Microheaters have evolved to become a key component of devices in a wide range of applications, many of which require a thermal profile with good uniformity. To this end, it is critical not only to select an appropriate device geometry but also to have reliable tools to assess the uniformity in the microscale. This paper presents a collection of novel sensors to experimentally extract the mean temperature in various regions of the micro-hotplate with high accuracy, offering an innovative alternative to other uniformity measurement tools that are often not available or not sufficiently precise. The studies are articulated around a series of meander-based microheaters, for which the temperature versus voltage profile, response time, power consumption and uniformity are studied. In this way, insight into the influence of different geometrical parameters (i.e. line arrangement, scaling, linewidth and line spacing) is provided. Finite Element Method simulations are performed based on certain assumptions and boundary conditions and exhibit strong concordance with our experimental data, thus we demonstrated that the sensors serve as a tool to validate the representativeness of a model.[2024-0110]
{"title":"Integrated Sensors to Experimentally Measure Microheater Uniformity: Geometry Implications in Meander-Based Structures","authors":"Maider Calderon-Gonzalez;David Cheyns;Rob Ameloot;Jan Genoe","doi":"10.1109/JMEMS.2024.3447880","DOIUrl":"10.1109/JMEMS.2024.3447880","url":null,"abstract":"Microheaters have evolved to become a key component of devices in a wide range of applications, many of which require a thermal profile with good uniformity. To this end, it is critical not only to select an appropriate device geometry but also to have reliable tools to assess the uniformity in the microscale. This paper presents a collection of novel sensors to experimentally extract the mean temperature in various regions of the micro-hotplate with high accuracy, offering an innovative alternative to other uniformity measurement tools that are often not available or not sufficiently precise. The studies are articulated around a series of meander-based microheaters, for which the temperature versus voltage profile, response time, power consumption and uniformity are studied. In this way, insight into the influence of different geometrical parameters (i.e. line arrangement, scaling, linewidth and line spacing) is provided. Finite Element Method simulations are performed based on certain assumptions and boundary conditions and exhibit strong concordance with our experimental data, thus we demonstrated that the sensors serve as a tool to validate the representativeness of a model.[2024-0110]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 6","pages":"736-746"},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1109/JMEMS.2024.3443641
Chengxin Li;Aojie Quan;Hemin Zhang;Chen Wang;Linlin Wang;Mustafa Mert Torunbalci;Yuan Wang;Michael Kraft
In this work, the relationship between nonlinear effects and the signal-to-noise ratio of a resonator is analyzed and the impact of reducing nonlinear effects of the resonator on the performance of a resonant accelerometer is investigated. A theoretical framework is formulated to evaluate the dynamic range of the double clamped-clamped resonator. A reduction of the mechanical nonlinearity is achieved through an external electrostatic force, resulting in an enhancement of the dynamic range from 93.8 dB to 132.6 dB. Experimental findings indicate the nonlinear coefficient is reduced to 2.2% compared to an approach without nonlinearity compensation. The nonlinearity compensation demonstrates a 12.8 dB improvement in the signal-to-noise ratio of the resonator, leading to a 5.5-fold increase in resolution of the accelerometer and an extension of the dynamic range by 15 dB. The proposed technique enables the performance of resonant sensors to be further optimized. [2024-0107]
{"title":"On Extending Signal-to-Noise Ratio of Resonators for a MEMS Resonant Accelerometers Using Nonlinearity Compensation","authors":"Chengxin Li;Aojie Quan;Hemin Zhang;Chen Wang;Linlin Wang;Mustafa Mert Torunbalci;Yuan Wang;Michael Kraft","doi":"10.1109/JMEMS.2024.3443641","DOIUrl":"10.1109/JMEMS.2024.3443641","url":null,"abstract":"In this work, the relationship between nonlinear effects and the signal-to-noise ratio of a resonator is analyzed and the impact of reducing nonlinear effects of the resonator on the performance of a resonant accelerometer is investigated. A theoretical framework is formulated to evaluate the dynamic range of the double clamped-clamped resonator. A reduction of the mechanical nonlinearity is achieved through an external electrostatic force, resulting in an enhancement of the dynamic range from 93.8 dB to 132.6 dB. Experimental findings indicate the nonlinear coefficient is reduced to 2.2% compared to an approach without nonlinearity compensation. The nonlinearity compensation demonstrates a 12.8 dB improvement in the signal-to-noise ratio of the resonator, leading to a 5.5-fold increase in resolution of the accelerometer and an extension of the dynamic range by 15 dB. The proposed technique enables the performance of resonant sensors to be further optimized. [2024-0107]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"568-576"},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10651611","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2D arrays are crucial for developing compact and efficient 3D ultrasound systems. Capacitive micromachined ultrasonic transducer (CMUT) arrays, providing convenient integration with supporting electronics, are advantageous for implementing such systems. Fabricating 2D CMUT arrays and integrated circuits (ICs) separately and then combining them in the packaging stage provides flexibility in design and integration. The integrated system can be used for beam-steering and electronic focusing in 3D space. Previously, fabrication processes were reported for implementing 2D CMUT arrays on glass substrates with copper through-glass-via (Cu-TGV) interconnects using anodic bonding and silicon through-glass-via (Si-TGV) interconnects using a sacrificial-release process. Both approaches had challenges, such as voids in Cu-vias, microcracks in laser-drilled glass, mechanical stress in CVD nitride layers, and low fill factor due to fabrication limitations. These challenges can be overcome by combining Si-TGV interconnects with an anodic bonding process. We developed a Si-TGV wafer with a backside glass layer to make it compatible with anodic bonding. We designed and fabricated $32times 32~2$