Pub Date : 2024-08-01DOI: 10.1109/JMEMS.2024.3431576
Tianyi Zhang;Yen-Wei Chang;Omar Barrera;Naveed Ahmed;Jack Kramer;Ruochen Lu
This work reports the procedure for modeling piezoelectric acoustic resonators and filters at millimeter wave (mmWave). Different from conventional methods for lower frequency piezoelectric devices, we include both acoustic and electromagnetic (EM) effects, e.g., self-inductance, in both the circuit-level fitting and finite element analysis, toward higher accuracy at higher frequencies. To validate the method, thin-film lithium niobate (LiNbO3) first-order antisymmetric (A1) mode devices are used as the testbed, achieving great agreement for both the standalone resonators and a fifth-order ladder filter. Upon further development, the reported acoustic and EM co-modeling could guide the future design of compact piezoelectric devices at mmWave and beyond.[2024-0074]
{"title":"Acoustic and Electromagnetic Co-Modeling of Piezoelectric Devices at Millimeter Wave","authors":"Tianyi Zhang;Yen-Wei Chang;Omar Barrera;Naveed Ahmed;Jack Kramer;Ruochen Lu","doi":"10.1109/JMEMS.2024.3431576","DOIUrl":"10.1109/JMEMS.2024.3431576","url":null,"abstract":"This work reports the procedure for modeling piezoelectric acoustic resonators and filters at millimeter wave (mmWave). Different from conventional methods for lower frequency piezoelectric devices, we include both acoustic and electromagnetic (EM) effects, e.g., self-inductance, in both the circuit-level fitting and finite element analysis, toward higher accuracy at higher frequencies. To validate the method, thin-film lithium niobate (LiNbO3) first-order antisymmetric (A1) mode devices are used as the testbed, achieving great agreement for both the standalone resonators and a fifth-order ladder filter. Upon further development, the reported acoustic and EM co-modeling could guide the future design of compact piezoelectric devices at mmWave and beyond.[2024-0074]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"640-645"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1109/JMEMS.2024.3422734
{"title":"Journal of Microelectromechanical Systems Publication Information","authors":"","doi":"10.1109/JMEMS.2024.3422734","DOIUrl":"10.1109/JMEMS.2024.3422734","url":null,"abstract":"","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 4","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10619999","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1109/JMEMS.2024.3430984
Xingyu Du;Nishant Sharma;Zichen Tang;Chloe Leblanc;Deep Jariwala;Roy H. Olsson
Surface Acoustic Wave (SAW) devices featuring Aluminum Scandium Nitride (AlScN) on a 4H-Silicon Carbide (SiC) substrate, offer a unique blend of high sound velocity, low thermal resistance, substantial piezoelectric response, simplified fabrication, as well as suitability for high-temperature and harsh environment operation. This study presents high-frequency SAW resonators employing AlScN thin films on SiC substrates, utilizing the second SAW mode (referred to as the Sezawa mode). The resonators achieve remarkable performance, boasting a K $^{mathrm {2}}$