首页 > 最新文献

Journal of Pesticide Science最新文献

英文 中文
Screening of effective pesticides to control rubber tree leaf fall disease (LFD) caused by Neopestalotiopsis and Colletotrichum fungi in Indonesia. 防治印尼橡胶树落叶病(LFD)有效农药的筛选
IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-11-20 DOI: 10.1584/jpestics.D24-020
Emiko Okubo-Kurihara, Tri Rapani Febbiyanti, Firman Ashari, Yuki Yanagawa, Emi Osada, Tomoko Kuriyama, Masafumi Shimizu, Farriza Diyasti, Minami Matsui

In recent years, the stable supply of natural rubber has been threatened by a new leaf fall disease (LFD) caused by filamentous fungi. We screened pesticides to control the growth of Neopestalotiopsis sp. and Colletotrichum sp., which are considered to be the causal agents of LFD in rubber trees. We identified two effective pesticides, Quinondo 80% WP and Topsin M WP. When these two candidate pesticides were used in combination at 10 ppm each, there was enhanced inhibition of growth of both fungal species. Furthermore, the use of Quinondo 80% WP was shown to suppress the development of necrotic lesions caused by Neopestalotiopsis in rubber seedlings. These results suggest that Quinondo 80% WP is effective in controlling the spread of damage caused by LFD infection in rubber trees, and further verification of the concentration and method of application is needed to further demonstrate its effectiveness.

近年来,一种由丝状真菌引起的新型落叶病(LFD)威胁着天然橡胶的稳定供应。筛选了防治橡胶树LFD病原菌Neopestalotiopsis sp.和炭疽菌(Colletotrichum sp.)的农药。我们鉴定出两种有效的农药,Quinondo 80% WP和Topsin M WP。当这两种候选农药分别以10 ppm的浓度联合使用时,对两种真菌的生长抑制都增强了。此外,使用喹诺多80% WP可抑制橡胶幼苗新estestalotiopsis引起的坏死病变的发展。以上结果表明,喹诺多80% WP对LFD侵染橡胶树的危害蔓延有一定的控制作用,还需要进一步验证其浓度和施用方法,以进一步证明其有效性。
{"title":"Screening of effective pesticides to control rubber tree leaf fall disease (LFD) caused by <i>Neopestalotiopsis</i> and <i>Colletotrichum</i> fungi in Indonesia.","authors":"Emiko Okubo-Kurihara, Tri Rapani Febbiyanti, Firman Ashari, Yuki Yanagawa, Emi Osada, Tomoko Kuriyama, Masafumi Shimizu, Farriza Diyasti, Minami Matsui","doi":"10.1584/jpestics.D24-020","DOIUrl":"10.1584/jpestics.D24-020","url":null,"abstract":"<p><p>In recent years, the stable supply of natural rubber has been threatened by a new leaf fall disease (LFD) caused by filamentous fungi. We screened pesticides to control the growth of <i>Neopestalotiopsis</i> sp. and <i>Colletotrichum</i> sp., which are considered to be the causal agents of LFD in rubber trees. We identified two effective pesticides, Quinondo 80% WP and Topsin M WP. When these two candidate pesticides were used in combination at 10 ppm each, there was enhanced inhibition of growth of both fungal species. Furthermore, the use of Quinondo 80% WP was shown to suppress the development of necrotic lesions caused by <i>Neopestalotiopsis</i> in rubber seedlings. These results suggest that Quinondo 80% WP is effective in controlling the spread of damage caused by LFD infection in rubber trees, and further verification of the concentration and method of application is needed to further demonstrate its effectiveness.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"277-284"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative evaluation of trimethylated α-, β-, and γ-cyclodextrins as optimal dispersants for ready biodegradability testing of poorly water-soluble substances. 三甲基化α-、β-和γ-环糊精作为难水溶性物质的最佳分散剂的比较评价。
IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-11-20 DOI: 10.1584/jpestics.D24-015
Yoshinari Takano, Saki Takekoshi, Kotaro Takano, Yoshihide Matoba, Makiko Mukumoto, Keisei Sowa, Yuki Kitazumi, Osamu Shirai

We investigated whether various modified cyclodextrins (CDs) and emulsifiers could be applied as dispersing agents in ready biodegradability tests of poorly water-soluble substances. Trimethylated α-, β-, and γ-CDs and partially methylated β-CD were not biodegraded in the test period but accelerated the biodegradation of octabenzone and anthraquinone. The process by which trimethylated α-, β-, and γ-CDs enhance the biodegradation of test substances has been partially uncovered. These CDs create inclusion complexes with the substances, which then coalesce into larger aggregates. These aggregates disperse throughout the testing medium and attach to clusters of activated sludge, known as flocs. This close contact with the sludge speeds up the breakdown of the hydrophobic substances being tested.

研究了各种改性环糊精(CDs)和乳化剂是否可以作为分散剂用于难水溶性物质的生物降解性试验。三甲基化的α-、β-和γ- cd和部分甲基化的β- cd在试验期间没有生物降解,但加速了八苯酮和蒽醌的生物降解。三甲基化的α-、β-和γ-CDs增强测试物质生物降解的过程已部分揭示。这些cd与物质形成包合物,然后结合成更大的聚集体。这些聚合体分散在整个测试介质中,并附着在称为絮凝体的活性污泥簇上。这种与污泥的密切接触加速了被测疏水物质的分解。
{"title":"Comparative evaluation of trimethylated α-, β-, and γ-cyclodextrins as optimal dispersants for ready biodegradability testing of poorly water-soluble substances.","authors":"Yoshinari Takano, Saki Takekoshi, Kotaro Takano, Yoshihide Matoba, Makiko Mukumoto, Keisei Sowa, Yuki Kitazumi, Osamu Shirai","doi":"10.1584/jpestics.D24-015","DOIUrl":"10.1584/jpestics.D24-015","url":null,"abstract":"<p><p>We investigated whether various modified cyclodextrins (CDs) and emulsifiers could be applied as dispersing agents in ready biodegradability tests of poorly water-soluble substances. Trimethylated α-, β-, and γ-CDs and partially methylated β-CD were not biodegraded in the test period but accelerated the biodegradation of octabenzone and anthraquinone. The process by which trimethylated α-, β-, and γ-CDs enhance the biodegradation of test substances has been partially uncovered. These CDs create inclusion complexes with the substances, which then coalesce into larger aggregates. These aggregates disperse throughout the testing medium and attach to clusters of activated sludge, known as flocs. This close contact with the sludge speeds up the breakdown of the hydrophobic substances being tested.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"210-223"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barley is a potential trap crop for root parasitic broomrape weeds. 大麦是一种潜在的根寄生帚状杂草诱捕作物。
IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-11-20 DOI: 10.1584/jpestics.D24-034
Maiko Inoue, Xiaonan Xie, Kaori Yoneyama

Root parasitic broomrape (Phelipanche and Orobanche spp.) weeds cause devastating damage to agricultural production all around the world. The seeds of broomrapes germinate when they are exposed to germination stimulants, mainly strigolactones (SLs), released from the roots of any plant species; however, broomrapes parasitize only dicot plants. Therefore, monocots can be trap crops for broomrapes, as they induce seed germination but are not parasitized. In this study, we examined two European and one Japanese barley cultivar for their potential as trap crops for broomrapes. We found that the European cultivars, Sebastian and Golden Promise, are good potential trap crops, as they produce more SLs and exhibit higher mycorrhizal colonization rates as compared to the Japanese cultivar Shunrai.

根寄生扫帚草(Phelipanche和orobche spp.)杂草对世界各地的农业生产造成了毁灭性的破坏。当锦菜籽暴露于萌发刺激剂(主要是从任何植物物种的根释放的独角孤内酯(SLs))时,它们就会发芽;然而,帚菜花只寄生于双科植物。因此,单子房作物可以作为诱捕作物,因为它们诱导种子萌发但不被寄生。在这项研究中,我们研究了两个欧洲和一个日本大麦品种作为扫帚油菜诱捕作物的潜力。我们发现欧洲品种Sebastian和Golden Promise是很好的潜在诱捕作物,因为与日本品种Shunrai相比,它们产生更多的SLs,并表现出更高的菌根定植率。
{"title":"Barley is a potential trap crop for root parasitic broomrape weeds.","authors":"Maiko Inoue, Xiaonan Xie, Kaori Yoneyama","doi":"10.1584/jpestics.D24-034","DOIUrl":"10.1584/jpestics.D24-034","url":null,"abstract":"<p><p>Root parasitic broomrape (<i>Phelipanche</i> and <i>Orobanche</i> spp.) weeds cause devastating damage to agricultural production all around the world. The seeds of broomrapes germinate when they are exposed to germination stimulants, mainly strigolactones (SLs), released from the roots of any plant species; however, broomrapes parasitize only dicot plants. Therefore, monocots can be trap crops for broomrapes, as they induce seed germination but are not parasitized. In this study, we examined two European and one Japanese barley cultivar for their potential as trap crops for broomrapes. We found that the European cultivars, Sebastian and Golden Promise, are good potential trap crops, as they produce more SLs and exhibit higher mycorrhizal colonization rates as compared to the Japanese cultivar Shunrai.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"255-261"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coprinolide, a novel antifungal tricyclic polyketide with a rare furanone-fused chromene skeleton isolated from the mushroom Coprinus comatus. 鸡鸡内酯是一种新型的抗真菌三环聚酮,具有罕见的呋喃酮融合铬骨架,从蘑菇鸡鸡中分离出来。
IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-11-20 DOI: 10.1584/jpestics.D24-040
Enrico M Cabutaje, Kota Seki, Motoichiro Kodama, Tsutomu Arie, Kotomi Ueno, Thomas Edison E Dela Cruz, Atsushi Ishihara

A search for antifungal compounds from the mushroom Coprinus comatus using a bioassay-guided chromatographic fractionation approach led to the discovery of a novel polyketide harboring a rare 3,3a,9,9a-tetrahydro-1H-furo[3,4-b]chromen-1-one skeleton. The novel compound was named coprinolide. The inhibitory activity and fungicidal potential of coprinolide were evaluated against five economically important plant-pathogenic fungi. Coprinolide showed inhibitory effects on conidial germination and germ tube elongation of all tested fungi. The strongest effect was observed for Colletotrichum orbiculare with half-maximal inhibitory concentrations of 7.1 ppm and 8.2 ppm for conidial germination and germ tube elongation, respectively. Furthermore, coprinolide exhibited fungicidal activity against the tested fungi by inhibiting conidial germination to conidial death as confirmed by fluorescence microscopy using fluorescein diacetate and propidium iodide. These findings showed the potential of the mushroom as a source of a novel bioactive compound with promising agricultural application as an antifungal agent against different plant-pathogenic fungi.

利用生物测定引导的色谱分离方法从蘑菇Coprinus comatus中寻找抗真菌化合物,发现了一种新的聚酮,该聚酮含有罕见的3,3a,9,9 A -四氢- 1h -呋喃[3,4-b]铬-1- 1骨架。这种新化合物被命名为coprinolide。研究了红素内酯对5种重要的植物病原真菌的抑菌活性和抑菌潜力。Coprinolide对所有真菌的分生孢子萌发和芽管伸长均有抑制作用。对圆形炭疽病菌的萌发和芽管伸长的抑制效果最强,半最大抑制浓度分别为7.1 ppm和8.2 ppm。此外,利用荧光素和碘化丙啶在荧光显微镜下证实,coprinolide通过抑制分生孢子萌发和分生孢子死亡,显示出对所试真菌的杀真菌活性。这些发现表明,这种蘑菇作为一种新型生物活性化合物具有潜在的农业应用前景,可以作为一种抗不同植物病原真菌的药物。
{"title":"Coprinolide, a novel antifungal tricyclic polyketide with a rare furanone-fused chromene skeleton isolated from the mushroom <i>Coprinus comatus</i>.","authors":"Enrico M Cabutaje, Kota Seki, Motoichiro Kodama, Tsutomu Arie, Kotomi Ueno, Thomas Edison E Dela Cruz, Atsushi Ishihara","doi":"10.1584/jpestics.D24-040","DOIUrl":"10.1584/jpestics.D24-040","url":null,"abstract":"<p><p>A search for antifungal compounds from the mushroom <i>Coprinus comatus</i> using a bioassay-guided chromatographic fractionation approach led to the discovery of a novel polyketide harboring a rare 3,3a,9,9a-tetrahydro-1<i>H</i>-furo[3,4-<i>b</i>]chromen-1-one skeleton. The novel compound was named coprinolide. The inhibitory activity and fungicidal potential of coprinolide were evaluated against five economically important plant-pathogenic fungi. Coprinolide showed inhibitory effects on conidial germination and germ tube elongation of all tested fungi. The strongest effect was observed for <i>Colletotrichum orbiculare</i> with half-maximal inhibitory concentrations of 7.1 ppm and 8.2 ppm for conidial germination and germ tube elongation, respectively. Furthermore, coprinolide exhibited fungicidal activity against the tested fungi by inhibiting conidial germination to conidial death as confirmed by fluorescence microscopy using fluorescein diacetate and propidium iodide. These findings showed the potential of the mushroom as a source of a novel bioactive compound with promising agricultural application as an antifungal agent against different plant-pathogenic fungi.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"243-254"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A suitable solvent for adsorption of poorly water-soluble substances onto silica gel in a ready biodegradability test. 一种合适的溶剂,用于吸附水溶性较差的物质到硅胶上,进行现成的生物降解性试验。
IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-11-20 DOI: 10.1584/jpestics.D24-016
Yoshinari Takano, Saki Takekoshi, Kotaro Takano, Yoshihide Matoba, Makiko Mukumoto, Keisei Sowa, Yuki Kitazumi, Osamu Shirai

When a test substance is poorly water-soluble, it can be adsorbed onto silica gel to facilitate dispersibility in a ready biodegradability test. To uniformly adsorb the test substance onto silica gel, the substance is dissolved in a solvent and then mixed with the silica gel. It is desirable for the solvent to completely evaporate afterward. In this study, we identified n-hexane as a suitable solvent for this purpose. Furthermore, through fluorescence observation, we revealed that the test substance adsorbed onto the silica gel adhered to activated sludge flocs. This is thought to improve contact between the test substance and microorganisms, thereby accelerating biodegradation.

当测试物质水溶性较差时,可将其吸附在硅胶上,便于在现成的生物降解性测试中分散。为了使被试物质均匀吸附在硅胶上,将被试物质溶解在溶剂中,然后与硅胶混合。最理想的情况是溶剂随后完全蒸发。在这项研究中,我们确定了正己烷作为一种合适的溶剂。此外,通过荧光观察,我们发现被吸附在硅胶上的试验物质粘附在活性污泥絮凝体上。这被认为可以改善测试物质与微生物之间的接触,从而加速生物降解。
{"title":"A suitable solvent for adsorption of poorly water-soluble substances onto silica gel in a ready biodegradability test.","authors":"Yoshinari Takano, Saki Takekoshi, Kotaro Takano, Yoshihide Matoba, Makiko Mukumoto, Keisei Sowa, Yuki Kitazumi, Osamu Shirai","doi":"10.1584/jpestics.D24-016","DOIUrl":"10.1584/jpestics.D24-016","url":null,"abstract":"<p><p>When a test substance is poorly water-soluble, it can be adsorbed onto silica gel to facilitate dispersibility in a ready biodegradability test. To uniformly adsorb the test substance onto silica gel, the substance is dissolved in a solvent and then mixed with the silica gel. It is desirable for the solvent to completely evaporate afterward. In this study, we identified <i>n</i>-hexane as a suitable solvent for this purpose. Furthermore, through fluorescence observation, we revealed that the test substance adsorbed onto the silica gel adhered to activated sludge flocs. This is thought to improve contact between the test substance and microorganisms, thereby accelerating biodegradation.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"271-276"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, synthesis, and biological evaluation of insect hormone agonists. 昆虫激素激动剂的设计、合成和生物学评价。
IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-11-20 DOI: 10.1584/jpestics.J24-02
Taiyo Yokoi

Agonists of insect hormones, namely molting hormone (MH) and juvenile hormone (JH), disrupt the normal growth of insects and can be employed as insecticides that are harmless to vertebrates. In this study, a series of experiments and computational analyses were conducted to rationally design novel insect hormone agonists. Syntheses and quantitative structure-activity relationship (QSAR) analyses of two MH agonist chemotypes, imidazothiadiazoles and tetrahydroquinolines, revealed that the structural factors important for the ligand-receptor interactions are significantly different between these chemotypes. On the other hand, a virtual screening cascade combining ligand- and structure-based methods identified a piperazine derivative as a novel JH agonist. The results obtained in this study will be useful for the future development of novel insect growth regulators.

昆虫激素的激动剂,即蜕皮激素(MH)和幼体激素(JH),破坏昆虫的正常生长,可作为对脊椎动物无害的杀虫剂。本研究通过一系列实验和计算分析来合理设计新型昆虫激素激动剂。咪唑噻二唑和四氢喹啉两种MH激动剂化学型的合成和定量构效关系(QSAR)分析表明,这两种化学型之间的配体-受体相互作用的重要结构因素存在显著差异。另一方面,结合配体和结构的虚拟筛选级联方法鉴定了哌嗪衍生物作为新型JH激动剂。本研究结果将为今后开发新型昆虫生长调节剂提供参考。
{"title":"Design, synthesis, and biological evaluation of insect hormone agonists.","authors":"Taiyo Yokoi","doi":"10.1584/jpestics.J24-02","DOIUrl":"10.1584/jpestics.J24-02","url":null,"abstract":"<p><p>Agonists of insect hormones, namely molting hormone (MH) and juvenile hormone (JH), disrupt the normal growth of insects and can be employed as insecticides that are harmless to vertebrates. In this study, a series of experiments and computational analyses were conducted to rationally design novel insect hormone agonists. Syntheses and quantitative structure-activity relationship (QSAR) analyses of two MH agonist chemotypes, imidazothiadiazoles and tetrahydroquinolines, revealed that the structural factors important for the ligand-receptor interactions are significantly different between these chemotypes. On the other hand, a virtual screening cascade combining ligand- and structure-based methods identified a piperazine derivative as a novel JH agonist. The results obtained in this study will be useful for the future development of novel insect growth regulators.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"303-310"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of pyriofenone on the infection processes and cytological features of Blumeria graminis on wheat leaves 吡蚜酮对小麦叶片上禾谷蓝霉菌感染过程和细胞学特征的影响
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-08-27 DOI: 10.1584/jpestics.d24-005
Munekazu Ogawa, Akihiro Nishimura, Satoshi Araki, Yuzuka Abe, Nanami Kuwahara, Yohei Fukumori, Kazumi Suzuki, Shigeru Mitani

Pyriofenone demonstrates outstanding efficacy in controlling powdery mildew. We investigated the impact of pyriofenone on the infection processes and cytological features of Blumeria graminis f. sp. tritici on wheat leaves. The preventive application of pyriofenone before inoculation did not inhibit conidial germination but effectively suppressed both appressorial and haustorial formation. Notably, haustorial formation was effectively inhibited, resulting in the complete suppression of successive lesion development and sporulation. Curative application of pyriofenone after inoculation also inhibited lesion expansion and sporulation. Furthermore, it had considerable impact on the morphogenesis of powdery mildew fungus. We observed multi-formed secondary appressoria, shrunken or bifurcated hyphae, abnormal conidiophores, and clubbed conidia-like structures. Subsequently, we employed a histochemical approach to analyze the localization of essential components for the polar growth of fungal hyphae. Pyriofenone induced mislocalization of the actin cytoskeleton, β-glucan and cytoplasmic vesicles, although it did not affect tubulin orientation.

Fullsize Image
吡唑醚菌酯在防治白粉病方面表现出卓越的功效。我们研究了吡唑醚菌酯对三尖杉白粉病在小麦叶片上的侵染过程和细胞学特征的影响。在接种前预防性施用吡唑醚菌酯并不能抑制分生孢子的萌发,但能有效抑制附着孢子和簇孢子的形成。值得注意的是,寄主形成被有效抑制,从而完全抑制了连续病变的发展和孢子的产生。在接种后施用吡唑醚菌酯也能抑制病斑的扩展和孢子的产生。此外,它对白粉病菌的形态发生也有相当大的影响。我们观察到了多形成的次生附属物、萎缩或分叉的菌丝、异常的分生孢子梗和棍棒状的分生孢子结构。随后,我们采用组织化学方法分析了真菌菌丝极性生长的重要成分的定位。Pyriofenone 诱导了肌动蛋白细胞骨架、β-葡聚糖和细胞质囊泡的错误定位,但并不影响微管蛋白的定向。
{"title":"Effect of pyriofenone on the infection processes and cytological features of Blumeria graminis on wheat leaves","authors":"Munekazu Ogawa, Akihiro Nishimura, Satoshi Araki, Yuzuka Abe, Nanami Kuwahara, Yohei Fukumori, Kazumi Suzuki, Shigeru Mitani","doi":"10.1584/jpestics.d24-005","DOIUrl":"https://doi.org/10.1584/jpestics.d24-005","url":null,"abstract":"</p><p>Pyriofenone demonstrates outstanding efficacy in controlling powdery mildew. We investigated the impact of pyriofenone on the infection processes and cytological features of <i>Blumeria graminis</i> f. sp. <i>tritici</i> on wheat leaves. The preventive application of pyriofenone before inoculation did not inhibit conidial germination but effectively suppressed both appressorial and haustorial formation. Notably, haustorial formation was effectively inhibited, resulting in the complete suppression of successive lesion development and sporulation. Curative application of pyriofenone after inoculation also inhibited lesion expansion and sporulation. Furthermore, it had considerable impact on the morphogenesis of powdery mildew fungus. We observed multi-formed secondary appressoria, shrunken or bifurcated hyphae, abnormal conidiophores, and clubbed conidia-like structures. Subsequently, we employed a histochemical approach to analyze the localization of essential components for the polar growth of fungal hyphae. Pyriofenone induced mislocalization of the actin cytoskeleton, β-glucan and cytoplasmic vesicles, although it did not affect tubulin orientation.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-005/figure/advpub_D24-005.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"8 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and biological evaluation of burnettiene A derivatives enabling discovery of novel fungicide candidates. 合成灼烧烯 A 衍生物并对其进行生物学评价,从而发现新型候选杀真菌剂。
IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-08-20 DOI: 10.1584/jpestics.D24-014
Aoi Kimishima, Atsuka Nishitomi, Iori Tsuruoka, Masako Honsho, Sota Negami, Sota Honma, Katsuyuki Sakai, Toshiyuki Tokiwa, Hiroki Kojima, Kenichi Nonaka, Shin-Ichi Fuji, Takumi Chinen, Takeo Usui, Yukihiro Asami

An antifungal polyene-decalin polyketide natural product, burnettiene A (1) has been re-discovered from the culture broth of Lecanicillium primulinum (current name: Flavocillium primulinum) FKI-6715 strain utilizing our original multidrug-sensitive yeast system. This polyene-decalin polyketide natural product was originally isolated from Aspergillus burnettii. The antifungal activity of 1 against Candida albicans has been reported. However, only one fungal species for the antifungal activity of 1 has been revealed, and details of the antifungal activity against other pathogenic fungus remain unknown. After extensive screening for antifungal activity, we found that 1 exhibits broad antifungal activity against pathogenic plant fungi, including Colletotrichum gloeosporioides, Botrytis cinerea, Pyricularia oryzae, Leptosphaeria maculans, and Rhizoctonia solani. Furthermore, we synthesized 12 derivatives from 1 and evaluated their antifungal activity to reveal the detailed structure-activity relationship. The methyl ester derivative showed antifungal activity against Saccharomyces cerevisiae 12geneΔ0HSR-iERG6 100-fold more potent than that of 1. Our research indicates that 1 would be a promising natural product as a new fungicidal candidate and the methyl ester derivative especially has great potential.

利用我们独创的多药敏感酵母系统,我们从原毛黄腐霉菌(Lecanicillium primulinum,现名:Flavocillium primulinum)FKI-6715 菌株的培养液中重新发现了一种抗真菌多烯萘多酮苷天然产物 Burnettiene A (1)。这种多烯癸醛多酮天然产物最初是从燃烧曲霉(Aspergillus burnettii)中分离出来的。据报道,1 对白色念珠菌具有抗真菌活性。然而,1 的抗真菌活性只针对一种真菌,对其他致病真菌的抗真菌活性仍不清楚。经过广泛的抗真菌活性筛选,我们发现 1 对病原植物真菌具有广泛的抗真菌活性,包括球孢子菌(Colletotrichum gloeosporioides)、灰霉病菌(Botrytis cinerea)、Pyricularia oryzae、Leptosphaeria maculans 和根瘤菌(Rhizoctonia solani)。此外,我们还从 1 中合成了 12 种衍生物,并评估了它们的抗真菌活性,以揭示详细的结构-活性关系。我们的研究表明,1 是一种很有前途的天然产物,可作为一种新的杀真菌候选物,尤其是其甲酯衍生物具有很大的潜力。
{"title":"Synthesis and biological evaluation of burnettiene A derivatives enabling discovery of novel fungicide candidates.","authors":"Aoi Kimishima, Atsuka Nishitomi, Iori Tsuruoka, Masako Honsho, Sota Negami, Sota Honma, Katsuyuki Sakai, Toshiyuki Tokiwa, Hiroki Kojima, Kenichi Nonaka, Shin-Ichi Fuji, Takumi Chinen, Takeo Usui, Yukihiro Asami","doi":"10.1584/jpestics.D24-014","DOIUrl":"https://doi.org/10.1584/jpestics.D24-014","url":null,"abstract":"<p><p>An antifungal polyene-decalin polyketide natural product, burnettiene A (<b>1</b>) has been re-discovered from the culture broth of <i>Lecanicillium primulinum</i> (current name: <i>Flavocillium primulinum</i>) FKI-6715 strain utilizing our original multidrug-sensitive yeast system. This polyene-decalin polyketide natural product was originally isolated from <i>Aspergillus burnettii</i>. The antifungal activity of <b>1</b> against <i>Candida albicans</i> has been reported. However, only one fungal species for the antifungal activity of <b>1</b> has been revealed, and details of the antifungal activity against other pathogenic fungus remain unknown. After extensive screening for antifungal activity, we found that <b>1</b> exhibits broad antifungal activity against pathogenic plant fungi, including <i>Colletotrichum gloeosporioides</i>, <i>Botrytis cinerea</i>, <i>Pyricularia oryzae</i>, <i>Leptosphaeria maculans</i>, and <i>Rhizoctonia solani</i>. Furthermore, we synthesized 12 derivatives from <b>1</b> and evaluated their antifungal activity to reveal the detailed structure-activity relationship. The methyl ester derivative showed antifungal activity against <i>Saccharomyces cerevisiae</i> 12geneΔ0HSR-iERG6 100-fold more potent than that of <b>1</b>. Our research indicates that <b>1</b> would be a promising natural product as a new fungicidal candidate and the methyl ester derivative especially has great potential.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 3","pages":"159-167"},"PeriodicalIF":1.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced disease resistance against Botrytis cinerea by strigolactone-mediated immune priming in Arabidopsis thaliana 拟南芥通过绞股蓝内酯介导的免疫启动增强对灰霉病的抗病性
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-08-09 DOI: 10.1584/jpestics.d24-019
Moeka Fujita, Tomoya Tanaka, Miyuki Kusajima, Kengo Inoshima, Futo Narita, Hidemitsu Nakamura, Tadao Asami, Akiko Maruyama-Nakashita, Hideo Nakashita

Strigolactones (SLs) are a class of plant hormones that play several roles in plants, such as suppressing shoot branching and promoting arbuscular mycorrhizal symbiosis. The positive regulation of plant disease resistance by SLs has recently been demonstrated by analyses using SL-related mutants. In Arabidopsis, SL-mediated signaling has been reported to modulate salicylic acid-mediated disease resistance, in which the priming of plant immunity plays an important role. In this study, we analyzed the effect of the synthetic SL analogue rac-GR24 on resistance against necrotrophic pathogen Botrytis cinerea. In rac-GR24-treated plants, disease resistance against B. cinerea was enhanced in an ethylene- and camalexin-dependent manners. Expression of the ethylene-related genes and the camalexin biosynthetic gene and camalexin accumulation after pathogen infection were enhanced by immune priming in rac-GR24-treated plants. These suggest that SL-mediated immune priming is effective for many types of resistance mechanisms in plant self-defense systems.

Fullsize Image
石蒜内酯(SLs)是一类植物激素,在植物体内发挥多种作用,如抑制嫩枝分枝和促进丛枝菌根共生。最近,通过使用与 SL 相关的突变体进行分析,证明了 SL 对植物抗病性的积极调控作用。据报道,在拟南芥中,SL 介导的信号传导可调节水杨酸介导的抗病性,其中植物免疫的启动起着重要作用。在这项研究中,我们分析了合成的水杨酸类似物 rac-GR24 对坏死性病原菌 Botrytis cinerea 的抗性的影响。在经 rac-GR24 处理的植物中,对 B. cinerea 的抗病性以乙烯和骆驼蓬苷依赖的方式增强。在 rac-GR24 处理的植株中,乙烯相关基因和骆驼蓬苷生物合成基因的表达以及病原体感染后骆驼蓬苷的积累都通过免疫引物得到了增强。这表明,SL 介导的免疫启动对植物自卫系统中的多种抗性机制都是有效的。
{"title":"Enhanced disease resistance against Botrytis cinerea by strigolactone-mediated immune priming in Arabidopsis thaliana","authors":"Moeka Fujita, Tomoya Tanaka, Miyuki Kusajima, Kengo Inoshima, Futo Narita, Hidemitsu Nakamura, Tadao Asami, Akiko Maruyama-Nakashita, Hideo Nakashita","doi":"10.1584/jpestics.d24-019","DOIUrl":"https://doi.org/10.1584/jpestics.d24-019","url":null,"abstract":"</p><p>Strigolactones (SLs) are a class of plant hormones that play several roles in plants, such as suppressing shoot branching and promoting arbuscular mycorrhizal symbiosis. The positive regulation of plant disease resistance by SLs has recently been demonstrated by analyses using SL-related mutants. In Arabidopsis, SL-mediated signaling has been reported to modulate salicylic acid-mediated disease resistance, in which the priming of plant immunity plays an important role. In this study, we analyzed the effect of the synthetic SL analogue <i>rac</i>-GR24 on resistance against necrotrophic pathogen <i>Botrytis cinerea</i>. In <i>rac</i>-GR24-treated plants, disease resistance against <i>B. cinerea</i> was enhanced in an ethylene- and camalexin-dependent manners. Expression of the ethylene-related genes and the camalexin biosynthetic gene and camalexin accumulation after pathogen infection were enhanced by immune priming in <i>rac</i>-GR24-treated plants. These suggest that SL-mediated immune priming is effective for many types of resistance mechanisms in plant self-defense systems.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-019/figure/advpub_D24-019.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"107 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A reliable quantification of organophosphorus pesticides in brown rice samples for proficiency testing using Japanese official analytical method, QuEChERS, and modified QuEChERS combined with isotope dilution mass spectrometry 使用日本官方分析方法 QuEChERS 和改良 QuEChERS 结合同位素稀释质谱法,可靠定量糙米样品中的有机磷农药,以进行能力验证
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-07-24 DOI: 10.1584/jpestics.d24-021
Takamitsu Otake, Keisuke Nakamura, Naoyuki Hirabayashi, Takaho Watanabe

The objective of the present study is to provide reliable concentration values as assigned values for target pesticides in brown rice samples used in proficiency testing (PT) organized by the Hatano Research Institute (HRI). The test samples for PT were prepared by immersing brown rice in the pesticide solution and using a spray dryer by the HRI. Homogeneity and stability assessments were performed for PT samples, and the relative uncertainties due to inhomogeneity and instability were 0.58 %–0.78 % and 0 %–0.96 %, respectively. Quantification for the assigned values of target pesticides by the National Metrology Institute of Japan (NMIJ) was carried out using the multiple analytical methods including Japanese official analytical method, QuEChERS, and modified QuEChERS, which were combined with isotope dilution mass spectrometry, to ensure the reliability of the analytical results. The NMIJ assigned values were 0.065±0.004 mg/kg for chlorpyrifos, 0.217±0.012 mg/kg for diazinon, 0.138±0.008 mg/kg for fenitrothion, and 0.138±0.008 mg/kg for malathion.

Fullsize Image
本研究的目的是为波多野研究所(HRI)组织的能力验证(PT)中使用的糙米样品中的目标农药提供可靠的浓度分配值。将糙米浸入农药溶液中,并使用 HRI 提供的喷雾干燥器制备能力验证测试样品。对 PT 样品进行了均匀性和稳定性评估,不均匀性和不稳定性导致的相对不确定性分别为 0.58 %-0.78 % 和 0 %-0.96 %。日本国家计量院(NMIJ)采用多种分析方法,包括日本官方分析方法、QuEChERS 和改进的 QuEChERS,结合同位素稀释质谱法,对目标农药的分配值进行了定量,以确保分析结果的可靠性。毒死蜱的 NMIJ 分配值为 0.065±0.004 mg/kg,二嗪农为 0.217±0.012 mg/kg,杀螟松为 0.138±0.008 mg/kg,马拉硫磷为 0.138±0.008 mg/kg。
{"title":"A reliable quantification of organophosphorus pesticides in brown rice samples for proficiency testing using Japanese official analytical method, QuEChERS, and modified QuEChERS combined with isotope dilution mass spectrometry","authors":"Takamitsu Otake, Keisuke Nakamura, Naoyuki Hirabayashi, Takaho Watanabe","doi":"10.1584/jpestics.d24-021","DOIUrl":"https://doi.org/10.1584/jpestics.d24-021","url":null,"abstract":"</p><p>The objective of the present study is to provide reliable concentration values as assigned values for target pesticides in brown rice samples used in proficiency testing (PT) organized by the Hatano Research Institute (HRI). The test samples for PT were prepared by immersing brown rice in the pesticide solution and using a spray dryer by the HRI. Homogeneity and stability assessments were performed for PT samples, and the relative uncertainties due to inhomogeneity and instability were 0.58 %–0.78 % and 0 %–0.96 %, respectively. Quantification for the assigned values of target pesticides by the National Metrology Institute of Japan (NMIJ) was carried out using the multiple analytical methods including Japanese official analytical method, QuEChERS, and modified QuEChERS, which were combined with isotope dilution mass spectrometry, to ensure the reliability of the analytical results. The NMIJ assigned values were 0.065±0.004 mg/kg for chlorpyrifos, 0.217±0.012 mg/kg for diazinon, 0.138±0.008 mg/kg for fenitrothion, and 0.138±0.008 mg/kg for malathion.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-021/figure/advpub_D24-021.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"95 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Pesticide Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1