.011 cm3 .cm-3.bar-1.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"125-134"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68131246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.22079/JMSR.2019.107096.1262
Yilin Xu, C. Malde, Rui Wang
The gas-liquid membrane contactor (GLMC) is a promising alternative gas absorption/desorption configuration for effective carbon dioxide (CO2 ) capture. The physicochemical properties of membranes may synergistically affect GLMC performances, especially during the long-term operations. In this work, commercial polypropylene (PP) and polyvinylidene fluoride (PVDF) hollow fiber (HF) membranes were applied to explore the effects of their physicochemical properties on long-term CO2 absorption performances in a bench-scale GLMC rig. PP membranes with pore size of 19 nm, thickness of 0.046 mm, and porosity of 58% achieved high CO2 flux when feeding pure CO2 (5.4 and 24.4×10-3 mol/m2 .s using absorbents of water and 1M monoethanolamine (MEA), respectively) whereas PVDF membranes with pore size of 24 nm, thickness of 0.343 mm, and porosity of 84% presented a good CO2 separation performance from the simulated biogas using 1M MEA (6.8×10-3 mol/m2 .s and 99.9% CH4 recovery). When using water as absorbent, the coupled phenomena of membrane wetting and fouling restricted CO2 transport and resulted in continuous flux loss during the long-term operations. When using MEA as absorbent, both PP and PVDF membranes suffered dramatic flux decline. A series of membrane characterization tests revealed that the morphology, pore size, hydrophobicity, and stability of selected commercial membranes were greatly affected by MEA attack during long-term operations. Therefore, the selection criterion of microporous membranes for high-efficiency and long-term stable CO2 absorption in GLMC processes was proposed. It is envisioned that this study can shed light on improving existing membrane fabrication procedures and the application of novel membrane surface modification techniques to facilitate practical applications of the GLMC technology.
{"title":"Correlating Physicochemical Properties of Commercial Membranes with CO2 Absorption Performance in Gas-Liquid Membrane Contactor","authors":"Yilin Xu, C. Malde, Rui Wang","doi":"10.22079/JMSR.2019.107096.1262","DOIUrl":"https://doi.org/10.22079/JMSR.2019.107096.1262","url":null,"abstract":"The gas-liquid membrane contactor (GLMC) is a promising alternative gas absorption/desorption configuration for effective carbon dioxide (CO2 ) capture. The physicochemical properties of membranes may synergistically affect GLMC performances, especially during the long-term operations. In this work, commercial polypropylene (PP) and polyvinylidene fluoride (PVDF) hollow fiber (HF) membranes were applied to explore the effects of their physicochemical properties on long-term CO2 absorption performances in a bench-scale GLMC rig. PP membranes with pore size of 19 nm, thickness of 0.046 mm, and porosity of 58% achieved high CO2 flux when feeding pure CO2 (5.4 and 24.4×10-3 mol/m2 .s using absorbents of water and 1M monoethanolamine (MEA), respectively) whereas PVDF membranes with pore size of 24 nm, thickness of 0.343 mm, and porosity of 84% presented a good CO2 separation performance from the simulated biogas using 1M MEA (6.8×10-3 mol/m2 .s and 99.9% CH4 recovery). When using water as absorbent, the coupled phenomena of membrane wetting and fouling restricted CO2 transport and resulted in continuous flux loss during the long-term operations. When using MEA as absorbent, both PP and PVDF membranes suffered dramatic flux decline. A series of membrane characterization tests revealed that the morphology, pore size, hydrophobicity, and stability of selected commercial membranes were greatly affected by MEA attack during long-term operations. Therefore, the selection criterion of microporous membranes for high-efficiency and long-term stable CO2 absorption in GLMC processes was proposed. It is envisioned that this study can shed light on improving existing membrane fabrication procedures and the application of novel membrane surface modification techniques to facilitate practical applications of the GLMC technology.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"30-39"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68130862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-11DOI: 10.22079/JMSR.2019.114560.1291
N. Dizge, Z. Bilici, B. Keskinler
Layer-by-Layer (LbL) is a method which can be used for nanoscale coating and surface functionalization of a material. LbL technique mainly uses the electrostatic attracting between charged materials (polyelectrolytes, nanoparticles, etc.) and an oppositely charged surface. In this study, protein separation (BSA) from lactose solution was carried out using the LbL self-assembly method, which was used to produce a polyelectrolyte (PE) nanofiltration membrane. The impact of number of dual layers of PE and pH of solution on the retention of BSA and lactose was systematically investigated. For separation experiments, the BSA and lactose were used as a model protein and disaccharide sugars, respectively. Maximum retentions of 10.7% lactose and 100% BSA were achieved by the PE nanofiltration membrane with six bilayers at pH 6.5. Moreover, whey was used for the real filtration application, and the retention of fat, protein, and lactose were 100%, 98%, and 15%, respectively. The results showed that the separation of protein and lactose from the mixed solution could be achieved by PE nanofiltration membrane using the LbL method.
{"title":"Protein and Lactose Separation by Modified Ultrafiltration Membrane using Layer by Layer Technique","authors":"N. Dizge, Z. Bilici, B. Keskinler","doi":"10.22079/JMSR.2019.114560.1291","DOIUrl":"https://doi.org/10.22079/JMSR.2019.114560.1291","url":null,"abstract":"Layer-by-Layer (LbL) is a method which can be used for nanoscale coating and surface functionalization of a material. LbL technique mainly uses the electrostatic attracting between charged materials (polyelectrolytes, nanoparticles, etc.) and an oppositely charged surface. In this study, protein separation (BSA) from lactose solution was carried out using the LbL self-assembly method, which was used to produce a polyelectrolyte (PE) nanofiltration membrane. The impact of number of dual layers of PE and pH of solution on the retention of BSA and lactose was systematically investigated. For separation experiments, the BSA and lactose were used as a model protein and disaccharide sugars, respectively. Maximum retentions of 10.7% lactose and 100% BSA were achieved by the PE nanofiltration membrane with six bilayers at pH 6.5. Moreover, whey was used for the real filtration application, and the retention of fat, protein, and lactose were 100%, 98%, and 15%, respectively. The results showed that the separation of protein and lactose from the mixed solution could be achieved by PE nanofiltration membrane using the LbL method.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"211-217"},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45301753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-06DOI: 10.22079/JMSR.2019.111596.1278
H. Richards, Phumlile Kunene, O. Akinbami, Nthabiseng M. Motsoane, H. Tutu, L. Chimuka
Polysulfone was investigated as an alternative base-polymer for polymer inclusion membranes (PIM’s) that could withstand harsh environmental conditions and have good transport efficiency of metal ions. PIM’s were prepared using polysulfone as a base polymer and Aliquat 336 as a carrier in the absence of a plasticizer. Chromium (VI) was used as standard to study the extraction efficiency of the membranes. The optimal composition ratio for the membrane with the highest extraction efficiency during passive sampling of the chromium (VI) from solution was 40:60 (w/w) polysulfone: Aliquat 336. This membrane had a flux of 8.68×10-7 mol.m-2.s-1 and had increased chemical stability over a range of pH 2 – 12 compared to poly(vinyl chloride) based membranes. The presence of functional groups on the polysulfone, Aliquat 336 and the synthesized polymer inclusion membrane were confirmed using Fourier Transformed Infrared Spectroscopy. The results showed that only physical interaction exists between the carrier and the polymer matrix. Scanning electron microscopy and atomic force microscopy indicated that the membrane surface was dense and the roughness increased with an increase in carrier concentration. The hydrophilicity of the membranes was studied using a drop shape analyser. The results revealed that an increase in carrier concentration increases the membrane’s hydrophilicity. Thermal stability was investigated and the membranes were found to be stable up to 180 ⁰C.
{"title":"Feasibility of Polysulfone as Base Polymer in a Polymer Inclusion Membrane: Synthesis and Characterisation","authors":"H. Richards, Phumlile Kunene, O. Akinbami, Nthabiseng M. Motsoane, H. Tutu, L. Chimuka","doi":"10.22079/JMSR.2019.111596.1278","DOIUrl":"https://doi.org/10.22079/JMSR.2019.111596.1278","url":null,"abstract":"Polysulfone was investigated as an alternative base-polymer for polymer inclusion membranes (PIM’s) that could withstand harsh environmental conditions and have good transport efficiency of metal ions. PIM’s were prepared using polysulfone as a base polymer and Aliquat 336 as a carrier in the absence of a plasticizer. Chromium (VI) was used as standard to study the extraction efficiency of the membranes. The optimal composition ratio for the membrane with the highest extraction efficiency during passive sampling of the chromium (VI) from solution was 40:60 (w/w) polysulfone: Aliquat 336. This membrane had a flux of 8.68×10-7 mol.m-2.s-1 and had increased chemical stability over a range of pH 2 – 12 compared to poly(vinyl chloride) based membranes. The presence of functional groups on the polysulfone, Aliquat 336 and the synthesized polymer inclusion membrane were confirmed using Fourier Transformed Infrared Spectroscopy. The results showed that only physical interaction exists between the carrier and the polymer matrix. Scanning electron microscopy and atomic force microscopy indicated that the membrane surface was dense and the roughness increased with an increase in carrier concentration. The hydrophilicity of the membranes was studied using a drop shape analyser. The results revealed that an increase in carrier concentration increases the membrane’s hydrophilicity. Thermal stability was investigated and the membranes were found to be stable up to 180 ⁰C.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"203-210"},"PeriodicalIF":0.0,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46832134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-08DOI: 10.22079/JMSR.2019.99706.1238
K. Sikhwivhilu, Lwazi Ndlwana, R. Moutloali, J. Ngila
In this work, 2,2’-azo-bis-butyronitrile (AIBN) was exploited as an initiator for the successful bulk heterogeneous functionalization of polyethersulfone (PES) using polymethacrylic acid (PMAA), for the first time. To this end, pH-responsive and exceptionally low fouling membranes of extremely low grafting degrees with low adhesion and high rejection of protein were fabricated. An added advantage of this method is the accomplishment of graft polymerization of methacrylic acid (MAA) in water in the absence of toxic solvents, scavengers or catalysts. Changes to surface functional groups of the PES powder were determined using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and thereafter validated with X-ray photoelectron spectroscopy (XPS). The phase inversion technique was used to fabricate microfiltration membranes (MFs), which were found to possess up to 40% improved hydrophilicity relative to pristine PES membranes. Protein adsorption was reduced by more than 80% while its rejection and the pure water permeate flux recovery ratio (FR) were 97%, and 86%, respectively. Furthermore, the membrane maintained 90% FR over 10 cycles. The newly fabricated membranes possess enhanced response to pH stimulus.
{"title":"Heterogeneous Functionalization of Polyethersulfone: A New Approach for pH-Responsive Microfiltration Membranes with Enhanced Antifouling Properties","authors":"K. Sikhwivhilu, Lwazi Ndlwana, R. Moutloali, J. Ngila","doi":"10.22079/JMSR.2019.99706.1238","DOIUrl":"https://doi.org/10.22079/JMSR.2019.99706.1238","url":null,"abstract":"In this work, 2,2’-azo-bis-butyronitrile (AIBN) was exploited as an initiator for the successful bulk heterogeneous functionalization of polyethersulfone (PES) using polymethacrylic acid (PMAA), for the first time. To this end, pH-responsive and exceptionally low fouling membranes of extremely low grafting degrees with low adhesion and high rejection of protein were fabricated. An added advantage of this method is the accomplishment of graft polymerization of methacrylic acid (MAA) in water in the absence of toxic solvents, scavengers or catalysts. Changes to surface functional groups of the PES powder were determined using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and thereafter validated with X-ray photoelectron spectroscopy (XPS). The phase inversion technique was used to fabricate microfiltration membranes (MFs), which were found to possess up to 40% improved hydrophilicity relative to pristine PES membranes. Protein adsorption was reduced by more than 80% while its rejection and the pure water permeate flux recovery ratio (FR) were 97%, and 86%, respectively. Furthermore, the membrane maintained 90% FR over 10 cycles. The newly fabricated membranes possess enhanced response to pH stimulus.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"178-187"},"PeriodicalIF":0.0,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43291923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.22079/JMSR.2018.74729.1162
Siti Halimah Ahmad, Siti Munira Jamil, M. Othman, Mukhlis A. Rahman, J. Jaafar, A. Ismail
A detailed study on the anode structure of solid oxide fuel cell (SOFC) is very crucial in developing high performance power generating devices, given how porous electrodes are known to provide a number of active sites for reaction, consequently accelerate fuel conversion. This present study investigates the feasibility of pore former addition to nickel oxideyttria stabilized zirconia (NiO-YSZ) anode, fabricated via phase inversion-based casting and sintering technique. The loading of two types of pore former (i.e. polyetheretherketone [PEEK] and corn starch) was varied from 0 to 10 wt% of total suspension. The effects of pore former loading and its types were examined based on anode morphology using scanning electron microscopy (SEM), crystal phase by X-ray diffraction (XRD), apparent porosity based on standard ASTM C373-88, and bending strength using three-point bending test. Results had shown that higher loading of pore former increased the porosity, yet significantly reduced the bending strength. SEM images of anode displayed that by generating more connected open pores through the addition of 2 wt.% PEEK, it produced an effective porous structure. In fact, the sample recorded to be 67 % mechanically stronger compared to the best loading which is corn starch (4 wt.%). Based on these findings, PEEK can be used as pore former in anode fabrication that creates appropriate porosity, which benefits gas diffusion and also provides good mechanical strength as an anode support.
{"title":"Pore Former Addition in the Preparation of Highly Porous Anode Using Phase-inversion Technique for Solid Oxide Fuel Cell","authors":"Siti Halimah Ahmad, Siti Munira Jamil, M. Othman, Mukhlis A. Rahman, J. Jaafar, A. Ismail","doi":"10.22079/JMSR.2018.74729.1162","DOIUrl":"https://doi.org/10.22079/JMSR.2018.74729.1162","url":null,"abstract":"A detailed study on the anode structure of solid oxide fuel cell (SOFC) is very crucial in developing high performance power generating devices, given how porous electrodes are known to provide a number of active sites for reaction, consequently accelerate fuel conversion. This present study investigates the feasibility of pore former addition to nickel oxideyttria stabilized zirconia (NiO-YSZ) anode, fabricated via phase inversion-based casting and sintering technique. The loading of two types of pore former (i.e. polyetheretherketone [PEEK] and corn starch) was varied from 0 to 10 wt% of total suspension. The effects of pore former loading and its types were examined based on anode morphology using scanning electron microscopy (SEM), crystal phase by X-ray diffraction (XRD), apparent porosity based on standard ASTM C373-88, and bending strength using three-point bending test. Results had shown that higher loading of pore former increased the porosity, yet significantly reduced the bending strength. SEM images of anode displayed that by generating more connected open pores through the addition of 2 wt.% PEEK, it produced an effective porous structure. In fact, the sample recorded to be 67 % mechanically stronger compared to the best loading which is corn starch (4 wt.%). Based on these findings, PEEK can be used as pore former in anode fabrication that creates appropriate porosity, which benefits gas diffusion and also provides good mechanical strength as an anode support.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"5 1","pages":"268-273"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45062737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.22079/JMSR.2019.95781.1224
Hamed Koonani, M. Amirinejad
Five new mathematical triple fouling models were developed to explore the flux decline behavior during the microfiltration. The first model was developed by the assumption of the successive effects of standard mechanism, intermediate pore blockage and cake formation by using the standard blocking flux expression in the model calculations. The second and third models also obtained by the successive effects of pore constriction, pore blockage and cake formation mechanisms but in the calculation of these models, the Hagen-Poisseuille law for the filtrate flux has been used. For the fourth and fifth models, the classical standard mechanism has been modified by the assumption of zero order time dependent equation for the particle deposition inside the pores. In these models, the zero-order standard mechanism has been used instead of the classical standard mechanism to combine with the pore blockage and then the cake formation mechanism and the Hagen-Poisseuille law. The ability of developed models for the prediction of experimental data for the bovine serum albumin (BSA) filtration was examined. The zero-order standard complete pore blockage-cake formation and the zero-order standard intermediate pore blockage-cake formation models provide fit experimental data, and predict well.
{"title":"Combined Three Mechanisms Models for Membrane Fouling during Microfiltration","authors":"Hamed Koonani, M. Amirinejad","doi":"10.22079/JMSR.2019.95781.1224","DOIUrl":"https://doi.org/10.22079/JMSR.2019.95781.1224","url":null,"abstract":"Five new mathematical triple fouling models were developed to explore the flux decline behavior during the microfiltration. The first model was developed by the assumption of the successive effects of standard mechanism, intermediate pore blockage and cake formation by using the standard blocking flux expression in the model calculations. The second and third models also obtained by the successive effects of pore constriction, pore blockage and cake formation mechanisms but in the calculation of these models, the Hagen-Poisseuille law for the filtrate flux has been used. For the fourth and fifth models, the classical standard mechanism has been modified by the assumption of zero order time dependent equation for the particle deposition inside the pores. In these models, the zero-order standard mechanism has been used instead of the classical standard mechanism to combine with the pore blockage and then the cake formation mechanism and the Hagen-Poisseuille law. The ability of developed models for the prediction of experimental data for the bovine serum albumin (BSA) filtration was examined. The zero-order standard complete pore blockage-cake formation and the zero-order standard intermediate pore blockage-cake formation models provide fit experimental data, and predict well.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"5 1","pages":"274-282"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48126154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}