首页 > 最新文献

Journal of Pest Science最新文献

英文 中文
A whole ecosystem approach to pear psyllid (Cacopsylla pyri) management in a changing climate 在不断变化的气候中管理梨木虱(Cacopsylla pyri)的全生态系统方法
IF 4.8 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-04-02 DOI: 10.1007/s10340-024-01772-3
Laura A. Reeves, Michael P. D. Garratt, Michelle T. Fountain, Deepa Senapathi

Whole ecosystem-based approaches are becoming increasingly common in pest management within agricultural systems. These strategies consider all trophic levels and abiotic processes within an ecosystem, including interactions between different factors. This review outlines a whole ecosystem approach to the integrated pest management of pear psyllid (Cacopsylla pyri Linnaeus) within pear (Pyrus communis L.) orchards, focusing on potential disruptions as a result of climate change. Pear psyllid is estimated to cost the UK pear industry £5 million per annum and has a significant economic impact on pear production globally. Pesticide resistance is well documented in psyllids, leading to many growers to rely on biological control using natural enemies during the summer months. In addition, multiple insecticides commonly used in pear psyllid control have been withdrawn from the UK and Europe, emphasising the need for alternative control methods. There is growing concern that climate change could alter trophic interactions and phenological events within agroecosystems. For example, warmer temperatures could lead to earlier pear flowering and pest emergence, as well as faster insect development rates and altered activity levels. If climate change impacts pear psyllid differently to natural enemies, then trophic mismatches could occur, impacting pest populations. This review aims to evaluate current strategies used in C. pyri management, discuss trophic interactions within this agroecosystem and highlight potential changes in the top-down and bottom-up control of C. pyri as a result of climate change. This review provides a recommended approach to pear psyllid management, identifies evidence gaps and outlines areas of future research.

基于整个生态系统的方法在农业系统的害虫管理中越来越常见。这些策略考虑了生态系统中的所有营养级和非生物过程,包括不同因素之间的相互作用。本综述概述了在梨园中对梨木虱(Cacopsylla pyri Linnaeus)进行虫害综合防治的全生态系统方法,重点关注气候变化可能造成的破坏。据估计,梨木虱每年给英国梨产业造成 500 万英镑的损失,并对全球梨生产造成重大经济影响。梨木虱对杀虫剂的抗药性有据可查,导致许多种植者在夏季依靠天敌进行生物防治。此外,多种常用于梨木虱防治的杀虫剂已从英国和欧洲撤出,这凸显了替代防治方法的必要性。人们越来越担心气候变化会改变农业生态系统中的营养相互作用和物候变化。例如,气温升高可能导致梨树提前开花和害虫出现,以及昆虫发育速度加快和活动水平改变。如果气候变化对梨木虱和天敌的影响不同,则可能出现营养失配,影响害虫种群。本综述旨在评估当前管理梨木虱的策略,讨论该农业生态系统中的营养交互作用,并强调气候变化对梨木虱自上而下和自下而上控制的潜在变化。本综述提出了梨木虱管理的建议方法,确定了证据差距,并概述了未来的研究领域。
{"title":"A whole ecosystem approach to pear psyllid (Cacopsylla pyri) management in a changing climate","authors":"Laura A. Reeves, Michael P. D. Garratt, Michelle T. Fountain, Deepa Senapathi","doi":"10.1007/s10340-024-01772-3","DOIUrl":"https://doi.org/10.1007/s10340-024-01772-3","url":null,"abstract":"<p>Whole ecosystem-based approaches are becoming increasingly common in pest management within agricultural systems. These strategies consider all trophic levels and abiotic processes within an ecosystem, including interactions between different factors. This review outlines a whole ecosystem approach to the integrated pest management of pear psyllid (<i>Cacopsylla pyri</i> Linnaeus) within pear (<i>Pyrus communis</i> L.) orchards, focusing on potential disruptions as a result of climate change. Pear psyllid is estimated to cost the UK pear industry £5 million per annum and has a significant economic impact on pear production globally. Pesticide resistance is well documented in psyllids, leading to many growers to rely on biological control using natural enemies during the summer months. In addition, multiple insecticides commonly used in pear psyllid control have been withdrawn from the UK and Europe, emphasising the need for alternative control methods. There is growing concern that climate change could alter trophic interactions and phenological events within agroecosystems. For example, warmer temperatures could lead to earlier pear flowering and pest emergence, as well as faster insect development rates and altered activity levels. If climate change impacts pear psyllid differently to natural enemies, then trophic mismatches could occur, impacting pest populations. This review aims to evaluate current strategies used in <i>C. pyri</i> management, discuss trophic interactions within this agroecosystem and highlight potential changes in the top-down and bottom-up control of <i>C. pyri</i> as a result of climate change. This review provides a recommended approach to pear psyllid management, identifies evidence gaps and outlines areas of future research.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140340915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substrate-borne vibrations produced during the interaction with natural enemies alter aphids probing behavior 与天敌互动时产生的底物振动改变了蚜虫的探测行为
IF 4.8 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-30 DOI: 10.1007/s10340-024-01761-6
Caterina Zippari, Rachele Nieri, Zeinab Hamouche, Abderrahmane Boucherf, Giovanni Tamburini, Gianfranco Anfora, Vincenzo Verrastro, Valerio Mazzoni, Daniele Cornara

The “ecology of fear”, i.e., physiological and behavioral alterations displayed by pests in response to predation risk, has recently been proposed as a sustainable alternative to chemicals for pest control. However, the development of such a strategy requires a detailed understanding of the signals and cues underlying the pest-antagonist interaction and eliciting the prey behavioral alteration. Here, we characterized the substrate-borne vibrations produced during the interaction between the green peach aphid Myzus persicae and its antagonists, the parasitoid wasp Aphidius colemani and the ladybug Adalia bipunctata. Thereafter, coupling the electrical penetration graph (EPG) with a stimulus controller, we evaluated whether the playback of the vibrations, alone and in combination with the alarm pheromone, impacted aphid probing behavior and interaction with the host plant. Aphids responded to vibrations exhibiting longer non-probing, shorter intracellular probes, i.e. the behavior through which the insect evaluates host plant quality, delay in accessing the phloem vessels and decrease of the frequency of phloem salivation events. In contrast, on plants treated with the alarm pheromone, insects displayed longer intracellular probes. We hypothesize that the alarm pheromone, signaling a distant threat, might induce a careful evaluation of the host plant in order to decide the magnitude of the reaction. On the other hand, vibrations might indicate a closely approaching threat pushing the aphid to rush the host evaluation process and the whole feeding process. The possible repercussion of the behavioral alterations observed on the dynamics of aphid-borne plant virus transmission is also discussed.

"恐惧生态学",即害虫为应对捕食风险而表现出的生理和行为变化,最近已被提出作为一种可持续的害虫控制化学替代方法。然而,开发这种策略需要详细了解害虫与拮抗剂相互作用的基本信号和线索,以及引起猎物行为改变的信号和线索。在这里,我们描述了绿桃蚜 Myzus persicae 与其拮抗剂寄生蜂 Aphidius colemani 和瓢虫 Adalia bipunctata 交互作用时产生的基质振动。之后,我们将电穿透图(EPG)与刺激控制器结合起来,评估了振动单独播放或与报警信息素结合播放是否会影响蚜虫的探测行为以及与寄主植物的相互作用。蚜虫对振动的反应是延长非探测时间、缩短胞内探测时间(即昆虫评估寄主植物质量的行为)、延迟进入韧皮部血管以及降低韧皮部流涎频率。与此相反,在用警报信息素处理过的植物上,昆虫的胞内探测时间更长。我们推测,报警信息素发出的信号是一种遥远的威胁,它可能会诱导昆虫对寄主植物进行仔细评估,以决定反应的程度。另一方面,振动可能表示威胁正在逼近,促使蚜虫匆忙进行寄主评估和整个取食过程。此外,还讨论了观察到的行为变化对蚜虫传播植物病毒的动态可能产生的影响。
{"title":"Substrate-borne vibrations produced during the interaction with natural enemies alter aphids probing behavior","authors":"Caterina Zippari, Rachele Nieri, Zeinab Hamouche, Abderrahmane Boucherf, Giovanni Tamburini, Gianfranco Anfora, Vincenzo Verrastro, Valerio Mazzoni, Daniele Cornara","doi":"10.1007/s10340-024-01761-6","DOIUrl":"https://doi.org/10.1007/s10340-024-01761-6","url":null,"abstract":"<p>The “ecology of fear”, i.e., physiological and behavioral alterations displayed by pests in response to predation risk, has recently been proposed as a sustainable alternative to chemicals for pest control. However, the development of such a strategy requires a detailed understanding of the signals and cues underlying the pest-antagonist interaction and eliciting the prey behavioral alteration. Here, we characterized the substrate-borne vibrations produced during the interaction between the green peach aphid <i>Myzus persicae</i> and its antagonists, the parasitoid wasp <i>Aphidius colemani</i> and the ladybug <i>Adalia bipunctata.</i> Thereafter, coupling the electrical penetration graph (EPG) with a stimulus controller, we evaluated whether the playback of the vibrations, alone and in combination with the alarm pheromone, impacted aphid probing behavior and interaction with the host plant. Aphids responded to vibrations exhibiting longer non-probing, shorter intracellular probes, i.e. the behavior through which the insect evaluates host plant quality, delay in accessing the phloem vessels and decrease of the frequency of phloem salivation events. In contrast, on plants treated with the alarm pheromone, insects displayed longer intracellular probes. We hypothesize that the alarm pheromone, signaling a distant threat, might induce a careful evaluation of the host plant in order to decide the magnitude of the reaction. On the other hand, vibrations might indicate a closely approaching threat pushing the aphid to rush the host evaluation process and the whole feeding process. The possible repercussion of the behavioral alterations observed on the dynamics of aphid-borne plant virus transmission is also discussed.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140329277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lethal and sublethal effects of carlina oxide on the aphid Metopolophium dirhodum and its non-target impact on two biological control agents 氧化卡林纳对蚜虫 Metopolophium dirhodum 的致死和亚致死效应及其对两种生物控制剂的非目标影响
IF 4.8 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-26 DOI: 10.1007/s10340-024-01768-z
Matěj Novák, Roman Pavela, Eleonora Spinozzi, Marta Ferrati, Riccardo Petrelli, Filippo Maggi, Renato Ricciardi, Giovanni Benelli

This study was designed to investigate the acute toxicity (mortality) and sublethal effects (fertility and potential natality) of carlina oxide, the main constituent of Carlina acaulis essential oil (EO), against adults of Metopolophium dirhodum (Walker) (Hemiptera: Aphididae). Moreover, its toxicity was evaluated against two aphid natural enemies, i.e., Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae) and Chrysoperla carnea Stephens (Neuroptera: Chrysopidae). The highest tested concentration (3.0 mL L−1) resulted in 96.7% mortality of adults of the target pest, highlighting that this concentration of carlina oxide had a similar effectiveness as the positive control we used. Furthermore, probit analysis allowed the estimation of a LC50 of 1.06 mL L−1 and a LC90 of 2.58 mL L−1 for the target pest, which resulted in a much higher mortality rate than that found on natural enemies, i.e., A. aphidimyza (6.7 ± 4.7% ± SD when exposed to the aphid LC90) and C. carnea (7.0 ± 5.5% ± SD when exposed to the aphid LC90), showing the limited non-target impact of carlina oxide. The use of LC30 and LC50 of this compound allowed the fertility inhibition of the target pest by 35.68 ± 6.21% and 23.66 ± 10.58%, respectively, and potential natality inhibition of the target pest by 52.78 ± 4.48% and 59.69 ± 5.60%, respectively. Of note, carlina oxide showed excellent insecticidal activity against M. dirhodum, comparable to the commercial insecticide considered. Overall, the low toxicity of carlina oxide toward A. aphidimyza and C. carnea makes it a safe compound for non-target organisms as well as suitable for developing a green insecticide for the management of M. dirhodum and perhaps other insects of agricultural or medical and veterinary interest.

本研究旨在调查 Carlina acaulis 精油(EO)的主要成分氧化卡利纳(carlina oxide)对 Metopolophium dirhodum (Walker) (半翅目:蚜科)成虫的急性毒性(死亡率)和亚致死效应(繁殖力和潜在产仔率)。此外,还评估了其对两种蚜虫天敌的毒性,即 Aphidoletes aphidimyza Rondani(双翅目:Cecidomyiidae)和 Chrysoperla carnea Stephens(神经目:Chrysopidae)。测试的最高浓度(3.0 mL L-1)导致目标害虫成虫的死亡率达到 96.7%,这表明该浓度的氧化卡林纳与我们使用的阳性对照具有相似的效果。此外,通过 probit 分析,可以估算出目标害虫的半数致死浓度为 1.06 mL L-1,半数致死浓度为 2.58 mL L-1,其死亡率远高于天敌,即蚜虫(接触蚜虫半数致死浓度 LC90 时为 6.7 ± 4.7% ± SD)和 C. carnea(接触蚜虫半数致死浓度 LC90 时为 7.0 ± 5.5% ± SD),这表明氧化卡林纳的非目标影响有限。使用该化合物的 LC30 和 LC50 对目标害虫的繁殖力抑制率分别为 35.68 ± 6.21% 和 23.66 ± 10.58%,对目标害虫的潜在成虫抑制率分别为 52.78 ± 4.48% 和 59.69 ± 5.60%。值得注意的是,氧化卡林纳对 M. dirhodum 表现出极佳的杀虫活性,可与考虑使用的商业杀虫剂相媲美。总体而言,氧化卡利纳对蚜虫和胭脂虫的低毒性使其成为一种对非目标生物安全的化合物,并适合开发一种绿色杀虫剂,用于防治M. dirhodum以及其他农业或医学和兽医学领域的昆虫。
{"title":"Lethal and sublethal effects of carlina oxide on the aphid Metopolophium dirhodum and its non-target impact on two biological control agents","authors":"Matěj Novák, Roman Pavela, Eleonora Spinozzi, Marta Ferrati, Riccardo Petrelli, Filippo Maggi, Renato Ricciardi, Giovanni Benelli","doi":"10.1007/s10340-024-01768-z","DOIUrl":"https://doi.org/10.1007/s10340-024-01768-z","url":null,"abstract":"<p>This study was designed to investigate the acute toxicity (mortality) and sublethal effects (fertility and potential natality) of carlina oxide, the main constituent of <i>Carlina acaulis</i> essential oil (EO), against adults of <i>Metopolophium dirhodum</i> (Walker) (Hemiptera: Aphididae). Moreover, its toxicity was evaluated against two aphid natural enemies, i.e., <i>Aphidoletes aphidimyza</i> Rondani (Diptera: Cecidomyiidae) and <i>Chrysoperla carnea</i> Stephens (Neuroptera: Chrysopidae). The highest tested concentration (3.0 mL L<sup>−1</sup>) resulted in 96.7% mortality of adults of the target pest, highlighting that this concentration of carlina oxide had a similar effectiveness as the positive control we used. Furthermore, probit analysis allowed the estimation of a LC<sub>50</sub> of 1.06 mL L<sup>−1</sup> and a LC<sub>90</sub> of 2.58 mL L<sup>−1</sup> for the target pest, which resulted in a much higher mortality rate than that found on natural enemies, i.e., <i>A. aphidimyza</i> (6.7 ± 4.7% ± SD when exposed to the aphid LC<sub>90</sub>) and <i>C. carnea</i> (7.0 ± 5.5% ± SD when exposed to the aphid LC<sub>90</sub>), showing the limited non-target impact of carlina oxide. The use of LC<sub>30</sub> and LC<sub>50</sub> of this compound allowed the fertility inhibition of the target pest by 35.68 ± 6.21% and 23.66 ± 10.58%, respectively, and potential natality inhibition of the target pest by 52.78 ± 4.48% and 59.69 ± 5.60%, respectively. Of note, carlina oxide showed excellent insecticidal activity against <i>M. dirhodum,</i> comparable to the commercial insecticide considered. Overall, the low toxicity of carlina oxide toward <i>A. aphidimyza</i> and <i>C. carnea</i> makes it a safe compound for non-target organisms as well as suitable for developing a green insecticide for the management of <i>M. dirhodum</i> and perhaps other insects of agricultural or medical and veterinary interest.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diurnal temperature fluctuations improve predictions of developmental rates in the spruce bark beetle Ips typographus 昼夜温度波动提高了对云杉树皮甲虫 Ips typographus 发育率的预测能力
IF 4.8 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-22 DOI: 10.1007/s10340-024-01758-1
Sven Hofmann, Martin Schebeck, Markus Kautz

The European spruce bark beetle Ips typographus is a widespread pest in Norway spruce-dominated forests in Eurasia. Predicting its phenology and voltinism is crucial to plan forest management measures and to mitigate mass outbreaks. Current phenology models are based on constant temperatures inferred from laboratory experiments; however, insect life cycles under natural conditions are rather driven by diurnal and seasonal temperature fluctuations. Therefore, phenology models based on fluctuating temperatures would reflect field conditions more realistically and might thus improve model predictions. In a laboratory experiment, we investigated the development of I. typographus, applying mean temperatures between 3 and 35 °C and diurnal temperature oscillations of up to ± 15 °C. Subsequently, we calibrated developmental rate models and applied them to climate data, in order to assess the effect of temperature fluctuations on voltinism under field conditions. Our results showed that diurnal temperature oscillations significantly affected developmental rates. Compared to constant temperatures, development was faster at temperature oscillations falling below the lower developmental threshold, and slower at temperature oscillations exceeding the developmental optimum. Furthermore, short exposures to suboptimal temperatures affected I. typographus less than expected from constant conditions. Natural temperature fluctuations thus accelerate development under cool, shaded conditions, whilst slowing it under hot, sun-exposed conditions, thereby ultimately affecting voltinism. Our findings highlight the importance to account for diurnal temperature fluctuations for more accurate predictions of developmental rates of I. typographus in natural thermal environments, and provide the fundament for improving current phenology models to support effective bark beetle management in a warming climate.

欧洲云杉树皮甲虫(Ips typographus)是欧亚大陆以挪威云杉为主的森林中的一种广泛虫害。预测其物候和伏期对于规划森林管理措施和减轻大规模爆发至关重要。目前的物候模型是基于实验室实验推断出的恒定温度;然而,自然条件下昆虫的生命周期是由昼夜和季节性温度波动驱动的。因此,基于波动温度的物候模型能更真实地反映野外条件,从而改进模型预测。在一项实验室实验中,我们应用 3 至 35 ° C 的平均温度和高达 ± 15 ° C 的昼夜温度波动研究了典型滇金丝猴的发育过程。随后,我们对发育率模型进行了校准,并将其应用于气候数据,以评估野外条件下温度波动对伏牛的影响。我们的研究结果表明,昼夜温度波动对发育速度有显著影响。与恒定温度相比,当温度波动低于较低的发育阈值时,发育速度较快,而当温度波动超过最佳发育温度时,发育速度较慢。此外,与恒定条件下的预期相比,短时间暴露在亚理想温度下对 typographus 的影响较小。因此,自然温度波动会在凉爽、遮荫的条件下加速发育,而在炎热、暴露在阳光下的条件下则会减缓发育,从而最终影响伏立。我们的研究结果突显了考虑昼夜温度波动对更准确地预测I. typographus在自然热环境中的发育速度的重要性,并为改进当前的物候学模型提供了基础,以支持在气候变暖的情况下对树皮甲虫进行有效管理。
{"title":"Diurnal temperature fluctuations improve predictions of developmental rates in the spruce bark beetle Ips typographus","authors":"Sven Hofmann, Martin Schebeck, Markus Kautz","doi":"10.1007/s10340-024-01758-1","DOIUrl":"https://doi.org/10.1007/s10340-024-01758-1","url":null,"abstract":"<p>The European spruce bark beetle <i>Ips typographus</i> is a widespread pest in Norway spruce-dominated forests in Eurasia. Predicting its phenology and voltinism is crucial to plan forest management measures and to mitigate mass outbreaks. Current phenology models are based on constant temperatures inferred from laboratory experiments; however, insect life cycles under natural conditions are rather driven by diurnal and seasonal temperature fluctuations. Therefore, phenology models based on fluctuating temperatures would reflect field conditions more realistically and might thus improve model predictions. In a laboratory experiment, we investigated the development of <i>I. typographus</i>, applying mean temperatures between 3 and 35 °C and diurnal temperature oscillations of up to ± 15 °C. Subsequently, we calibrated developmental rate models and applied them to climate data, in order to assess the effect of temperature fluctuations on voltinism under field conditions. Our results showed that diurnal temperature oscillations significantly affected developmental rates. Compared to constant temperatures, development was faster at temperature oscillations falling below the lower developmental threshold, and slower at temperature oscillations exceeding the developmental optimum. Furthermore, short exposures to suboptimal temperatures affected <i>I. typographus</i> less than expected from constant conditions. Natural temperature fluctuations thus accelerate development under cool, shaded conditions, whilst slowing it under hot, sun-exposed conditions, thereby ultimately affecting voltinism. Our findings highlight the importance to account for diurnal temperature fluctuations for more accurate predictions of developmental rates of <i>I. typographus</i> in natural thermal environments, and provide the fundament for improving current phenology models to support effective bark beetle management in a warming climate.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140192672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sugarcane borers: species, distribution, damage and management options 甘蔗螟虫:种类、分布、危害和管理办法
IF 4.8 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-21 DOI: 10.1007/s10340-024-01750-9
Ao-Mei Li, Zhong-Liang Chen, Fen Liao, Yong Zhao, Cui-Xian Qin, Miao Wang, You-Qiang Pan, Shao-Long Wei, Dong-Liang Huang

Lepidopteran borers stand out as the most destructive pests in sugarcane, leading to reductions in stalk weight, juice quality and sugar recovery. Presently, integrated pest management (IPM) systems are utilized for sugarcane borer management, employing diverse methods encompassing cropping system, chemical pesticides, behavioral manipulation, biological agents and the selection of resistant varieties. However, the effectiveness of this strategy remains controversial due to concerns about harmful residues, formulation limitations, environmental variability, labor shortages and increased input costs. Currently, multiple lines of transgenic sugarcane expressing insecticidal genes from the bacterium Bacillus thuringiensis (Bt) have been developed globally, offering the prospect of increases production with reduced pesticides application, thereby eliminating the negative effect of IPM. In Brazil, the first genetically modified sugarcane cultivars resistant to the sugarcane borer have been approved and released for commercial cultivation, shedding a bright light on a viable solution for sugarcane borers. This paper reviews borer species and distribution, the significant damage caused by sugarcane borers, current control approaches and the future effective control strategies. Additionally, this work provides comprehensive understanding on Bt sugarcane, serving as an additional tool to complement conventional sugarcane borers control resistance programs.

鳞翅目蛀虫是甘蔗中最具破坏性的害虫,会导致茎秆重量、果汁质量和糖分回收率下降。目前,甘蔗虫害综合治理(IPM)系统被用于甘蔗螟虫的治理,采用的方法多种多样,包括耕作制度、化学杀虫剂、行为控制、生物制剂和抗虫品种的选择。然而,由于对有害残留物、制剂限制、环境变化、劳动力短缺和投入成本增加的担忧,这一策略的有效性仍存在争议。目前,全球已开发出多个表达苏云金芽孢杆菌(Bt)杀虫基因的转基因甘蔗品系,有望在减少杀虫剂用量的情况下提高产量,从而消除虫害综合防治的负面影响。在巴西,首批抗甘蔗螟虫的转基因甘蔗栽培品种已获批准并投入商业种植,为解决甘蔗螟虫问题带来了曙光。本文回顾了甘蔗螟虫的种类和分布、甘蔗螟虫造成的重大损失、当前的防治方法以及未来的有效防治策略。此外,这项工作还提供了对 Bt 甘蔗的全面了解,作为补充传统甘蔗螟虫防治抗性计划的额外工具。
{"title":"Sugarcane borers: species, distribution, damage and management options","authors":"Ao-Mei Li, Zhong-Liang Chen, Fen Liao, Yong Zhao, Cui-Xian Qin, Miao Wang, You-Qiang Pan, Shao-Long Wei, Dong-Liang Huang","doi":"10.1007/s10340-024-01750-9","DOIUrl":"https://doi.org/10.1007/s10340-024-01750-9","url":null,"abstract":"<p>Lepidopteran borers stand out as the most destructive pests in sugarcane, leading to reductions in stalk weight, juice quality and sugar recovery. Presently, integrated pest management (IPM) systems are utilized for sugarcane borer management, employing diverse methods encompassing cropping system, chemical pesticides, behavioral manipulation, biological agents and the selection of resistant varieties. However, the effectiveness of this strategy remains controversial due to concerns about harmful residues, formulation limitations, environmental variability, labor shortages and increased input costs. Currently, multiple lines of transgenic sugarcane expressing insecticidal genes from the bacterium <i>Bacillus thuringiensis</i> (Bt) have been developed globally, offering the prospect of increases production with reduced pesticides application, thereby eliminating the negative effect of IPM. In Brazil, the first genetically modified sugarcane cultivars resistant to the sugarcane borer have been approved and released for commercial cultivation, shedding a bright light on a viable solution for sugarcane borers. This paper reviews borer species and distribution, the significant damage caused by sugarcane borers, current control approaches and the future effective control strategies. Additionally, this work provides comprehensive understanding on Bt sugarcane, serving as an additional tool to complement conventional sugarcane borers control resistance programs.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Xenorhabdus and Photorhabdus bacterial metabolites on the ovipositional activity of Aedes albopictus Xenorhabdus和Photorhabdus细菌代谢物对白纹伊蚊产卵活动的影响
IF 4.8 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-21 DOI: 10.1007/s10340-024-01760-7
Mustapha Touray, Harun Cimen, Edna Bode, Helge B. Bode, Selcuk Hazir

Viral diseases like yellow fever, dengue, and Zika have an alarming impact on public health. These diseases can be transmitted by Aedes mosquito species, such as Ae. albopictus, which is now found in many countries outside its original range. Xenorhabdus and Photorhabdus spp. are enteric bacterial symbionts of insect-preying nematodes and are known to produce an array of natural products with various activities including larvicidal activity. In this study, the effects of natural products produced by four Xenorhabdus and one Photorhabdus bacteria on the ovipositional behavior of Ae. albopictus mosquitoes were assessed. Utilizing a binary choice assay in insect cages, gravid female mosquitoes were presented with two oviposition cups containing water supplemented with varying concentrations of bacterial supernatants (50–1% concentrations) versus control medium. After 72 h, the eggs deposited on filter papers were counted. The oviposition attractant index (OAI) feature of the bacterial supernatant was evaluated using the number of eggs laid in the cups. Notably, all tested supernatants exhibited concentration-dependent deterrence of oviposition. Xenorhabdus cabanillasii displayed the strongest deterrent effect, inhibiting egg-laying at 50–5% concentrations (OAI: − 0.87 to − 0.35), followed by X. nematophila (50–10%, OAI: − 0.82 to − 0.52). Xenorhabdus szentirmaii, X. doucetiae, and P. kayaii showed significant deterrence at ≥ 20% concentrations. Using promoter exchange mutants generated by the easyPACId approach, fabclavine from X. szentirmaii was identified as the bioactive compound with evident deterrent effects. Such deterrents targeting egg-laying could be valuable for controlling populations by disrupting their breeding in suitable habitats.

黄热病、登革热和寨卡等病毒性疾病对公众健康的影响令人担忧。这些疾病可由伊蚊传播,如白纹伊蚊,现在白纹伊蚊已在其原产地以外的许多国家发现。Xenorhabdus和Photorhabdus属是昆虫捕食线虫的肠道细菌共生体,已知可产生一系列天然产品,具有各种活性,包括杀幼虫剂活性。本研究评估了四种 Xenorhabdus 细菌和一种 Photorhabdus 细菌产生的天然产物对白喙伊蚊产卵行为的影响。利用昆虫笼中的二元选择试验,向怀孕雌蚊提供两个产卵杯,分别装有补充了不同浓度细菌上清(浓度为 50-1%)的水和对照培养基。72 小时后,对沉积在滤纸上的卵进行计数。细菌上清液的产卵引诱指数(OAI)是通过在杯中产卵的数量来评估的。值得注意的是,所有测试的上清液都表现出了浓度依赖性的产卵抑制作用。卡巴尼拉氏菌(Xenorhabdus cabanillasii)的阻遏效果最强,浓度为 50-5% 时可抑制产卵(OAI:- 0.87 至 - 0.35),其次是线虫(X. nematophila)(50-10%,OAI:- 0.82 至 - 0.52)。Xenorhabdus szentirmaii、X. doucetiae 和 P. kayaii 在浓度≥ 20% 时表现出显著的阻遏作用。利用 easyPACId 方法产生的启动子交换突变体,从 X. szentirmaii 中鉴定出了具有明显威慑作用的生物活性化合物 fabclavine。这种以产卵为目标的阻遏剂可以通过破坏其在合适栖息地的繁殖来控制种群数量,因此非常有价值。
{"title":"Effects of Xenorhabdus and Photorhabdus bacterial metabolites on the ovipositional activity of Aedes albopictus","authors":"Mustapha Touray, Harun Cimen, Edna Bode, Helge B. Bode, Selcuk Hazir","doi":"10.1007/s10340-024-01760-7","DOIUrl":"https://doi.org/10.1007/s10340-024-01760-7","url":null,"abstract":"<p>Viral diseases like yellow fever, dengue, and Zika have an alarming impact on public health. These diseases can be transmitted by <i>Aedes</i> mosquito species, such as Ae. albopictus, which is now found in many countries outside its original range. <i>Xenorhabdus</i> and <i>Photorhabdus</i> spp. are enteric bacterial symbionts of insect-preying nematodes and are known to produce an array of natural products with various activities including larvicidal activity. In this study, the effects of natural products produced by four <i>Xenorhabdus</i> and one <i>Photorhabdus</i> bacteria on the ovipositional behavior of <i>Ae. albopictus</i> mosquitoes were assessed. Utilizing a binary choice assay in insect cages, gravid female mosquitoes were presented with two oviposition cups containing water supplemented with varying concentrations of bacterial supernatants (50–1% concentrations) versus control medium. After 72 h, the eggs deposited on filter papers were counted. The oviposition attractant index (OAI) feature of the bacterial supernatant was evaluated using the number of eggs laid in the cups. Notably, all tested supernatants exhibited concentration-dependent deterrence of oviposition. <i>Xenorhabdus cabanillasii</i> displayed the strongest deterrent effect, inhibiting egg-laying at 50–5% concentrations (OAI: − 0.87 to − 0.35), followed by <i>X. nematophila</i> (50–10%, OAI: − 0.82 to − 0.52). <i>Xenorhabdus szentirmaii, X. doucetiae,</i> and <i>P. kayaii</i> showed significant deterrence at ≥ 20% concentrations. Using promoter exchange mutants generated by the easyPACId approach, fabclavine from <i>X. szentirmaii</i> was identified as the bioactive compound with evident deterrent effects. Such deterrents targeting egg-laying could be valuable for controlling populations by disrupting their breeding in suitable habitats.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Gelsemium elegans extract on the red fire ant: disruption of peritrophic membrane integrity and alteration of gut microbial diversity, composition, and function 豚草提取物对红火蚁的影响:破坏营养周膜的完整性,改变肠道微生物的多样性、组成和功能
IF 4.8 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-19 DOI: 10.1007/s10340-024-01769-y
Qun Zheng, Wenjuan Yan, Shiqi Zhu, Xiaoran Miao, Jian Wu, Zewei Lin, Suqing Huang, Dongmei Cheng, Hanhong Xu, Zhixiang Zhang, Peiwen Zhang

Gelsemium elegans Benth. (Loganiaceae), also known as heartbreak herb, can be used in the manufacture of herbal medicines. Insecticidal activity has also been found and can be used to develop botanical insecticides. This study aimed to reveal the insecticidal mechanism of its extracts against red fire ants and provide strategies for the development of biopesticides and the promotion of green and sustainable agriculture. 16s rRNA, pathohistological, behavioral, and enzyme activity assays were performed to reveal its biological effects, including the effects on non-target organisms. Our results showed that red fire ants exposed to G. elegans extracts exhibited slowed growth, reduced feeding, and decreased aggressiveness. The midgut and its peritrophic membrane of red fire ant were significantly disrupted, the diversity of gut microbial community was reduced, and the balance of microbial composition was disturbed. Significant increases in functional abundance of xenobiotics biodegradation and metabolism pathway and P450s enzyme activity confirmed the toxic stress of G. elegans extract. Functional prediction of Kyoto Encyclopedia of Genes and Genomes pathway showed that the functional abundance of novobiocin biosynthesis, flavonoid biosynthesis, lysosome, proteasome, and wingless/integrated signaling pathways were significantly inhibited in the gut. Besides, G. elegans extracts induced an increase in acetylcholinesterase activity. These results revealed dysregulation of immune system and metabolic functions in red fire ants, as well as toxic effects of G. elegans extracts on physiological functions and nerves. These findings revealed the insecticidal mechanism of G. elegans and supported the development of eco-friendly insecticides for red fire ants.

Gelsemium elegans Benth.(又名伤心草,可用于制造草药。研究还发现其具有杀虫活性,可用于开发植物杀虫剂。本研究旨在揭示其提取物对红火蚁的杀虫机制,为开发生物农药和促进绿色可持续农业提供策略。研究人员通过 16s rRNA、病理组织学、行为学和酶活性测定来揭示其生物效应,包括对非靶标生物的影响。我们的研究结果表明,红火蚁暴露于 G. elegans 提取物后,生长速度减慢,摄食量减少,攻击性降低。红火蚁的中肠及其营养周膜受到明显破坏,肠道微生物群落的多样性降低,微生物组成的平衡被打破。异种生物降解和代谢途径的功能丰度以及P450s酶活性的显著增加证实了优雅蚁提取物的毒性胁迫作用。京都基因和基因组百科全书》通路功能预测显示,新生物素生物合成、类黄酮生物合成、溶酶体、蛋白酶体和无翼/整合信号通路的功能丰度在肠道中受到显著抑制。此外,草履虫提取物还能诱导乙酰胆碱酯酶活性的增加。这些结果揭示了红火蚁免疫系统和新陈代谢功能的失调,以及草履虫提取物对生理功能和神经的毒性作用。这些研究结果揭示了草履虫的杀虫机制,有助于开发针对红火蚁的环保型杀虫剂。
{"title":"Effects of Gelsemium elegans extract on the red fire ant: disruption of peritrophic membrane integrity and alteration of gut microbial diversity, composition, and function","authors":"Qun Zheng, Wenjuan Yan, Shiqi Zhu, Xiaoran Miao, Jian Wu, Zewei Lin, Suqing Huang, Dongmei Cheng, Hanhong Xu, Zhixiang Zhang, Peiwen Zhang","doi":"10.1007/s10340-024-01769-y","DOIUrl":"https://doi.org/10.1007/s10340-024-01769-y","url":null,"abstract":"<p><i>Gelsemium elegans</i> Benth. (<i>Loganiaceae</i>), also known as heartbreak herb, can be used in the manufacture of herbal medicines. Insecticidal activity has also been found and can be used to develop botanical insecticides. This study aimed to reveal the insecticidal mechanism of its extracts against red fire ants and provide strategies for the development of biopesticides and the promotion of green and sustainable agriculture. 16s rRNA, pathohistological, behavioral, and enzyme activity assays were performed to reveal its biological effects, including the effects on non-target organisms. Our results showed that red fire ants exposed to <i>G. elegans</i> extracts exhibited slowed growth, reduced feeding, and decreased aggressiveness. The midgut and its peritrophic membrane of red fire ant were significantly disrupted, the diversity of gut microbial community was reduced, and the balance of microbial composition was disturbed. Significant increases in functional abundance of xenobiotics biodegradation and metabolism pathway and P450s enzyme activity confirmed the toxic stress of <i>G. elegans</i> extract. Functional prediction of Kyoto Encyclopedia of Genes and Genomes pathway showed that the functional abundance of novobiocin biosynthesis, flavonoid biosynthesis, lysosome, proteasome, and wingless/integrated signaling pathways were significantly inhibited in the gut. Besides, <i>G. elegans</i> extracts induced an increase in acetylcholinesterase activity. These results revealed dysregulation of immune system and metabolic functions in red fire ants, as well as toxic effects of <i>G. elegans</i> extracts on physiological functions and nerves. These findings revealed the insecticidal mechanism of <i>G. elegans</i> and supported the development of eco-friendly insecticides for red fire ants.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timing matters: remotely sensed vegetation greenness can predict insect vector migration and therefore outbreaks of curly top disease 时机很重要:遥感植被绿度可预测虫媒迁徙,进而预测卷心菜病的爆发
IF 4.8 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-19 DOI: 10.1007/s10340-024-01771-4

Abstract

Due to climate change, outbreaks of insect-vectored plant viruses have become increasingly unpredictable. In-depth insights into region-level spatio-temporal dynamics of insect vector migration can be used to forecast plant virus outbreaks in agricultural landscapes; yet, it is often poorly understood. To explore this, we examined the incidence of beet curly top virus (BCTV) in 2,196 tomato fields from 2013 to 2022. In America, the beet leafhopper (Circulifer tenellus) is the exclusive vector of BCTV. We examined factors associated with BCTV incidence and spring migration of the beet leafhopper from non-agricultural overwintering areas. We conducted an experimental study to demonstrate beet leafhopper dispersal in response to greenness of plants, and spring migration time was estimated using a model based on vegetation greenness. We found a negative correlation between vegetation greenness and spring migration probability from the overwintering areas. Furthermore, BCTV incidence was significantly associated with spring migration time rather than environmental conditions per se. Specifically, severe BCTV outbreaks in California in 2013 and 2021 were accurately predicted by the model based on early beet leafhopper spring migration. Our results provide experimental and field-based support that early spring migration of the insect vector is the primary factor contributing to BCTV outbreaks. Additionally, the predictive model for spring migration time was implemented into a web-based mapping system, serving as a decision support tool for management purposes. This article describes an experimental and analytical framework of considerable relevance to region-wide forecasting and modeling of insect-vectored diseases of concern to crops, livestock, and humans.

摘要 由于气候变化,由昆虫传播的植物病毒爆发变得越来越难以预测。深入了解区域一级昆虫媒介迁移的时空动态可用于预测农业景观中植物病毒的暴发,然而,人们对这一问题往往知之甚少。为了探讨这一问题,我们研究了 2013 年至 2022 年期间 2196 块番茄田的甜菜卷曲顶端病毒(BCTV)发病率。在美国,甜菜叶蝉(Circulifer tenellus)是 BCTV 的唯一传播媒介。我们研究了与 BCTV 发生率和甜菜叶蝉从非农业越冬区春季迁徙有关的因素。我们进行了一项实验研究,以证明甜菜叶蝉的扩散与植物的绿度有关,并利用基于植被绿度的模型估算了春季迁徙时间。我们发现植被绿度与从越冬区春季迁徙的概率呈负相关。此外,BCTV发病率与春季迁徙时间而非环境条件本身有显著关联。具体而言,根据甜菜叶蝉春季迁徙的早期时间,模型准确预测了加利福尼亚州在2013年和2021年爆发的严重BCTV疫情。我们的研究结果提供了实验和实地支持,即昆虫媒介的早春迁徙是导致 BCTV 爆发的主要因素。此外,春季迁飞时间预测模型还被应用到一个基于网络的制图系统中,作为管理决策支持工具。本文介绍了一个实验和分析框架,该框架对作物、牲畜和人类关注的昆虫传播疾病的全区域预测和建模具有重要意义。
{"title":"Timing matters: remotely sensed vegetation greenness can predict insect vector migration and therefore outbreaks of curly top disease","authors":"","doi":"10.1007/s10340-024-01771-4","DOIUrl":"https://doi.org/10.1007/s10340-024-01771-4","url":null,"abstract":"<h3>Abstract</h3> <p>Due to climate change, outbreaks of insect-vectored plant viruses have become increasingly unpredictable. In-depth insights into region-level spatio-temporal dynamics of insect vector migration can be used to forecast plant virus outbreaks in agricultural landscapes; yet, it is often poorly understood. To explore this, we examined the incidence of <em>beet curly top virus</em> (BCTV) in 2,196 tomato fields from 2013 to 2022. In America, the beet leafhopper (<em>Circulifer tenellus</em>) is the exclusive vector of BCTV. We examined factors associated with BCTV incidence and spring migration of the beet leafhopper from non-agricultural overwintering areas. We conducted an experimental study to demonstrate beet leafhopper dispersal in response to greenness of plants, and spring migration time was estimated using a model based on vegetation greenness. We found a negative correlation between vegetation greenness and spring migration probability from the overwintering areas. Furthermore, BCTV incidence was significantly associated with spring migration time rather than environmental conditions <em>per se</em>. Specifically, severe BCTV outbreaks in California in 2013 and 2021 were accurately predicted by the model based on early beet leafhopper spring migration. Our results provide experimental and field-based support that early spring migration of the insect vector is the primary factor contributing to BCTV outbreaks. Additionally, the predictive model for spring migration time was implemented into a web-based mapping system, serving as a decision support tool for management purposes. This article describes an experimental and analytical framework of considerable relevance to region-wide forecasting and modeling of insect-vectored diseases of concern to crops, livestock, and humans.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pine bark beetle Ips acuminatus: an ecological perspective on life-history traits promoting outbreaks 松树皮甲虫 Ips acuminatus:从生态学角度看促进爆发的生活史特征
IF 4.8 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-16 DOI: 10.1007/s10340-024-01765-2
Eva Papek, Elisabeth Ritzer, Peter H. W. Biedermann, Anthony I. Cognato, Peter Baier, Gernot Hoch, Thomas Kirisits, Martin Schebeck

The bark beetle Ips acuminatus is an important pest in pine-dominated forests of Eurasia. Recently, the frequency of I. acuminatus outbreaks and mortality of host trees have increased, most likely as a result of climate change-related alterations in environmental conditions. Therefore, detailed information on the species’ natural history is essential to understand its potential to damage forests and to apply sustainable management measures. We provide a comprehensive overview on the life history of I. acuminatus, focusing on traits that might explain outbreaks and the ability to cause tree mortality. We review its importance for European forestry, outbreak behavior, host plant usage, reproductive biology, temperature-dependent development, diapause and overwintering behavior, and interactions with fungi, bacteria, nematodes and other arthropods. Interestingly, I. acuminatus has a strong nutritional dependency on the fungus Ophiostoma macrosporum, underlined by the presence of a prominent oral mycetangium, a spore-carrying organ, in females, which is not known for other Ips species. Moreover, I. acuminatus can reproduce sexually and asexually (pseudogamy). Additionally, information on the species’ evolutionary past provides valuable insights into the origin of certain traits. We present a phylogeny of the genus Ips and examine selected life-history traits in an evolutionary context. Together with its sister species Ips chinensis, I. acuminatus forms a separate clade within Ips. The ancestor of Ips bark beetles originated about 20 million years ago and was a pine-colonizing species inhabiting the Holarctic. Finally, open fields of research are identified to guide future work on this ecologically and economically important pine bark beetle.

树皮甲虫 Ips acuminatus 是欧亚大陆以松树为主的森林中的一种重要害虫。最近,I. acuminatus 的爆发频率和寄主树木的死亡率都有所上升,这很可能是与气候变化相关的环境条件改变造成的。因此,详细了解该物种的自然史对于了解其破坏森林的潜力和采取可持续管理措施至关重要。我们全面概述了 I. acuminatus 的生活史,重点是可能解释其爆发的特征以及造成树木死亡的能力。我们回顾了它对欧洲林业的重要性、爆发行为、寄主植物利用、繁殖生物学、依赖温度的发育、休眠和越冬行为,以及与真菌、细菌、线虫和其他节肢动物的相互作用。有趣的是,尖嘴蝇对真菌大孢子菌(Ophiostoma macrosporum)有很强的营养依赖性,雌性尖嘴蝇存在明显的口腔菌囊(孢子携带器官),这在其他蝇属物种中并不常见。此外,I. acuminatus 可以有性和无性生殖(假两性)。此外,有关该物种进化历史的信息为我们了解某些性状的起源提供了宝贵的资料。我们介绍了栉水母属的系统发育,并在进化背景下考察了部分生活史特征。树皮甲虫(Ips acuminatus)与它的姊妹属树皮甲虫(Ips chinensis)一起构成了树皮甲虫属中的一个独立支系。Ips树皮甲虫的祖先起源于大约2000万年前,是一种栖息在全北极地区的松树殖民物种。最后,研究人员还指出了一些有待研究的领域,以指导今后对这种具有重要生态和经济价值的松树皮甲虫的研究工作。
{"title":"The pine bark beetle Ips acuminatus: an ecological perspective on life-history traits promoting outbreaks","authors":"Eva Papek, Elisabeth Ritzer, Peter H. W. Biedermann, Anthony I. Cognato, Peter Baier, Gernot Hoch, Thomas Kirisits, Martin Schebeck","doi":"10.1007/s10340-024-01765-2","DOIUrl":"https://doi.org/10.1007/s10340-024-01765-2","url":null,"abstract":"<p>The bark beetle <i>Ips acuminatus</i> is an important pest in pine-dominated forests of Eurasia. Recently, the frequency of <i>I. acuminatus</i> outbreaks and mortality of host trees have increased, most likely as a result of climate change-related alterations in environmental conditions. Therefore, detailed information on the species’ natural history is essential to understand its potential to damage forests and to apply sustainable management measures. We provide a comprehensive overview on the life history of <i>I. acuminatus</i>, focusing on traits that might explain outbreaks and the ability to cause tree mortality. We review its importance for European forestry, outbreak behavior, host plant usage, reproductive biology, temperature-dependent development, diapause and overwintering behavior, and interactions with fungi, bacteria, nematodes and other arthropods. Interestingly, <i>I. acuminatus</i> has a strong nutritional dependency on the fungus <i>Ophiostoma macrosporum</i>, underlined by the presence of a prominent oral mycetangium, a spore-carrying organ, in females, which is not known for other <i>Ips</i> species. Moreover, <i>I. acuminatus</i> can reproduce sexually and asexually (pseudogamy). Additionally, information on the species’ evolutionary past provides valuable insights into the origin of certain traits. We present a phylogeny of the genus <i>Ips</i> and examine selected life-history traits in an evolutionary context. Together with its sister species <i>Ips chinensis, I. acuminatus</i> forms a separate clade within <i>Ips.</i> The ancestor of <i>Ips</i> bark beetles originated about 20 million years ago and was a pine-colonizing species inhabiting the Holarctic. Finally, open fields of research are identified to guide future work on this ecologically and economically important pine bark beetle.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140139523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence of cross-channel dispersal into England of the forest pest Ips typographus 森林害虫 Ips typographus 跨海峡传播到英格兰的证据
IF 4.8 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-14 DOI: 10.1007/s10340-024-01763-4
Daegan J. G. Inward, Emilio Caiti, Kerry Barnard, Séverine Hasbroucq, Katy Reed, Jean-Claude Grégoire

A breeding population of the tree-killing European spruce bark beetle Ips typographus was detected in England for the first time in 2018 and was initially assumed to have arrived with infested timber. To test the hypothesis that the beetles are dispersing naturally across the English channel, extensive trap networks were deployed in 2021 and 2022 to track the flight activity of the beetles from an outbreak hotspot in France and Belgium to southern England, including parallel ‘coastal’ traps on either side of the channel. Beetles were caught all along the transect, decreasing in abundance with distance from the outbreak area. Linear modelling indicates that beetles dispersed into England during 2021 and 2022, and that during a large-scale dispersal event in June 2021, beetles could have penetrated more than 160 km inland. The 2021 dispersal event initiated new incursions of the beetle in southeast England and demonstrates the extraordinary distance I. typographus may move under outbreak conditions. Our findings support the hypothesis of a damaging forest pest aerially dispersing across the barrier of the English channel and suggest that future incursions of this and other plant-associated pests may move via the same pathway.

2018 年,英国首次发现了杀死树木的欧洲云杉树皮甲虫 Ips typographus 的繁殖种群,最初推测该种群是随受侵染的木材一起到达英国的。为了验证甲虫在英吉利海峡上自然扩散的假设,2021 年和 2022 年部署了广泛的捕集网,以跟踪甲虫从法国和比利时的疫情热点地区到英格兰南部的飞行活动,包括海峡两侧平行的 "沿海 "捕集网。甲虫在整个横断面上都有捕获,其数量随着与疫情爆发区距离的增加而减少。线性建模表明,甲虫在2021年和2022年期间扩散到英格兰,在2021年6月的一次大规模扩散事件中,甲虫可能向内陆扩散了160多公里。2021 年的扩散事件引发了甲虫在英格兰东南部的新一轮入侵,并证明了在暴发条件下,I. typographus 可能移动的超常距离。我们的研究结果支持了一种破坏性森林害虫通过英吉利海峡的屏障进行空中扩散的假设,并表明这种害虫和其他与植物相关的害虫未来的入侵可能会通过相同的途径。
{"title":"Evidence of cross-channel dispersal into England of the forest pest Ips typographus","authors":"Daegan J. G. Inward, Emilio Caiti, Kerry Barnard, Séverine Hasbroucq, Katy Reed, Jean-Claude Grégoire","doi":"10.1007/s10340-024-01763-4","DOIUrl":"https://doi.org/10.1007/s10340-024-01763-4","url":null,"abstract":"<p>A breeding population of the tree-killing European spruce bark beetle <i>Ips typographus</i> was detected in England for the first time in 2018 and was initially assumed to have arrived with infested timber. To test the hypothesis that the beetles are dispersing naturally across the English channel, extensive trap networks were deployed in 2021 and 2022 to track the flight activity of the beetles from an outbreak hotspot in France and Belgium to southern England, including parallel ‘coastal’ traps on either side of the channel. Beetles were caught all along the transect, decreasing in abundance with distance from the outbreak area. Linear modelling indicates that beetles dispersed into England during 2021 and 2022, and that during a large-scale dispersal event in June 2021, beetles could have penetrated more than 160 km inland. The 2021 dispersal event initiated new incursions of the beetle in southeast England and demonstrates the extraordinary distance <i>I. typographus</i> may move under outbreak conditions. Our findings support the hypothesis of a damaging forest pest aerially dispersing across the barrier of the English channel and suggest that future incursions of this and other plant-associated pests may move via the same pathway.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140135979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Pest Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1