Pub Date : 2024-03-14DOI: 10.1007/s10340-024-01762-5
Abstract
Omnivores obtain resources from more than one trophic level, choosing food based on quantity and quality. They usually engage in intraguild predation (IGP) when prey is scarce. Orius laevigatus is an example of omnivore that becomes superior predator of the predatory mite Amblyseius swirskii when released in a combined system under low levels of the preferred prey, the thrips Frankliniella occidentalis. Here, we test two genetically enhanced O. laevigatus strains for bigger size and better fitness feeding on pollen (BIG30 and 2POL-11, respectively), hence with a wider dietary diversification, to elucidate the potential effects on prey preference and IGP on the predatory mite, in comparison with a commercial population of O. laevigatus. To do that, predation rates were registered on adult phytoseiids solely or in a choice situation at different availability ratios of adult thrips under laboratory conditions. The effect of pollen as supplemental food on IGP and prey preference was examined, too. We found that our two enhanced lines killed up to 9% less predatory mites and fed preferably on adult thrips, compared to the commercial population. While BIG30 showed a significantly higher total predation rate, killing up to 150% more adult thrips, 2POL-11 is defined as an efficient user of resources, switching between different prey and pollen showing low IGP. Pollen supplementation had a significant effect on reducing IGP, but only for 2POL-11 the influence on prey preference was significant. The theory of intraguild predation and the impact of prey switching on food webs and biological control strategies are also discussed.
{"title":"Relevance of diet diversification in the coexistence between Orius laevigatus and Amblyseius swirskii: prey switching and intraguild predation","authors":"","doi":"10.1007/s10340-024-01762-5","DOIUrl":"https://doi.org/10.1007/s10340-024-01762-5","url":null,"abstract":"<h3>Abstract</h3> <p>Omnivores obtain resources from more than one trophic level, choosing food based on quantity and quality. They usually engage in intraguild predation (IGP) when prey is scarce. <em>Orius laevigatus</em> is an example of omnivore that becomes superior predator of the predatory mite <em>Amblyseius swirskii</em> when released in a combined system under low levels of the preferred prey, the thrips <em>Frankliniella occidentalis</em>. Here, we test two genetically enhanced <em>O. laevigatus</em> strains for bigger size and better fitness feeding on pollen (BIG30 and 2POL-11, respectively), hence with a wider dietary diversification, to elucidate the potential effects on prey preference and IGP on the predatory mite, in comparison with a commercial population of <em>O. laevigatus</em>. To do that, predation rates were registered on adult phytoseiids solely or in a choice situation at different availability ratios of adult thrips under laboratory conditions. The effect of pollen as supplemental food on IGP and prey preference was examined, too. We found that our two enhanced lines killed up to 9% less predatory mites and fed preferably on adult thrips, compared to the commercial population. While BIG30 showed a significantly higher total predation rate, killing up to 150% more adult thrips, 2POL-11 is defined as an efficient user of resources, switching between different prey and pollen showing low IGP. Pollen supplementation had a significant effect on reducing IGP, but only for 2POL-11 the influence on prey preference was significant. The theory of intraguild predation and the impact of prey switching on food webs and biological control strategies are also discussed.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140135916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.1007/s10340-024-01766-1
Dexian Li, Kaisong Jiang, Xiaoxia Wang, Deguang Liu
The effect of environmental change on activity of insecticides against insects has been greatly debated, and it is of significance to evaluate general patterns of change and explore the potential mechanisms that drive the changes in the context of global climate change. To that end, we constructed three multilevel meta-analyses and phylogenetically-corrected models based on 810 individual effect sizes of insecticide activity from 95 studies with variable levels of temperatures, humidities, and CO2 concentrations. We found that increasing temperatures could overall increase the insecticidal activity of insecticides by 1.33 times. Increasing temperatures will boost the activity of some types of insecticides (e.g., acetylcholinesterase inhibitors), but decrease the activity of some other types (e.g., sodium channel modulators). Activities of stomach toxicants and fumigants are overall more sensitive to increasing temperatures than other insecticides. The sensitivity of insects in Hemiptera, Coleoptera, and Diptera to insecticides will also tend to increase significantly due to increasing temperatures. The magnitude of warming was found to have strong interactive effects with both insecticide class and insect group. Although moisture changes were showed to have no significant effects on insecticidal activity overall, our meta-regression analyses identified a positive relationship between insecticide activity and the magnitude of humidity change. No significant relationships between changes in CO2 concentrations and insecticide activity were identified. Our results are critical in adaptation of insecticide application and pest management strategies, and forecasting insecticide risks (e.g., resistance development) across global climate regions under future warming conditions.
{"title":"Insecticide activity under changing environmental conditions: a meta-analysis","authors":"Dexian Li, Kaisong Jiang, Xiaoxia Wang, Deguang Liu","doi":"10.1007/s10340-024-01766-1","DOIUrl":"https://doi.org/10.1007/s10340-024-01766-1","url":null,"abstract":"<p>The effect of environmental change on activity of insecticides against insects has been greatly debated, and it is of significance to evaluate general patterns of change and explore the potential mechanisms that drive the changes in the context of global climate change. To that end, we constructed three multilevel meta-analyses and phylogenetically-corrected models based on 810 individual effect sizes of insecticide activity from 95 studies with variable levels of temperatures, humidities, and CO<sub>2</sub> concentrations. We found that increasing temperatures could overall increase the insecticidal activity of insecticides by 1.33 times. Increasing temperatures will boost the activity of some types of insecticides (e.g., acetylcholinesterase inhibitors), but decrease the activity of some other types (e.g., sodium channel modulators). Activities of stomach toxicants and fumigants are overall more sensitive to increasing temperatures than other insecticides. The sensitivity of insects in Hemiptera, Coleoptera, and Diptera to insecticides will also tend to increase significantly due to increasing temperatures. The magnitude of warming was found to have strong interactive effects with both insecticide class and insect group. Although moisture changes were showed to have no significant effects on insecticidal activity overall, our meta-regression analyses identified a positive relationship between insecticide activity and the magnitude of humidity change. No significant relationships between changes in CO<sub>2</sub> concentrations and insecticide activity were identified. Our results are critical in adaptation of insecticide application and pest management strategies, and forecasting insecticide risks (e.g., resistance development) across global climate regions under future warming conditions.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140116075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1007/s10340-023-01741-2
Farman Ullah, Arzlan Abbas, Hina Gul, Ali Güncan, Muhammad Hafeez, Basana-Gowda Gadratagi, Lizette Cicero, Ricardo Ramirez-Romero, Nicolas Desneux, Zhihong Li
Insects are vital arthropods that significantly impact various ecosystems. Their successful colonization of diverse habitats spanning from cold to warm environments is made possible by numerous adaptations shaped by environmental selection. This comprehensive review delves into the spectrum of physiological adaptations exhibited by insects to thrive in diverse environments, with a particular emphasis on the connection between these adaptations and the challenges posed by cold temperatures. Focusing on both long-term and short-term strategies, the review highlights the key protective mechanisms that insects employ to cope and thrive in cold temperatures. To withstand these constraints, insects have developed four main strategies: freeze tolerance, freeze avoidance, cryoprotective dehydration, and vitrification. These adaptive responses involve crucial physiological and biochemical changes that enable insects to withstand low temperatures. Specifically, insects exhibit cold tolerance through a range of molecular adaptive strategies, which encompass alterations in the expression of specific target genes, the synthesis of ice core formers, and the production of polyol cryoprotectants. Despite these remarkable results, there is still a lack of in-depth knowledge about the major factors contributing to successful overwintering of insects and their ability to withstand extremely low temperatures. To address these gaps, technological advances and genome sequencing of model organisms are critical to uncover the molecular mechanisms in insect responses to low temperatures. The knowledge gained from these advances provides valuable information about insect cold tolerance strategies and paves the way for a better understanding of their ecological importance and potential applications in conservation and ecological management.
{"title":"Insect resilience: unraveling responses and adaptations to cold temperatures","authors":"Farman Ullah, Arzlan Abbas, Hina Gul, Ali Güncan, Muhammad Hafeez, Basana-Gowda Gadratagi, Lizette Cicero, Ricardo Ramirez-Romero, Nicolas Desneux, Zhihong Li","doi":"10.1007/s10340-023-01741-2","DOIUrl":"https://doi.org/10.1007/s10340-023-01741-2","url":null,"abstract":"<p>Insects are vital arthropods that significantly impact various ecosystems. Their successful colonization of diverse habitats spanning from cold to warm environments is made possible by numerous adaptations shaped by environmental selection. This comprehensive review delves into the spectrum of physiological adaptations exhibited by insects to thrive in diverse environments, with a particular emphasis on the connection between these adaptations and the challenges posed by cold temperatures. Focusing on both long-term and short-term strategies, the review highlights the key protective mechanisms that insects employ to cope and thrive in cold temperatures. To withstand these constraints, insects have developed four main strategies: freeze tolerance, freeze avoidance, cryoprotective dehydration, and vitrification. These adaptive responses involve crucial physiological and biochemical changes that enable insects to withstand low temperatures. Specifically, insects exhibit cold tolerance through a range of molecular adaptive strategies, which encompass alterations in the expression of specific target genes, the synthesis of ice core formers, and the production of polyol cryoprotectants. Despite these remarkable results, there is still a lack of in-depth knowledge about the major factors contributing to successful overwintering of insects and their ability to withstand extremely low temperatures. To address these gaps, technological advances and genome sequencing of model organisms are critical to uncover the molecular mechanisms in insect responses to low temperatures. The knowledge gained from these advances provides valuable information about insect cold tolerance strategies and paves the way for a better understanding of their ecological importance and potential applications in conservation and ecological management.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cotesia ruficrus (Hymenoptera: Braconidae) is an endoparasitic natural enemy of various Lepidopteran pests, and it plays a significant role in integrated pest management. In the field survey of maize fields, we found for the first time that the indigenous parasitoid C. ruficrus parasitized the major invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. We identified 18 odorant-binding proteins (CrufOBPs) of C. ruficrus through the RNA-Seq method, and PCR analysis showed that 13 out of the CrufOBPs were highly expressed in antennae. Two CrufOBPs, CrufOBP3 with the highest antennal expression and CrufOBP17 with antenna-specific expression, were selected for protein biosynthesis in the prokaryotic protein expression system and subjected to protein purification. Through fluorescence binding assay, seven maize volatile compounds were selected for the antennal electroantennography (EAG) study, and the results indicated that female C. ruficrus exhibited distinct responses to these volatiles at different concentrations. Octanal and 2-heptanone of 10 mg mL−1 were chosen for olfactory behavioral experiments because of their high EAG responses, and the results showed that C. ruficrus adults were significantly attracted at certain concentrations. Furthermore, in the cage experiments, 10 mg mL−1 of 2-heptanone significantly increased the parasitism rate of C. ruficrus on S. frugiperda. These findings not only provide a theoretical basis for studying the odorant-binding protein family of C. ruficrus but also contribute to the development of novel pest control strategies for this invasive pest management.
Cotesia ruficrus(膜翅目:蝙蝠科)是多种鳞翅目害虫的内寄生天敌,在害虫综合防治中发挥着重要作用。在对玉米田的实地调查中,我们首次发现本地寄生虫 C. ruficrus 寄生了中国主要入侵害虫 Spodoptera frugiperda(鳞翅目:夜蛾科)。通过RNA-Seq方法,我们鉴定了18个气味结合蛋白(CrufOBPs),PCR分析表明,其中13个CrufOBPs在触角中高表达。在原核生物蛋白表达系统中,选择了触角表达量最高的CrufOBP3和触角特异表达的CrufOBP17两种CrufOBPs进行蛋白生物合成,并进行了蛋白纯化。通过荧光结合试验,选择了七种玉米挥发性化合物进行触角电触觉图(EAG)研究,结果表明,在不同浓度下,雌鼠对这些挥发性化合物表现出不同的反应。由于辛醛和 10 mg mL-1 的 2-庚酮具有较高的 EAG 反应,因此被选来进行嗅觉行为实验。此外,在笼子实验中,10 mg mL-1 的 2-heptanone 能显著提高 C. ruficrus 对 S. frugiperda 的寄生率。这些发现不仅为研究C. ruficrus的气味结合蛋白家族提供了理论依据,而且有助于针对这种入侵性害虫制定新型害虫控制策略。
{"title":"Identification of odorant-binding proteins in the antennal transcriptome of Cotesia ruficrus and the response of CrufOBP3 and CrufOBP17 to maize volatiles","authors":"Wen-Wen Wang, Peng-Yang He, Bi-Ting Tian, Tong-Xian Liu, Xiang-Feng Jing, Shi-Ze Zhang","doi":"10.1007/s10340-024-01754-5","DOIUrl":"https://doi.org/10.1007/s10340-024-01754-5","url":null,"abstract":"<p><i>Cotesia ruficrus</i> (Hymenoptera: Braconidae) is an endoparasitic natural enemy of various Lepidopteran pests, and it plays a significant role in integrated pest management. In the field survey of maize fields, we found for the first time that the indigenous parasitoid <i>C. ruficrus</i> parasitized the major invasive pest <i>Spodoptera frugiperda</i> (Lepidoptera: Noctuidae) in China. We identified 18 odorant-binding proteins (CrufOBPs) of <i>C. ruficrus</i> through the RNA-Seq method, and PCR analysis showed that 13 out of the CrufOBPs were highly expressed in antennae. Two CrufOBPs, CrufOBP3 with the highest antennal expression and CrufOBP17 with antenna-specific expression, were selected for protein biosynthesis in the prokaryotic protein expression system and subjected to protein purification. Through fluorescence binding assay, seven maize volatile compounds were selected for the antennal electroantennography (EAG) study, and the results indicated that female <i>C. ruficrus</i> exhibited distinct responses to these volatiles at different concentrations. Octanal and 2-heptanone of 10 mg mL<sup>−1</sup> were chosen for olfactory behavioral experiments because of their high EAG responses, and the results showed that <i>C. ruficrus</i> adults were significantly attracted at certain concentrations. Furthermore, in the cage experiments, 10 mg mL<sup>−1</sup> of 2-heptanone significantly increased the parasitism rate of <i>C. ruficrus</i> on <i>S. frugiperda</i>. These findings not only provide a theoretical basis for studying the odorant-binding protein family of <i>C. ruficrus</i> but also contribute to the development of novel pest control strategies for this invasive pest management.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139938731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1007/s10340-024-01756-3
Yuichi Yamamoto, Michiaki Yamada, Shuji Kaneko
The red-necked longhorn beetle, Aromia bungii (Coleoptera: Cerambycidae), is a wood-boring pest of ornamental cherry trees in the Rosaceae family. This study evaluates the effectiveness of a preventive measure using fine-mesh netting in preventing A. bungii from oviposition on host cherry trees. Aromia bungii typically oviposits in cracks and crevices of host tree bark using its elongated ovipositor, leading to higher infestations on the lower trunk where there are abundant rough barks suitable for the beetle oviposition. Therefore, we assessed the effectiveness of netting with a gap that exceeded the reach of the A. bungii ovipositor from the tree surface. This evaluation involved laboratory experiments using cut branches and field experiments using lower trunks from standing trees. In the field, we determined the distribution of A. bungii body sizes and estimated the maximum ovipositor length based on their proportional relationship. This led to the establishment of a 10 mm gap for the test net, featuring a 0.4 mm mesh. Both laboratory and field experiments confirmed that the 0.4 mm mesh net with the specified gap effectively prevented A. bungii oviposition in netted areas. Field experiments also suggested a potential shift in oviposition sites from netted (lower) to un-netted (upper) areas in trees with nets, considering results from trees without nets. Although various measures, such as insecticide spraying, are necessary to safeguard areas without nets, our netting method can serve as a fundamental component of integrated pest management against A. bungii.
红颈长角蠹 Aromia bungii(鞘翅目:Cerambycidae)是蔷薇科观赏樱桃树的一种蛀木害虫。本研究评估了使用细网预防措施阻止 A. bungii 在寄主樱桃树上产卵的效果。Aromia bungii通常利用其细长的产卵器在寄主树皮的裂缝中产卵,导致树干下部的虫害较高,因为那里有大量适合甲虫产卵的粗糙树皮。因此,我们评估了间隙超过 A. bungii产卵器从树表面到达的距离的网具的效果。评估包括使用剪下的树枝进行的实验室实验和使用立木下部树干进行的现场实验。在野外,我们确定了 A. bungii 的体型分布,并根据它们的比例关系估算了最大产卵器长度。因此,我们为试验网设定了 10 毫米的间隙,网眼为 0.4 毫米。实验室和现场实验都证实,0.4 毫米网眼的指定间隙能有效防止 A. bungii 在网区产卵。现场实验还表明,考虑到没有网的树木的结果,有网树木的产卵地点可能会从有网区域(下部)转移到无网区域(上部)。尽管有必要采取各种措施(如喷洒杀虫剂)来保护无网区域,但我们的撒网方法可以作为虫害综合防治的一个基本组成部分。
{"title":"Effective gap-based exclusion netting to prevent oviposition by the red-necked longhorn beetle Aromia bungii on ornamental trees","authors":"Yuichi Yamamoto, Michiaki Yamada, Shuji Kaneko","doi":"10.1007/s10340-024-01756-3","DOIUrl":"https://doi.org/10.1007/s10340-024-01756-3","url":null,"abstract":"<p>The red-necked longhorn beetle, <i>Aromia bungii</i> (Coleoptera: Cerambycidae), is a wood-boring pest of ornamental cherry trees in the Rosaceae family. This study evaluates the effectiveness of a preventive measure using fine-mesh netting in preventing <i>A. bungii</i> from oviposition on host cherry trees. <i>Aromia bungii</i> typically oviposits in cracks and crevices of host tree bark using its elongated ovipositor, leading to higher infestations on the lower trunk where there are abundant rough barks suitable for the beetle oviposition. Therefore, we assessed the effectiveness of netting with a gap that exceeded the reach of the <i>A. bungii</i> ovipositor from the tree surface. This evaluation involved laboratory experiments using cut branches and field experiments using lower trunks from standing trees. In the field, we determined the distribution of <i>A. bungii</i> body sizes and estimated the maximum ovipositor length based on their proportional relationship. This led to the establishment of a 10 mm gap for the test net, featuring a 0.4 mm mesh. Both laboratory and field experiments confirmed that the 0.4 mm mesh net with the specified gap effectively prevented <i>A. bungii</i> oviposition in netted areas. Field experiments also suggested a potential shift in oviposition sites from netted (lower) to un-netted (upper) areas in trees with nets, considering results from trees without nets. Although various measures, such as insecticide spraying, are necessary to safeguard areas without nets, our netting method can serve as a fundamental component of integrated pest management against <i>A. bungii</i>.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-21DOI: 10.1007/s10340-024-01759-0
Yan Fu, Luo-Yan Zhang, Qing-Yi Zhao, Da-Ying Fu, Hong Yu, Jin Xu, Song Yang
A dynamic homeostasis between gut microbiome and the host is essential for animals. Antibiotics feeding may be a good way to study the function of microbes in insects due to efficiency and a linkage with pest control. Here, by using 16S rDNA sequencing, we show antibiotics feeding significantly altered the composition and diversity of microbes in different stages of Spodoptera frugiperda and showed dose dependent effects. Antibiotics ingestion resulted in a dramatic reduction of Enterococcus in larvae and Klebsiella in adults, but increase of Weissella in larvae and Pseudomonas in pupae and adults. Enterococcus spp in the lepidopteran gut may play a protective role against insect pathogens and Klebsiella spp may have positive effects on insect fecundity. Some strains from Pseudomonas and Weissella are pathogens or opportunistic pathogens. Further biological assay showed that antibiotics treatment significantly affected the fitness of treated insects and their untreated offspring, with treated insects and their offspring having longer developmental period but lower body weight, survival rate, flight capacity and fecundity than those of controls. Lepidopterans may rely on gut microbiome for some digestions and previous study indicated that antibiotics-induced dysbiosis of gut microbes affects many biological processes of S. frugiperda. Therefore, it is possible that antibiotics disrupted the homeostasis of gut microbes and the host, which then negatively affected the survival and reproduction of S. frugiperda. These findings contribute to a better understanding of the role of the microbiota in insects and will aid in the development of environmentally friendly management techniques for this pest.
{"title":"Antibiotics ingestion altered the composition of gut microbes and affected the development and reproduction of the fall armyworm","authors":"Yan Fu, Luo-Yan Zhang, Qing-Yi Zhao, Da-Ying Fu, Hong Yu, Jin Xu, Song Yang","doi":"10.1007/s10340-024-01759-0","DOIUrl":"https://doi.org/10.1007/s10340-024-01759-0","url":null,"abstract":"<p>A dynamic homeostasis between gut microbiome and the host is essential for animals. Antibiotics feeding may be a good way to study the function of microbes in insects due to efficiency and a linkage with pest control. Here, by using 16S rDNA sequencing, we show antibiotics feeding significantly altered the composition and diversity of microbes in different stages of <i>Spodoptera frugiperda</i> and showed dose dependent effects. Antibiotics ingestion resulted in a dramatic reduction of <i>Enterococcus</i> in larvae and <i>Klebsiella</i> in adults, but increase of <i>Weissella</i> in larvae and <i>Pseudomonas</i> in pupae and adults. <i>Enterococcus</i> spp in the lepidopteran gut may play a protective role against insect pathogens and <i>Klebsiella</i> spp may have positive effects on insect fecundity. Some strains from <i>Pseudomonas</i> and <i>Weissella</i> are pathogens or opportunistic pathogens. Further biological assay showed that antibiotics treatment significantly affected the fitness of treated insects and their untreated offspring, with treated insects and their offspring having longer developmental period but lower body weight, survival rate, flight capacity and fecundity than those of controls. Lepidopterans may rely on gut microbiome for some digestions and previous study indicated that antibiotics-induced dysbiosis of gut microbes affects many biological processes of <i>S. frugiperda</i>. Therefore, it is possible that antibiotics disrupted the homeostasis of gut microbes and the host, which then negatively affected the survival and reproduction of <i>S. frugiperda</i>. These findings contribute to a better understanding of the role of the microbiota in insects and will aid in the development of environmentally friendly management techniques for this pest.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-21DOI: 10.1007/s10340-024-01748-3
Anne-Laure Fragnière, Sven Bacher, Patrik Kehrli
The spotted wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), is a serious pest in vineyards where it is difficult to control. Trap cropping, which involves manipulating the host plant composition in the crop vicinity to lure the pest away from grapes and towards more attractive host plant fruits, might be an interesting but so far neglected control approach to limit SWD egg-laying in grapes. An ideal trap crop should be more attractive to the pest than the actual crop and should ideally restrict pest development. We determined the attractiveness of fruits of 60 plant species for SWD egg-laying and their suitability for larval development in laboratory assays. Compared to grapes, 16 of the 60 fruits were strongly preferred by SWD females for egg-laying and additionally inhibited the development of SWD larvae into adults. Host preference was strongly influenced by the hardness of the fruit skin, and larval development was marginally affected by the acidity of fruits. However, none of the measured fruit traits had a significant effect on the emergence success of SWD. All 16 candidate trap crop plants should be further tested for their potential to reduce SWD infestation of grapes. We provide practical advice on the next steps to be taken for implementing a successful trap cropping strategy against SWD in commercial vineyards.
{"title":"Identifying candidate host plants for trap cropping against Drosophila suzukii in vineyards","authors":"Anne-Laure Fragnière, Sven Bacher, Patrik Kehrli","doi":"10.1007/s10340-024-01748-3","DOIUrl":"https://doi.org/10.1007/s10340-024-01748-3","url":null,"abstract":"<p>The spotted wing drosophila (SWD), <i>Drosophila suzukii</i> Matsumura (Diptera: Drosophilidae), is a serious pest in vineyards where it is difficult to control. Trap cropping, which involves manipulating the host plant composition in the crop vicinity to lure the pest away from grapes and towards more attractive host plant fruits, might be an interesting but so far neglected control approach to limit SWD egg-laying in grapes. An ideal trap crop should be more attractive to the pest than the actual crop and should ideally restrict pest development. We determined the attractiveness of fruits of 60 plant species for SWD egg-laying and their suitability for larval development in laboratory assays. Compared to grapes, 16 of the 60 fruits were strongly preferred by SWD females for egg-laying and additionally inhibited the development of SWD larvae into adults. Host preference was strongly influenced by the hardness of the fruit skin, and larval development was marginally affected by the acidity of fruits. However, none of the measured fruit traits had a significant effect on the emergence success of SWD. All 16 candidate trap crop plants should be further tested for their potential to reduce SWD infestation of grapes. We provide practical advice on the next steps to be taken for implementing a successful trap cropping strategy against SWD in commercial vineyards.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20DOI: 10.1007/s10340-024-01752-7
Abstract
Blue sticky traps contribute substantially to monitoring the western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), in greenhouses. Although sticky traps can detect the initial presence of thrips reliably, an estimation of the actual thrips density in the crop by counting number of thrips on the traps is often not accurate. To overcome this issue, we compared blue sticky traps and newly developed sticky LED-enlightened traps in combination with the commercial thrips kairomone Lurem-TR under commercial growing conditions. Therefore, an experiment was conducted in cucumber, Cucumis sativus L. (Cucurbitaceae), crop stands in greenhouse cabins investigating the correlation between thrips caught on (LED) traps and the thrips density in the crop for an accurate and reliable thrips monitoring. Additionally, experiments aiming to understand underlying mechanisms of thrips orientation towards traps in different scenarios were conducted under controlled conditions. Results show that thrips catches on sticky LED enlightened coloured traps correlated strongly positive with number of thrips in the crop, especially at low thrips population densities. Adding Lurem to this trap type further improved accuracy of the correlation in the greenhouse cabin experiment. Moreover, LED traps with and without Lurem were more attractive towards thrips in small follow-up experiments compared to standard blue sticky traps. The results are discussed in the context of general orientation of thrips and its behaviour towards visual and olfactory cues when considering different scenarios. Our study shows the successful integration of blue LEDs into an existing trapping system and underlines the advantages compared with standard sticky plates. In conclusion, sticky LED enlightened coloured traps have a potential as an improved thrips monitoring device that might improve pest management decisions.
摘要 蓝色粘捕器对监测温室中的西花蓟马(Frankliniella occidentalis Pergande,蓟马科)有很大帮助。虽然粘性诱捕器能可靠地检测到蓟马的初始存在,但通过计算诱捕器上的蓟马数量来估计作物中蓟马的实际密度往往并不准确。为了解决这个问题,我们在商业种植条件下比较了蓝色粘性诱捕器和新开发的 LED 照明粘性诱捕器与商用蓟马杀灭剂 Lurem-TR 的组合。因此,我们在温室中的黄瓜(葫芦科)作物架上进行了一项实验,调查(LED)诱捕器上捕获的蓟马与作物中蓟马密度之间的相关性,以实现准确可靠的蓟马监测。此外,还在受控条件下进行了旨在了解蓟马在不同情况下向诱捕器定向的基本机制的实验。结果表明,在 LED 发光的粘性彩色诱捕器上捕获的蓟马与作物中的蓟马数量密切相关,尤其是在蓟马种群密度较低的情况下。在温室小屋实验中,将 Lurem 添加到这种诱捕器中进一步提高了相关性的准确性。此外,在小型后续实验中,与标准的蓝色粘性诱捕器相比,添加和未添加 Lurem 的 LED 诱捕器对蓟马更有吸引力。在考虑不同情况时,我们结合蓟马的一般取向及其对视觉和嗅觉线索的行为对结果进行了讨论。我们的研究表明,蓝色 LED 成功融入了现有的诱捕系统,并强调了与标准粘板相比的优势。总之,LED发光粘性彩色诱捕器有可能成为一种改进的蓟马监测设备,从而改进害虫管理决策。
{"title":"Blue LED trap and commercial lure improve western flower thrips (Frankliniella occidentalis) monitoring in cucumber crops","authors":"","doi":"10.1007/s10340-024-01752-7","DOIUrl":"https://doi.org/10.1007/s10340-024-01752-7","url":null,"abstract":"<h3>Abstract</h3> <p>Blue sticky traps contribute substantially to monitoring the western flower thrips, <em>Frankliniella occidentalis</em> Pergande (Thysanoptera: Thripidae), in greenhouses. Although sticky traps can detect the initial presence of thrips reliably, an estimation of the actual thrips density in the crop by counting number of thrips on the traps is often not accurate. To overcome this issue, we compared blue sticky traps and newly developed sticky LED-enlightened traps in combination with the commercial thrips kairomone Lurem-TR under commercial growing conditions. Therefore, an experiment was conducted in cucumber, <em>Cucumis sativus</em> L. (Cucurbitaceae), crop stands in greenhouse cabins investigating the correlation between thrips caught on (LED) traps and the thrips density in the crop for an accurate and reliable thrips monitoring. Additionally, experiments aiming to understand underlying mechanisms of thrips orientation towards traps in different scenarios were conducted under controlled conditions. Results show that thrips catches on sticky LED enlightened coloured traps correlated strongly positive with number of thrips in the crop, especially at low thrips population densities. Adding Lurem to this trap type further improved accuracy of the correlation in the greenhouse cabin experiment. Moreover, LED traps with and without Lurem were more attractive towards thrips in small follow-up experiments compared to standard blue sticky traps. The results are discussed in the context of general orientation of thrips and its behaviour towards visual and olfactory cues when considering different scenarios. Our study shows the successful integration of blue LEDs into an existing trapping system and underlines the advantages compared with standard sticky plates. In conclusion, sticky LED enlightened coloured traps have a potential as an improved thrips monitoring device that might improve pest management decisions.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139909144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cotton aphids (Aphis gossypii Glover) are important pests of cucurbit crops. Plant defenses at different cell layers, including the leaf surface, mesophyll cells, and phloem, are employed to defend aphids. Here, we assessed differences in aphid resistance among six watermelon varieties and elucidated the defense mechanisms underlying aphid-resistant/susceptible watermelon varieties. The population abundance, offspring number per female, and meantime of phloem-feeding (E2 phase) of aphids were the highest on XiNong (XN), followed by JingXin (JX), TianWang (TW), ZaoJia (ZJ), and MeiFuLai (MFL), and these parameters were the lowest on JinMeiDu (JMD). Further analyses showed that there was no correlation between the aphid resistance of six watermelon varieties and defenses at the leaf surface. For defenses at mesophyll cells, aphid infestation increased salicylic acid (SA) content at 48 h post-infestation (hpi) and ROS accumulation at 6 and 12 hpi in six watermelon varieties. For phloem defenses, aphid infestation increased callose content in JMD plants but decreased callose content in JX, TW, ZJ, MFL, and XN plants at 6, 12, 24, and 48 hpi. Moreover, callose deposition suppressed by 2-deoxy-d-glucose (2-DDG) neutralized the resistance of JMD plants and exacerbated the susceptibility of XN plants to aphids, which exhibited a higher population abundance and E2 phase time. Collectively, phloem defenses regulated by aphid-induced callose deposition were responsible for differences in aphid resistance among the watermelon varieties.
{"title":"Callose deposition regulates differences in cotton aphid resistance among six watermelon varieties","authors":"Yongqian Zhang, Yue Zhang, Aiqing Chen, Ran Huo, Hongyu Yan, Zhiyong Zhang, Honggang Guo","doi":"10.1007/s10340-024-01757-2","DOIUrl":"https://doi.org/10.1007/s10340-024-01757-2","url":null,"abstract":"<p>Cotton aphids (<i>Aphis gossypii</i> Glover) are important pests of cucurbit crops. Plant defenses at different cell layers, including the leaf surface, mesophyll cells, and phloem, are employed to defend aphids. Here, we assessed differences in aphid resistance among six watermelon varieties and elucidated the defense mechanisms underlying aphid-resistant/susceptible watermelon varieties. The population abundance, offspring number per female, and meantime of phloem-feeding (E2 phase) of aphids were the highest on XiNong (XN), followed by JingXin (JX), TianWang (TW), ZaoJia (ZJ), and MeiFuLai (MFL), and these parameters were the lowest on JinMeiDu (JMD). Further analyses showed that there was no correlation between the aphid resistance of six watermelon varieties and defenses at the leaf surface. For defenses at mesophyll cells, aphid infestation increased salicylic acid (SA) content at 48 h post-infestation (hpi) and ROS accumulation at 6 and 12 hpi in six watermelon varieties. For phloem defenses, aphid infestation increased callose content in JMD plants but decreased callose content in JX, TW, ZJ, MFL, and XN plants at 6, 12, 24, and 48 hpi. Moreover, callose deposition suppressed by 2-deoxy-d-glucose (2-DDG) neutralized the resistance of JMD plants and exacerbated the susceptibility of XN plants to aphids, which exhibited a higher population abundance and E2 phase time. Collectively, phloem defenses regulated by aphid-induced callose deposition were responsible for differences in aphid resistance among the watermelon varieties.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Root-knot nematodes (Meloidogyne spp.) are highly destructive pests that cause enormous crop losses worldwide. With the increasing awareness of environmental protection, exploring the potential of biocontrol agents has become crucial for nematode management. Priestia megaterium YB-3 was originally isolated from rice rhizosphere soil. In vitro experiments with the fermentation supernatant of YB-3 exhibited up to 96.0% mortality of M. graminicola second-stage juveniles (J2) and 39.2% egg hatching inhibition rate at 48 h after treatment. In greenhouse and field experiments, the application of YB-3 significantly suppressed the gall index, final nematode and egg populations compared to the untreated control, while it promoted rice (Oryza sativa) growth. YB-3 showed consistently high biocontrol efficacy against M. graminicola. Moreover, YB-3 remarkably enhanced the expression of defence genes involved in salicylic acid (OsNPR1, OsWRKY45, OsPR1a), jasmonic acid (OsJaMYB, OsAOS2) and ethylene (OsACS1) signalling pathways at different levels. In addition, YB-3 steadily colonized rice rhizosphere soil at levels ranging from 3.54 × 103 to 9.08 × 104 cfu/g soil. High-throughput sequencing analysis showed that the application of YB-3 had no significant influence on the rice rhizosphere microbial community structure, and the taxa enriched in the YB-3 treatment were Acidobacteria, Bacteroidetes and Ascomycota. YB-3 effectively suppressed M. graminicola infection, possibly because it colonized the rice rhizosphere, induced plant resistance and increased the relative abundances of beneficial microorganisms. Priestia megaterium YB-3 could be a promising and safe biological component in the integrated management of M. graminicola.
{"title":"Biocontrol potential of Priestia megaterium YB-3 against Meloidogyne graminicola and its impact on the rhizosphere microbial community","authors":"Shan Ye, Yihang Ma, Siyu Zhou, Rui Yan, Zhuhong Yang, Zhong Ding","doi":"10.1007/s10340-024-01753-6","DOIUrl":"https://doi.org/10.1007/s10340-024-01753-6","url":null,"abstract":"<p>Root-knot nematodes (<i>Meloidogyne</i> spp.) are highly destructive pests that cause enormous crop losses worldwide. With the increasing awareness of environmental protection, exploring the potential of biocontrol agents has become crucial for nematode management. <i>Priestia megaterium</i> YB-3 was originally isolated from rice rhizosphere soil. In vitro experiments with the fermentation supernatant of YB-3 exhibited up to 96.0% mortality of <i>M. graminicola</i> second-stage juveniles (J2) and 39.2% egg hatching inhibition rate at 48 h after treatment. In greenhouse and field experiments, the application of YB-3 significantly suppressed the gall index, final nematode and egg populations compared to the untreated control, while it promoted rice (<i>Oryza sativa</i>) growth. YB-3 showed consistently high biocontrol efficacy against <i>M. graminicola</i>. Moreover, YB-3 remarkably enhanced the expression of defence genes involved in salicylic acid (<i>OsNPR1</i>, <i>OsWRKY45, OsPR1a</i>), jasmonic acid (<i>OsJaMYB</i>, <i>OsAOS2</i>) and ethylene (<i>OsACS1</i>) signalling pathways at different levels. In addition, YB-3 steadily colonized rice rhizosphere soil at levels ranging from 3.54 × 10<sup>3</sup> to 9.08 × 10<sup>4</sup> cfu/g soil. High-throughput sequencing analysis showed that the application of YB-3 had no significant influence on the rice rhizosphere microbial community structure, and the taxa enriched in the YB-3 treatment were Acidobacteria, Bacteroidetes and Ascomycota. YB-3 effectively suppressed <i>M. graminicola</i> infection, possibly because it colonized the rice rhizosphere, induced plant resistance and increased the relative abundances of beneficial microorganisms. <i>Priestia megaterium</i> YB-3 could be a promising and safe biological component in the integrated management of <i>M. graminicola</i>.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139901734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}