首页 > 最新文献

Journal of Pesticide Science最新文献

英文 中文
Bacterial Pesticides: Mechanism of Action, Possibility of Food Contamination, and Residue Analysis Using MS 细菌杀虫剂:作用机理、食品污染的可能性以及使用 MS 进行残留分析
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-07-19 DOI: 10.1584/jpestics.d24-006
Hiroto Tamura

As Sustainable Development Goals (SDGs) and the realities of climate change become widely accepted around the world, the next-generation of integrated pest management will become even more important for establishing a sustainable food production system. To meet the current challenge of food security and climate change, biological control has been developed as one sustainable crop protection technology. However, most registered bacteria are ubiquitous soil-borne bacteria that are closely related to food poisoning and spoilage bacteria. Therefore, this review outlined (1) the mechanism of action of bacterial pesticides, (2) potential concerns about secondary contamination sources associated with past food contamination, and, as a prospective solution, focused on (3) principles and methods of bacterial identification, and (4) the possibility of identifying residual bacteria based on mass spectrometry.

Fullsize Image
随着可持续发展目标(SDGs)和气候变化的现实在全球范围内被广泛接受,下一代病虫害综合防治对于建立可持续的粮食生产系统将变得更加重要。为了应对当前粮食安全和气候变化的挑战,生物防治作为一种可持续的作物保护技术得到了发展。然而,大多数登记的细菌都是无处不在的土传细菌,与食物中毒和腐败细菌密切相关。因此,本综述概述了 (1) 细菌杀虫剂的作用机制,(2) 与过去食品污染相关的二次污染源的潜在问题,并作为一种前瞻性解决方案,重点讨论了 (3) 细菌鉴定的原则和方法,以及 (4) 基于质谱法鉴定残留细菌的可能性。
{"title":"Bacterial Pesticides: Mechanism of Action, Possibility of Food Contamination, and Residue Analysis Using MS","authors":"Hiroto Tamura","doi":"10.1584/jpestics.d24-006","DOIUrl":"https://doi.org/10.1584/jpestics.d24-006","url":null,"abstract":"</p><p>As Sustainable Development Goals (SDGs) and the realities of climate change become widely accepted around the world, the next-generation of integrated pest management will become even more important for establishing a sustainable food production system. To meet the current challenge of food security and climate change, biological control has been developed as one sustainable crop protection technology. However, most registered bacteria are ubiquitous soil-borne bacteria that are closely related to food poisoning and spoilage bacteria. Therefore, this review outlined (1) the mechanism of action of bacterial pesticides, (2) potential concerns about secondary contamination sources associated with past food contamination, and, as a prospective solution, focused on (3) principles and methods of bacterial identification, and (4) the possibility of identifying residual bacteria based on mass spectrometry.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-006/figure/advpub_D24-006.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"10 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput screening for novel Bacillus thuringiensis insecticidal proteins revealed evidence that the bacterium exchanges Domain III to enhance its insecticidal activity 高通量筛选新型苏云金芽孢杆菌杀虫蛋白的结果表明,苏云金芽孢杆菌通过交换领域 III 来增强其杀虫活性
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-07-10 DOI: 10.1584/jpestics.d24-011
Ruth Cong, Jing-Tong Hou, Takashi Yamamoto

Approximately 3000 Bacillus thuringiensis (Bt) isolates were screened to discover novel three-domain (3D) Cry proteins active against Helicoverpa zea (corn earworm). From 400 active isolates found during the primary screening, Cry1Ac and Cry2A, which are known to be active against H. zea, were removed using multiplex-primer PCR and high-throughput column chromatography. This process reduced the number of active cultures to 48. DNA segments encoding Domain III of these 48 cultures were amplified by PCR and sequenced. Sequencing revealed two novel Cry1B-type Domain IIIs. Further sequencing of the flanking regions of these domains revealed that one was part of Cry1Bj (GenBank: KT952325). However, the other Domain III lacked Domains I and II. Instead, this Domain III was associated with two open reading frames, ORF1 and ORF2. ORF1 was identified as an ATP-binding protein, and ORF2 as an ATPase, suggesting that Bt exchanges Domain III among homologous Cry proteins.

Fullsize Image
对大约 3000 个苏云金芽孢杆菌(Bt)分离株进行了筛选,以发现对玉米穗虫(Helicoverpa zea)具有活性的新型三维(3D)Cry 蛋白。利用多重引物 PCR 和高通量柱层析技术,从初筛发现的 400 个活性分离物中剔除了已知对玉米螟有活性的 Cry1Ac 和 Cry2A。这一过程将活性培养物的数量减少到 48 个。通过 PCR 扩增了这 48 个培养物中编码领域 III 的 DNA 片段并进行了测序。测序发现了两个新的 Cry1B 型 Domain III。对这些结构域侧翼区域的进一步测序发现,其中一个是 Cry1Bj 的一部分(GenBank:KT952325)。然而,另一个结构域 III 缺乏结构域 I 和 II。相反,该结构域 III 与两个开放阅读框(ORF1 和 ORF2)有关。ORF1 被鉴定为 ATP 结合蛋白,ORF2 被鉴定为 ATP 酶,这表明 Bt 在同源 Cry 蛋白中交换了领域 III。
{"title":"High-throughput screening for novel Bacillus thuringiensis insecticidal proteins revealed evidence that the bacterium exchanges Domain III to enhance its insecticidal activity","authors":"Ruth Cong, Jing-Tong Hou, Takashi Yamamoto","doi":"10.1584/jpestics.d24-011","DOIUrl":"https://doi.org/10.1584/jpestics.d24-011","url":null,"abstract":"</p><p>Approximately 3000 <i>Bacillus thuringiensis</i> (Bt) isolates were screened to discover novel three-domain (3D) Cry proteins active against <i>Helicoverpa zea</i> (corn earworm). From 400 active isolates found during the primary screening, Cry1Ac and Cry2A, which are known to be active against <i>H. zea</i>, were removed using multiplex-primer PCR and high-throughput column chromatography. This process reduced the number of active cultures to 48. DNA segments encoding Domain III of these 48 cultures were amplified by PCR and sequenced. Sequencing revealed two novel Cry1B-type Domain IIIs. Further sequencing of the flanking regions of these domains revealed that one was part of Cry1Bj (GenBank: KT952325). However, the other Domain III lacked Domains I and II. Instead, this Domain III was associated with two open reading frames, ORF1 and ORF2. ORF1 was identified as an ATP-binding protein, and ORF2 as an ATPase, suggesting that Bt exchanges Domain III among homologous Cry proteins.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-011/figure/advpub_D24-011.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"5 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoencapsulated deltamethrin combined with indoxacarb: An effective synergistic association against aphids 纳米胶囊化溴氰菊酯与茚虫威的结合:防治蚜虫的有效协同作用
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-07-09 DOI: 10.1584/jpestics.d24-003
Marine Galloux, Guillaume Bastiat, Corinne Lefrancois, Véronique Apaire-Marchais, Caroline Deshayes

Widespread pesticide use for decades has caused environmental damage, biodiversity loss, serious human and animal health problems, and resistance to insecticides. Innovative strategies are needed to reduce treatment doses in pest management and to overcome insecticide resistance. In the present study, combinations of indoxacarb, an oxadiazine insecticide, with sublethal concentrations of deltamethrin encapsulated in lipid nanocapsules, have been tested on the crop pest Acyrthosiphon pisum. In vivo toxicological tests on A. pisum larvae have shown a synergistic effect of nanoencapsulated deltamethrin with a low dose of indoxacarb. Furthermore, the stability of deltamethrin nanoparticles has been demonstrated in vitro under different mimicking environmental conditions. In parallel, the integrity and stability of lipid nanoparticles in the digestive system of aphid larvae over time have been observed by Förster Resonance Energy Transfer (FRET) imaging. Thus, the deltamethrin nanocapsules/indoxacarb synergistic association is promising for the development of future formulations against pest insects to reduce insecticide doses.

Fullsize Image
几十年来,杀虫剂的广泛使用造成了环境破坏、生物多样性丧失、严重的人类和动物健康问题以及对杀虫剂的抗药性。我们需要创新的策略来减少害虫管理中的处理剂量,并克服杀虫剂的抗药性。在本研究中,茚虫威(一种噁二嗪类杀虫剂)与封装在脂质纳米胶囊中的亚致死浓度溴氰菊酯的组合物在农作物害虫 Acyrthosiphon pisum 上进行了试验。对 A. pisum 幼虫进行的体内毒理学测试表明,纳米封装的溴氰菊酯与低剂量的茚虫威具有协同作用。此外,在不同的模拟环境条件下,体外实验也证明了溴氰菊酯纳米颗粒的稳定性。同时,还通过佛斯特共振能量转移(FRET)成像技术观察了脂质纳米粒子在蚜虫幼虫消化系统中的完整性和稳定性。因此,溴氰菊酯纳米胶囊与茚虫威的协同作用有望用于未来害虫制剂的开发,以减少杀虫剂剂量。
{"title":"Nanoencapsulated deltamethrin combined with indoxacarb: An effective synergistic association against aphids","authors":"Marine Galloux, Guillaume Bastiat, Corinne Lefrancois, Véronique Apaire-Marchais, Caroline Deshayes","doi":"10.1584/jpestics.d24-003","DOIUrl":"https://doi.org/10.1584/jpestics.d24-003","url":null,"abstract":"</p><p>Widespread pesticide use for decades has caused environmental damage, biodiversity loss, serious human and animal health problems, and resistance to insecticides. Innovative strategies are needed to reduce treatment doses in pest management and to overcome insecticide resistance. In the present study, combinations of indoxacarb, an oxadiazine insecticide, with sublethal concentrations of deltamethrin encapsulated in lipid nanocapsules, have been tested on the crop pest <i>Acyrthosiphon pisum</i>. <i>In vivo</i> toxicological tests on <i>A. pisum</i> larvae have shown a synergistic effect of nanoencapsulated deltamethrin with a low dose of indoxacarb. Furthermore, the stability of deltamethrin nanoparticles has been demonstrated <i>in vitro</i> under different mimicking environmental conditions. In parallel, the integrity and stability of lipid nanoparticles in the digestive system of aphid larvae over time have been observed by Förster Resonance Energy Transfer (FRET) imaging. Thus, the deltamethrin nanocapsules/indoxacarb synergistic association is promising for the development of future formulations against pest insects to reduce insecticide doses.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-003/figure/advpub_D24-003.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"59 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advantageous properties of a new fungicide, isofetamid 新型杀菌剂异氟菌酰胺的优势特性
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-05-30 DOI: 10.1584/jpestics.d23-067
Shuko Nishimi, Yuzuka Abe, Nanami Kuwahara, Akihiro Nishimura, Shintaro Tsukuda, Satoshi Araki, Kosuke Tsunematsu, Yohei Fukumori, Munekazu Ogawa, Kazumi Suzuki, Shigeru Mitani

The fungicidal properties of a new fungicide, isofetamid, were examined to assess its antifungal spectrum, mode of action, and effects on the infection process of Botrytis cinerea. Additionally, we investigated its fungicidal activity against isolates of B. cinerea resistant to existing fungicides. In mycelial growth inhibition tests, isofetamid exhibited excellent fungicidal activity against ascomycetes but showed no activity against basidiomycetes and oomycetes. Respiratory enzyme assay using mitochondria revealed that isofetamid inhibited succinate dehydrogenase activity prepared from B. cinerea and other ascomycetes fungi used in the study. On the other hand, the activity of mitochondria prepared from Pythium, potato and rat were not inhibited. Isofetamid inhibited also many stages of the infection processes in B. cinerea. Furthermore, it exhibited high fungicidal activity against B. cinerea isolates that were resistant to existing fungicides.

Fullsize Image
我们研究了一种新型杀真菌剂异菲他胺的杀真菌特性,以评估其抗真菌谱、作用模式以及对灰霉病菌感染过程的影响。此外,我们还研究了它对对现有杀真菌剂有抗药性的灰霉病菌分离株的杀真菌活性。在菌丝生长抑制试验中,异菲他米德对子囊菌表现出极佳的杀菌活性,但对基枝菌和卵菌没有活性。利用线粒体进行的呼吸酶测定显示,异菲他胺抑制了从 B. cinerea 和研究中使用的其他子囊菌中制备的琥珀酸脱氢酶的活性。另一方面,从 Pythium、马铃薯和大鼠中制备的线粒体的活性没有受到抑制。Isofetamid 还能抑制 B. cinerea 感染过程的许多阶段。此外,它还对对现有杀真菌剂具有抗药性的棉铃虫分离物具有很高的杀真菌活性。
{"title":"Advantageous properties of a new fungicide, isofetamid","authors":"Shuko Nishimi, Yuzuka Abe, Nanami Kuwahara, Akihiro Nishimura, Shintaro Tsukuda, Satoshi Araki, Kosuke Tsunematsu, Yohei Fukumori, Munekazu Ogawa, Kazumi Suzuki, Shigeru Mitani","doi":"10.1584/jpestics.d23-067","DOIUrl":"https://doi.org/10.1584/jpestics.d23-067","url":null,"abstract":"</p><p>The fungicidal properties of a new fungicide, isofetamid, were examined to assess its antifungal spectrum, mode of action, and effects on the infection process of <i>Botrytis cinerea</i>. Additionally, we investigated its fungicidal activity against isolates of <i>B. cinerea</i> resistant to existing fungicides. In mycelial growth inhibition tests, isofetamid exhibited excellent fungicidal activity against ascomycetes but showed no activity against basidiomycetes and oomycetes. Respiratory enzyme assay using mitochondria revealed that isofetamid inhibited succinate dehydrogenase activity prepared from <i>B. cinerea</i> and other ascomycetes fungi used in the study. On the other hand, the activity of mitochondria prepared from <i>Pythium</i>, potato and rat were not inhibited. Isofetamid inhibited also many stages of the infection processes in <i>B. cinerea</i>. Furthermore, it exhibited high fungicidal activity against <i>B. cinerea</i> isolates that were resistant to existing fungicides.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D23-067/figure/advpub_D23-067.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"19 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141196171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomics analysis of the effects of chelerythrine on Ustilaginoidea virens. 代谢组学分析切瑞瑟林对乌斯提拉吉诺虫(Ustilaginoidea virens)的影响
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-05-20 DOI: 10.1584/jpestics.D23-065
Qinghui Wei, Xihai Zhai, Weifeng Song, Zhiyong Li, Yaqing Pan, Baoying Li, Zhanli Jiao, Zhenghao Shi, Jiangtao Yu

Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.

由 Ustilaginoidea virens 引起的水稻烟粉虱(RFS)广泛分布于水稻主产区。以往的研究表明,用白屈菜红碱处理水稻假烟病可使真菌孢子的萌发率降低 86.7%,并诱导真菌细胞凋亡。本研究采用代谢组学方法,分析了不同积累的代谢物和改变的代谢途径,探讨了白屈菜对紫云英新陈代谢的影响。在随机森林分析中,前 15 种代谢物在组间存在显著差异。在正离子模式下,嘌呤、苯丙氨酸代谢、苯丙氨酸、酪氨酸、色氨酸生物合成、嘧啶代谢和氮代谢占主导地位。丙氨酸、天门冬氨酸、谷氨酸代谢和苯丙氨酸代谢以负离子模式富集。不同表达的基因和改变的代谢途径对 U. virens 产生了影响。这些研究结果支持了未来利用白屈菜红碱预防和治疗RFS的研究,并为靶向给药提供了理论依据。
{"title":"Metabolomics analysis of the effects of chelerythrine on <i>Ustilaginoidea virens</i>.","authors":"Qinghui Wei, Xihai Zhai, Weifeng Song, Zhiyong Li, Yaqing Pan, Baoying Li, Zhanli Jiao, Zhenghao Shi, Jiangtao Yu","doi":"10.1584/jpestics.D23-065","DOIUrl":"10.1584/jpestics.D23-065","url":null,"abstract":"<p><p>Rice false smut (RFS) caused by <i>Ustilaginoide</i>a virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of <i>U. virens</i> explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of <i>U. virens</i> were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 2","pages":"104-113"},"PeriodicalIF":2.4,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field survey of reproductive modes and sodium channel mutations associated with pyrethroid resistance in Thrips tabaci 田间调查田蓟马的繁殖模式和与除虫菊酯抗性有关的钠通道突变
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-05-18 DOI: 10.1584/jpestics.d24-009
Yui Tomizawa, Misato Aizawa, Akiya Jouraku, Shoji Sonoda

Using PCR-Restriction Fragment Length Polymorphism (RFLP) with mitochondrial cytochrome c oxidase subunit I sequences, we examined the reproductive modes of female adults of Thrips tabaci collected at 54 sites across Japan. Results showed the presence of heteroplasmic insects harboring mitochondria associated with arrhenotoky and thelytoky. Using the insects, we also applied PCR-RFLP to examine the genotypes for the amino acid mutation (T929I) site involved in pyrethroid resistance. Findings showed the presence of thelytokous heterozygotes under the circumstance that most arrhenotokous insects are resistant homozygotes, and many thelytokous insects are susceptible homozygotes. These results suggest that, in the field, genetic exchange occurs between insects through of both reproductive modes. A survey of the genotypes for the other amino acid mutations using nucleotide sequencing showed a decline of insects with an M918T and L1014F pair and an increase of insects with M918L. These results suggest the evolutional progression of amino acid mutations associated with pyrethroid resistance in T. tabaci.

Fullsize Image
利用线粒体细胞色素 c 氧化酶亚单位 I 序列的 PCR-限制性片段长度多态性(RFLP),我们研究了在日本 54 个地点采集的蓟马雌成虫的繁殖模式。结果表明,存在线粒体与 arrhenotoky 和 thelytoky 相关的异质昆虫。利用这些昆虫,我们还采用 PCR-RFLP 技术检测了涉及拟除虫菊酯抗性的氨基酸突变(T929I)位点的基因型。结果表明,在大多数 arhenotokous 昆虫是抗性同源杂合子,而许多 thelytokous 昆虫是易感同源杂合子的情况下,存在 thelytokous 杂合子。这些结果表明,在田间,昆虫之间会通过这两种繁殖模式进行基因交换。通过核苷酸测序对其他氨基酸突变基因型的调查显示,带有 M918T 和 L1014F 基因对的昆虫数量减少,而带有 M918L 基因对的昆虫数量增加。这些结果表明,与 T. tabaci 的拟除虫菊酯抗性相关的氨基酸突变在不断进化。
{"title":"Field survey of reproductive modes and sodium channel mutations associated with pyrethroid resistance in Thrips tabaci","authors":"Yui Tomizawa, Misato Aizawa, Akiya Jouraku, Shoji Sonoda","doi":"10.1584/jpestics.d24-009","DOIUrl":"https://doi.org/10.1584/jpestics.d24-009","url":null,"abstract":"</p><p>Using PCR-Restriction Fragment Length Polymorphism (RFLP) with mitochondrial cytochrome <i>c</i> oxidase subunit I sequences, we examined the reproductive modes of female adults of <i>Thrips tabaci</i> collected at 54 sites across Japan. Results showed the presence of heteroplasmic insects harboring mitochondria associated with arrhenotoky and thelytoky. Using the insects, we also applied PCR-RFLP to examine the genotypes for the amino acid mutation (T929I) site involved in pyrethroid resistance. Findings showed the presence of thelytokous heterozygotes under the circumstance that most arrhenotokous insects are resistant homozygotes, and many thelytokous insects are susceptible homozygotes. These results suggest that, in the field, genetic exchange occurs between insects through of both reproductive modes. A survey of the genotypes for the other amino acid mutations using nucleotide sequencing showed a decline of insects with an M918T and L1014F pair and an increase of insects with M918L. These results suggest the evolutional progression of amino acid mutations associated with pyrethroid resistance in <i>T. tabaci.</i></p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-009/figure/advpub_D24-009.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"53 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative structure–activity relationship of 2,6-dimethoxy-N-(3-(4-substituted phenyl)isoxazol-5-yl)benzamide for the inhibition of chitin synthesis 抑制甲壳素合成的 2,6-二甲氧基-N-(3-(4-取代苯基)异恶唑-5-基)苯甲酰胺的定量结构-活性关系
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-05-17 DOI: 10.1584/jpestics.d24-004
Kotaro Mori, Masahiro Miyashita, Soichirou Mori, Norio Shibata, Yoshiaki Nakagawa

Previously, we found that 5-(2,6-dimethoxybenzoylamino)-3-phenylisoxazoles (IOXs) inhibit chitin synthesis in the cultured integument of Chilo suppressalis. In this study, IOXs with various substituents at the para-position of the 3-phenyl ring were synthesized, and the concentrations required to inhibit chitin synthesis to 50% (IC50) were determined for all compounds. The introduction of halogens—such as F, Cl, and Br—and small alkyls—such as Me, Et, Pr, and n-Bu—at the 3-phenyl ring slightly enhanced the activity. However, the activity decreased drastically with the introduction of NO2, CF3, and t-Bu. The quantitative analysis of the substituent effect at the 3-phenyl ring on chitin-synthesis inhibition using the Hansch-Fujita method showed that the hydrophobic substituent with the optimum value was favored for the activity, but the bulky substituent in terms of Es was detrimental to the activity.

Fullsize Image
此前,我们发现 5-(2,6-二甲氧基苯甲酰氨基)-3-苯基异噁唑(IOXs)可抑制抑虱培养体中几丁质的合成。本研究合成了在 3-苯基环的对位上具有不同取代基的 IOXs,并测定了所有化合物抑制几丁质合成至 50%所需的浓度(IC50)。在 3-苯基环上引入卤素(如 F、Cl 和 Br)和小烷基(如 Me、Et、Pr 和 n-Bu)会略微提高活性。然而,引入 NO2、CF3 和 t-Bu 后,活性急剧下降。利用 Hansch-Fujita 方法定量分析了 3-苯基环上的取代基对甲壳素合成抑制作用的影响,结果表明,具有最佳值的疏水取代基有利于活性的提高,而以 Es 计的笨重取代基则不利于活性的提高。
{"title":"Quantitative structure–activity relationship of 2,6-dimethoxy-N-(3-(4-substituted phenyl)isoxazol-5-yl)benzamide for the inhibition of chitin synthesis","authors":"Kotaro Mori, Masahiro Miyashita, Soichirou Mori, Norio Shibata, Yoshiaki Nakagawa","doi":"10.1584/jpestics.d24-004","DOIUrl":"https://doi.org/10.1584/jpestics.d24-004","url":null,"abstract":"</p><p>Previously, we found that 5-(2,6-dimethoxybenzoylamino)-3-phenylisoxazoles (IOXs) inhibit chitin synthesis in the cultured integument of <i>Chilo suppressalis</i>. In this study, IOXs with various substituents at the <i>para</i>-position of the 3-phenyl ring were synthesized, and the concentrations required to inhibit chitin synthesis to 50% (IC<sub>50</sub>) were determined for all compounds. The introduction of halogens—such as F, Cl, and Br—and small alkyls—such as Me, Et, Pr, and <i>n</i>-Bu—at the 3-phenyl ring slightly enhanced the activity. However, the activity decreased drastically with the introduction of NO<sub>2</sub>, CF<sub>3</sub>, and <i>t</i>-Bu. The quantitative analysis of the substituent effect at the 3-phenyl ring on chitin-synthesis inhibition using the Hansch-Fujita method showed that the hydrophobic substituent with the optimum value was favored for the activity, but the bulky substituent in terms of <i>E</i><sub><i>s</i></sub> was detrimental to the activity.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-004/figure/advpub_D24-004.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"33 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradation of nitenpyram (neonicotinoid insecticide) by endophytic bacterium, Bacillus thuringiensis strain NIT-2, isolated from neonicotinoid-treated plant samples 从新烟碱处理过的植物样本中分离出的内生细菌苏云金芽孢杆菌 NIT-2 株对硝虫嗪(新烟碱类杀虫剂)的生物降解作用
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-05-17 DOI: 10.1584/jpestics.d24-002
Md. Tareq Bin Salam, Koji Ito, Ryota Kataoka

Nitenpyram (neonicotinoid insecticide) is commonly used for crop protection from pests. Currently, due to its widespread use, the nitenpyram accumulation in the environment is anticipated to be high. Hence, the removal of nitenpyram residue from the environment is essential. However, the biodegradation of nitenpyram by endophytes is still unreported. Therefore, we aimed to isolate and identify a bacterial strain capable of degrading nitenpyram. We isolated approximately 300 endophytic strains from Brassica rapa var. perviridis that had been exposed to different neonicotinoid insecticides. After 14 days of incubation, a bacterial strain, NIT-2, with nitenpyram degradation capability (approximately 65%) was found. Via 16S rRNA gene sequencing, the strain was identified as Bacillus thuringiensis. In addition, metabolites, 2-[N-(6-chloro-3-pyridylmethyl)-N-ethyl]amino-2-methyliminoacetic acid, N-(6-chloro-3-pyridilmethyl)-N-ethyl-N-methylformamidine (CPMF), and N-(6-chloro-3-pyridilmethyl)-N-ethylformamide (CPF), were identified during the degradation. Moreover, CPMF and CPF were further degraded 71% and 18%, respectively by NIT-2. Thus, B. thuringiensis strain NIT-2 is the first reported endophytic bacterium capable of degrading nitenpyram.

Fullsize Image
硝虫嗪(新烟碱类杀虫剂)常用于保护作物免受害虫侵害。目前,由于其广泛使用,硝虫酰胺在环境中的累积量预计会很高。因此,必须清除环境中的硝虫酰胺残留物。然而,内生菌对硝虫酰胺的生物降解仍未见报道。因此,我们的目标是分离和鉴定一种能够降解硝虫酰胺的细菌菌株。我们从暴露于不同新烟碱类杀虫剂的 Brassica rapa var. perviridis 中分离出约 300 株内生菌株。经过 14 天的培养,我们发现了一种具有硝虫酰胺降解能力(约 65%)的细菌菌株 NIT-2。通过 16S rRNA 基因测序,确定该菌株为苏云金芽孢杆菌。此外,在降解过程中还发现了代谢产物 2-[N-(6-氯-3-吡啶基甲基)-N-乙基]氨基-2-甲基亚氨基乙酸、N-(6-氯-3-吡啶基甲基)-N-乙基-N-甲基甲脒 (CPMF) 和 N-(6-氯-3-吡啶基甲基)-N-乙基甲酰胺 (CPF)。此外,NIT-2 对 CPMF 和 CPF 的降解率分别为 71% 和 18%。因此,苏云金芽孢杆菌菌株 NIT-2 是首个报道的能够降解硝虫酰胺的内生细菌。
{"title":"Biodegradation of nitenpyram (neonicotinoid insecticide) by endophytic bacterium, Bacillus thuringiensis strain NIT-2, isolated from neonicotinoid-treated plant samples","authors":"Md. Tareq Bin Salam, Koji Ito, Ryota Kataoka","doi":"10.1584/jpestics.d24-002","DOIUrl":"https://doi.org/10.1584/jpestics.d24-002","url":null,"abstract":"</p><p>Nitenpyram (neonicotinoid insecticide) is commonly used for crop protection from pests. Currently, due to its widespread use, the nitenpyram accumulation in the environment is anticipated to be high. Hence, the removal of nitenpyram residue from the environment is essential. However, the biodegradation of nitenpyram by endophytes is still unreported. Therefore, we aimed to isolate and identify a bacterial strain capable of degrading nitenpyram. We isolated approximately 300 endophytic strains from <i>Brassica rapa</i> var. <i>perviridis</i> that had been exposed to different neonicotinoid insecticides. After 14 days of incubation, a bacterial strain, NIT-2, with nitenpyram degradation capability (approximately 65%) was found. <i>Via</i> 16S rRNA gene sequencing, the strain was identified as <i>Bacillus thuringiensis</i>. In addition, metabolites, 2-[<i>N</i>-(6-chloro-3-pyridylmethyl)-<i>N</i>-ethyl]amino-2-methyliminoacetic acid, <i>N</i>-(6-chloro-3-pyridilmethyl)-<i>N</i>-ethyl-<i>N</i>-methylformamidine (CPMF), and <i>N</i>-(6-chloro-3-pyridilmethyl)-<i>N</i>-ethylformamide (CPF), were identified during the degradation. Moreover, CPMF and CPF were further degraded 71% and 18%, respectively by NIT-2. Thus, <i>B. thuringiensis</i> strain NIT-2 is the first reported endophytic bacterium capable of degrading nitenpyram.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-002/figure/advpub_D24-002.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"25 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimesulfazet, a novel rice paddy herbicide, is an inhibitor of very long-chain fatty acid biosynthesis 新型稻田除草剂 Dimesulfazet 是一种超长链脂肪酸生物合成抑制剂
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-04-27 DOI: 10.1584/jpestics.d23-036
Takamasa Furuhashi, Masato Otani, Mami Iwasa

Dimesulfazet can control annual and perennial sedges in rice paddies. Here we assessed its mode of action. We performed a phenotype assay of Arabidopsis, conducted a metabolomic analysis of Echinochloa crus-galli, and analyzed the endogenous concentration of very long-chain fatty acids (VLCFAs) in Schoenoplectiella juncoides. Dimesulfazet treatment caused curling and greening symptoms in the leaves and fiddlehead-like symptoms in the inflorescences of Arabidopsis. These symptoms were visually indistinguishable from those caused by flufenacet and benfuresate, which belong to Herbicide Resistance Action Committee (HRAC) Group 15. We performed GC-MS/MS analysis of primary metabolites and LC-MS analysis of lipids in the herbicide-treated E. crus-galli, followed by Orthogonal Partial Least Squares Discriminant Analysis clustering. The results showed that dimesulfazet belongs to the HRAC Group 15 cluster. The endogenous concentrations of C24:0, C26:0, and C28:0 decreased in dimesulfazet-treated plants as compared to those in the control. Overall, the mode of action of dimesulfazet involves the inhibition of VLCFA biosynthesis.

Fullsize Image
Dimesulfazet 可以控制稻田中的一年生和多年生莎草。在此,我们对其作用模式进行了评估。我们对拟南芥进行了表型分析,对Echinochloa crus-galli进行了代谢组学分析,并对Schoenoplectiella juncoides中的内源性超长链脂肪酸(VLCFAs)浓度进行了分析。二甲磺草胺处理会导致拟南芥叶片出现卷曲和褪绿症状,花序出现萁状症状。这些症状与属于除草剂抗性行动委员会(HRAC)第 15 组的氟噻草胺和苯噻草胺造成的症状在视觉上没有区别。我们对经除草剂处理过的 E. crus-galli 进行了 GC-MS/MS 初级代谢物分析和 LC-MS 脂类分析,然后进行了正交偏最小二乘法判别分析聚类。结果表明,敌草快属于 HRAC 第 15 组。与对照组相比,二甲磺草胺处理过的植物中 C24:0、C26:0 和 C28:0 的内源浓度有所下降。总体而言,敌草快的作用模式涉及抑制 VLCFA 的生物合成。
{"title":"Dimesulfazet, a novel rice paddy herbicide, is an inhibitor of very long-chain fatty acid biosynthesis","authors":"Takamasa Furuhashi, Masato Otani, Mami Iwasa","doi":"10.1584/jpestics.d23-036","DOIUrl":"https://doi.org/10.1584/jpestics.d23-036","url":null,"abstract":"</p><p>Dimesulfazet can control annual and perennial sedges in rice paddies. Here we assessed its mode of action. We performed a phenotype assay of <i>Arabidopsis</i>, conducted a metabolomic analysis of <i>Echinochloa crus-galli</i>, and analyzed the endogenous concentration of very long-chain fatty acids (VLCFAs) in <i>Schoenoplectiella juncoides</i>. Dimesulfazet treatment caused curling and greening symptoms in the leaves and <i>fiddlehead</i>-like symptoms in the inflorescences of <i>Arabidopsis</i>. These symptoms were visually indistinguishable from those caused by flufenacet and benfuresate, which belong to Herbicide Resistance Action Committee (HRAC) Group 15. We performed GC-MS/MS analysis of primary metabolites and LC-MS analysis of lipids in the herbicide-treated <i>E. crus-galli</i>, followed by Orthogonal Partial Least Squares Discriminant Analysis clustering. The results showed that dimesulfazet belongs to the HRAC Group 15 cluster. The endogenous concentrations of C24:0, C26:0, and C28:0 decreased in dimesulfazet-treated plants as compared to those in the control. Overall, the mode of action of dimesulfazet involves the inhibition of VLCFA biosynthesis.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D23-036/figure/advpub_D23-036.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"25 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140799395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of variability in the matrix effect on stable isotope-labeled internal standards in liquid chromatography-tandem mass spectrometry analysis of 25 pesticides in vegetables 液相色谱-串联质谱法分析蔬菜中 25 种农药时基质效应对稳定同位素标记内标物影响的变异性研究
IF 2.4 4区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-03-30 DOI: 10.1584/jpestics.d23-060
Arisa Banno, Yoshinori Yabuki, Motohiro Sonoda, Shinji Tanimori

The matrix effects (ME) in simultaneous analysis of pesticide residue using liquid chromatography-tandem mass spectrometry (LC-MS/MS) were evaluated by comparing the slopes of matrix-matched and reagent-only calibrations of four types of vegetable samples. Both the sampling and measurement variances of the ME were also determined using one-way analysis of variance. Substantial ion suppression (ME<−20%) was observed in komatsuna, spinach, and tomato when a modified Japanese official method was implemented. The ME magnitude varied significantly due to sample variability for some pesticides, but it varied by no more than 4% as a result of analytical procedure variance. This study also showed that the addition of stable isotope-labeled internal standards at low concentrations improved the recovery of pesticides from samples at various residue levels. The findings of this study highlight the importance and practical application of internal standards and the matrix-matched calibration method in residue analysis using LC-MS/MS.

Fullsize Image
通过比较四种蔬菜样品的基质匹配校准斜率和纯试剂校准斜率,评估了液相色谱-串联质谱法(LC-MS/MS)同步分析农药残留的基质效应(ME)。此外,还使用单因子方差分析确定了 ME 的采样和测量方差。采用修改后的日本官方方法,在小松茸、菠菜和番茄中观察到了大量的离子抑制(ME<-20%)。某些农药的 ME 值因样品差异而变化很大,但因分析程序差异而变化的 ME 值不超过 4%。这项研究还表明,添加低浓度的稳定同位素标记内标可提高不同残留水平样品中农药的回收率。本研究的结果突显了内标和基质匹配校准法在使用 LC-MS/MS 进行残留分析中的重要性和实际应用。
{"title":"Investigation of variability in the matrix effect on stable isotope-labeled internal standards in liquid chromatography-tandem mass spectrometry analysis of 25 pesticides in vegetables","authors":"Arisa Banno, Yoshinori Yabuki, Motohiro Sonoda, Shinji Tanimori","doi":"10.1584/jpestics.d23-060","DOIUrl":"https://doi.org/10.1584/jpestics.d23-060","url":null,"abstract":"</p><p>The matrix effects (ME) in simultaneous analysis of pesticide residue using liquid chromatography-tandem mass spectrometry (LC-MS/MS) were evaluated by comparing the slopes of matrix-matched and reagent-only calibrations of four types of vegetable samples. Both the sampling and measurement variances of the ME were also determined using one-way analysis of variance. Substantial ion suppression (ME&lt;−20%) was observed in komatsuna, spinach, and tomato when a modified Japanese official method was implemented. The ME magnitude varied significantly due to sample variability for some pesticides, but it varied by no more than 4% as a result of analytical procedure variance. This study also showed that the addition of stable isotope-labeled internal standards at low concentrations improved the recovery of pesticides from samples at various residue levels. The findings of this study highlight the importance and practical application of internal standards and the matrix-matched calibration method in residue analysis using LC-MS/MS.</p>\u0000<p></p>\u0000<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D23-060/figure/advpub_D23-060.png\"/>\u0000<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"7 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Pesticide Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1