The electronic and charge transport properties of Metal-Quinolates (Metal = Li, Na, K, Rb and Cs) compounds are theoretically investigated using AustinFrisch-Petersson functional with dispersion (APFD) corrected density functional theory (DFT). The calculated energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital ranges from 3.40 eV for LiQ to 0.93 eV for CsQ. The ionisation potential, electron affinity and chemical hardness of the compounds are calculated. We found that the electron hopping rate, kelectron of CsQ is around 150 times greater than LiQ. We suggest that CsQ is the most efficient charge injecting or transport material for organic light-emitting diodes (OLEDs). Dimer formation is desirable with all M-Quinolate with different electronic structures and (CsQ)2 dimer shows the lowest dimerisation energy.
{"title":"Charge Transport Properties of a Series of Metal Quinolates Utilising Dispersion-Corrected Density Functional Theory","authors":"Md. Rakib Hossain, A. Ullah, N. Chawdhury","doi":"10.21315/jps2023.34.1.7","DOIUrl":"https://doi.org/10.21315/jps2023.34.1.7","url":null,"abstract":"The electronic and charge transport properties of Metal-Quinolates (Metal = Li, Na, K, Rb and Cs) compounds are theoretically investigated using AustinFrisch-Petersson functional with dispersion (APFD) corrected density functional theory (DFT). The calculated energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital ranges from 3.40 eV for LiQ to 0.93 eV for CsQ. The ionisation potential, electron affinity and chemical hardness of the compounds are calculated. We found that the electron hopping rate, kelectron of CsQ is around 150 times greater than LiQ. We suggest that CsQ is the most efficient charge injecting or transport material for organic light-emitting diodes (OLEDs). Dimer formation is desirable with all M-Quinolate with different electronic structures and (CsQ)2 dimer shows the lowest dimerisation energy.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89822169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. S. Y. Louise, S. Kristianingrum, A. Fillaeli, Atiya Fiki Rahma Mumtazah, Bian Itsna Ashfa Al Ashfiya, W. Dwandaru
We report for the first time a technique in the detection of chromium(VI) [Cr(VI)] ions using ultraviolet-visible (UV-Vis) spectrophotometer that involves silver nanoparticles (AgNPs) capped with formaldehyde-chitosan as the sensor. Here, chitosan cross-linked with formaldehyde produced an extra stability from the aspect of signal stability of the sensor. This study aimed to synthesise and characterise formaldehydechitosan stabilised AgNPs (formaldehyde-chitosan@AgNPs) and apply them as Cr(VI) ion sensors. The stability and linearity of the signal of the formaldehyde-chitosan@ AgNPs were compared with the signal of AgNPs according to their ability as Cr(VI) ion sensors based on the UV-Vis spectroscopy. The AgNPs were synthesised by the chemical reduction method using 1% sodium citrate (10:1). Furthermore, 3.3% chitosan was added, which had been cross-linked with 2.5% formaldehyde in a ratio of 1:1 (v:v). The characterisation results showed that the synthesised materials have a peak absorption at a wavelength of 416 nm and have functional groups of -OH and -C=O as the characteristics of chitosan and formaldehyde. The formaldehyde-chitosan@AgNPs had square or rectangular structures with a size distribution of less than 1000 nm. The formaldehydechitosan@AgNPs produced a more stable signal and had better linearity than AgNPs at a wavelength of 490 nm. Moreover, formaldehyde-chitosan@AgNPs had a precision value of 0.15% and a linearity level of 0.9914 in the concentration range of 1 ppm–100 ppm, with limit of detection (LOD) and limit of quantisation (LOQ) values of 0.329 ppm and 0.751 ppm, respectively.
{"title":"Formaldehyde Cross-Linked Chitosan as Silver-Nanoparticles Stabiliser For Cr(VI) Ion Sensor Application","authors":"I. S. Y. Louise, S. Kristianingrum, A. Fillaeli, Atiya Fiki Rahma Mumtazah, Bian Itsna Ashfa Al Ashfiya, W. Dwandaru","doi":"10.21315/jps2023.34.1.1","DOIUrl":"https://doi.org/10.21315/jps2023.34.1.1","url":null,"abstract":"We report for the first time a technique in the detection of chromium(VI) [Cr(VI)] ions using ultraviolet-visible (UV-Vis) spectrophotometer that involves silver nanoparticles (AgNPs) capped with formaldehyde-chitosan as the sensor. Here, chitosan cross-linked with formaldehyde produced an extra stability from the aspect of signal stability of the sensor. This study aimed to synthesise and characterise formaldehydechitosan stabilised AgNPs (formaldehyde-chitosan@AgNPs) and apply them as Cr(VI) ion sensors. The stability and linearity of the signal of the formaldehyde-chitosan@ AgNPs were compared with the signal of AgNPs according to their ability as Cr(VI) ion sensors based on the UV-Vis spectroscopy. The AgNPs were synthesised by the chemical reduction method using 1% sodium citrate (10:1). Furthermore, 3.3% chitosan was added, which had been cross-linked with 2.5% formaldehyde in a ratio of 1:1 (v:v). The characterisation results showed that the synthesised materials have a peak absorption at a wavelength of 416 nm and have functional groups of -OH and -C=O as the characteristics of chitosan and formaldehyde. The formaldehyde-chitosan@AgNPs had square or rectangular structures with a size distribution of less than 1000 nm. The formaldehydechitosan@AgNPs produced a more stable signal and had better linearity than AgNPs at a wavelength of 490 nm. Moreover, formaldehyde-chitosan@AgNPs had a precision value of 0.15% and a linearity level of 0.9914 in the concentration range of 1 ppm–100 ppm, with limit of detection (LOD) and limit of quantisation (LOQ) values of 0.329 ppm and 0.751 ppm, respectively.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72659780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Doppler effect (DE) has a wide application in many areas of science and technology. Radiofrequency technologies that use this effect are based on the classical DE theory. We know that since 1905, we have the relativistic theory of DE. Recently, a new DE theory based on relative velocity between wavefronts and wave source/observer has been proposed. In this paper, we will examine the condition for the vanishing of DE, that is, no frequency shift irrespective of the relative motion between the wave and the wave source/observer. Examination will be done to the three theories of DE.
{"title":"Condition for Zero Doppler Effect in Classical Theory, Special Relativity and New Approach","authors":"Shukri Klinaku","doi":"10.21315/jps2023.34.1.6","DOIUrl":"https://doi.org/10.21315/jps2023.34.1.6","url":null,"abstract":"The Doppler effect (DE) has a wide application in many areas of science and technology. Radiofrequency technologies that use this effect are based on the classical DE theory. We know that since 1905, we have the relativistic theory of DE. Recently, a new DE theory based on relative velocity between wavefronts and wave source/observer has been proposed. In this paper, we will examine the condition for the vanishing of DE, that is, no frequency shift irrespective of the relative motion between the wave and the wave source/observer. Examination will be done to the three theories of DE.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77440880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this communication, author is presenting ultrasonic and thermophysical properties of potassium fluoride (KF) and potassium chloride (KCl) by van der Waals three body force shell model with the help of second and third order elastic constants at 100 K–300 K. The elastic constants have been calculated by using Coulomb and Born– Mayer potential with the help of two parameters-distance of nearest neighbour and hardness parameter. We evaluated ultrasonic properties such as elastic constants, wave velocities, Debye temperature- average velocity, conductivity, and ultrasonic attenuation due to phonon–phonon interaction along in different direction [100], [110], and [111] orientations. The achieved results are hold good and are given very important information of these crystal for further investigation.
{"title":"Ultrasonic and Thermophysical Properties of Potassium Halides Crystals","authors":"Umesh Chandra Srivastava, Shyamendra Pratap Singh","doi":"10.21315/aos2023.34.1.5","DOIUrl":"https://doi.org/10.21315/aos2023.34.1.5","url":null,"abstract":"In this communication, author is presenting ultrasonic and thermophysical properties of potassium fluoride (KF) and potassium chloride (KCl) by van der Waals three body force shell model with the help of second and third order elastic constants at 100 K–300 K. The elastic constants have been calculated by using Coulomb and Born– Mayer potential with the help of two parameters-distance of nearest neighbour and hardness parameter. We evaluated ultrasonic properties such as elastic constants, wave velocities, Debye temperature- average velocity, conductivity, and ultrasonic attenuation due to phonon–phonon interaction along in different direction [100], [110], and [111] orientations. The achieved results are hold good and are given very important information of these crystal for further investigation.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136046064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The fundamental physical constants are at the root of physics theories, but no theoretical framework provides their experimental values. In addition, they are assumed to be independent of each other. Here, we present two valuable dimensionless numbers based on vacuum properties and fundamental constants. The value of these dimensionless numbers provokes questioning, since they are of order 101. In particular, they mean that it is possible to build a velocity and a parameter homogeneous to the Planck constant of the same order as the speed of light and the Planck constant respectively, only based on five well-known physical parameters. These formulas are very unlikely to be two coincidences and suggest that the parameters involved depend on each other. They also seem to indicate that light is a material wave and quantum mechanics is a deterministic theory. A link between these numbers and the fine-structure constant is also established.
{"title":"Three Analytical Relations Giving The Speed of Light, The Planck Constant and The Fine-Structure Constant","authors":"F. Salmon","doi":"10.21315/jps2023.34.1.2","DOIUrl":"https://doi.org/10.21315/jps2023.34.1.2","url":null,"abstract":"The fundamental physical constants are at the root of physics theories, but no theoretical framework provides their experimental values. In addition, they are assumed to be independent of each other. Here, we present two valuable dimensionless numbers based on vacuum properties and fundamental constants. The value of these dimensionless numbers provokes questioning, since they are of order 101. In particular, they mean that it is possible to build a velocity and a parameter homogeneous to the Planck constant of the same order as the speed of light and the Planck constant respectively, only based on five well-known physical parameters. These formulas are very unlikely to be two coincidences and suggest that the parameters involved depend on each other. They also seem to indicate that light is a material wave and quantum mechanics is a deterministic theory. A link between these numbers and the fine-structure constant is also established.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87287680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. S. Buhari, A. Abdulrahman, S. A. Lawal, A. Abdulkareem, R. A. Muriana, J. Tijani, H. K. Ibrahim, Yusuf Olanrewaju Busari
The storage of petroleum products in buried metal tanks to ensure safety is common practice. However, the integrity of these tanks could be compromised by soil corrosion with economic and environmental consequences. This study examines carbon nanotubes mechanical and anti-corrosive capabilities (CNTs) and epoxy resin coating on steel tanks. The presence of corrosive ions, resistivity, and pH values were all tested in the soil sample. CNT was mixed in proportions of 1.5, 2.5, 3.5 and 4.5 weight percent of epoxy resin to create the coatings. The morphology of uncoated steel, epoxy, and CNTs/ epoxy resin-coated steel specimens was studied using high-resolution scanning electron microscopy (HRSEM) equipment with energy dispersive x-ray spectroscopy (EDX). Electrochemical impedance spectroscopy (EIS) was used for corrosion analysis, and the morphological result was established. The average ions content soil samples showed 272 mg/kg chloride, 467.20 mg/kg sulphate and 167.40 Ω-m for the average resistivity value. The sample’s pH was acidic because it fell within 6.11–7.48. The tensile strength, hardness, and tensile modulus of epoxy resin with CNTs increase with CNTs. The addition of 3.5% CNTs has the best effect on the mechanical strength of the composite. The nanocomposite coatings exhibited considerably superior conductors, according to the EIS investigation. Thus, the hybrid of epoxy and CNTs increases the hydrophobicity of the coated surface.
{"title":"Mechanical and Corrosion Protection Characteristics of CNTs/epoxy resin Nanocomposite Coating on Buried API 5L X65 Steel Storage Tank","authors":"A. S. Buhari, A. Abdulrahman, S. A. Lawal, A. Abdulkareem, R. A. Muriana, J. Tijani, H. K. Ibrahim, Yusuf Olanrewaju Busari","doi":"10.21315/jps2023.34.1.8","DOIUrl":"https://doi.org/10.21315/jps2023.34.1.8","url":null,"abstract":"The storage of petroleum products in buried metal tanks to ensure safety is common practice. However, the integrity of these tanks could be compromised by soil corrosion with economic and environmental consequences. This study examines carbon nanotubes mechanical and anti-corrosive capabilities (CNTs) and epoxy resin coating on steel tanks. The presence of corrosive ions, resistivity, and pH values were all tested in the soil sample. CNT was mixed in proportions of 1.5, 2.5, 3.5 and 4.5 weight percent of epoxy resin to create the coatings. The morphology of uncoated steel, epoxy, and CNTs/ epoxy resin-coated steel specimens was studied using high-resolution scanning electron microscopy (HRSEM) equipment with energy dispersive x-ray spectroscopy (EDX). Electrochemical impedance spectroscopy (EIS) was used for corrosion analysis, and the morphological result was established. The average ions content soil samples showed 272 mg/kg chloride, 467.20 mg/kg sulphate and 167.40 Ω-m for the average resistivity value. The sample’s pH was acidic because it fell within 6.11–7.48. The tensile strength, hardness, and tensile modulus of epoxy resin with CNTs increase with CNTs. The addition of 3.5% CNTs has the best effect on the mechanical strength of the composite. The nanocomposite coatings exhibited considerably superior conductors, according to the EIS investigation. Thus, the hybrid of epoxy and CNTs increases the hydrophobicity of the coated surface.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84707440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Normawati Jasni, A. Iqbal, N. A. Abu Bakar, W. M. Wan Ahmad Kamil, W. Danial, M. W. Ismail, Kalaivizhi Rajappan
In this study, Li+ ions capped zinc oxide quantum dots (ZnO QDs) was synthesised using the microwave method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), high-transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), UV–Visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) techniques were used to characterise the structural, morphological, optical properties of the ZnO QDs. The XRD analysis reveals that ZnO QDs have a hexagonal wurtzite structure with an average crystallite size of 9.9 nm. The morphology of ZnO QDs was observed to be quasi-spherically shaped with an average particle size of 10 nm. The PL analysis detected the presence of various defects. All these factors enhanced the photodegradation of oxytetracycline (OTC) under fluorescent light irradiation. Within 40 min, 88.3% of OTC was removed, which was higher compared to the bulk ZnO reported in the literature. This technology is aimed at small animal husbandries due to the photocatalyst synthesis method’s simplicity and the photocatalysis process’s requirements.
{"title":"Photodegradation of Oxytetracycline Using Fluorescent Light Driven ZnO Quantum Dots Synthesised Via Microwave Method","authors":"Normawati Jasni, A. Iqbal, N. A. Abu Bakar, W. M. Wan Ahmad Kamil, W. Danial, M. W. Ismail, Kalaivizhi Rajappan","doi":"10.21315/jps2023.34.1.3","DOIUrl":"https://doi.org/10.21315/jps2023.34.1.3","url":null,"abstract":"In this study, Li+ ions capped zinc oxide quantum dots (ZnO QDs) was synthesised using the microwave method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), high-transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), UV–Visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) techniques were used to characterise the structural, morphological, optical properties of the ZnO QDs. The XRD analysis reveals that ZnO QDs have a hexagonal wurtzite structure with an average crystallite size of 9.9 nm. The morphology of ZnO QDs was observed to be quasi-spherically shaped with an average particle size of 10 nm. The PL analysis detected the presence of various defects. All these factors enhanced the photodegradation of oxytetracycline (OTC) under fluorescent light irradiation. Within 40 min, 88.3% of OTC was removed, which was higher compared to the bulk ZnO reported in the literature. This technology is aimed at small animal husbandries due to the photocatalyst synthesis method’s simplicity and the photocatalysis process’s requirements.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91254532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zinc oxide (ZnO) thin film, an important n-type semiconductor for various applications, needs to be prepared by a simple and low-cost method. Herein, ZnO thin films with various deposition times (1.25 min, 2.50 min, 5.00 min and 7.5 min) have been successfully fabricated by the electroplating method. The X-ray diffraction analysis demonstrates that the crystal structure of all samples was hexagonal, with the largest crystal size of 28.17 nm and a deposition time of 2.50 min. The scanning electron microscopy (SEM) analysis shows that the deposition time increased along with the more visible size distribution of the crystallite grains and the smaller, more spherical and uniform, compact coating of the substrate. It is found that increasing the deposition time from 1.25 min to 7.5 min leads to an increment of thickness from 0.84 µm to 4.4 µm. The elemental analysis reveals the presence of zinc (Zn) and oxygen (O) without impurities. The optical analysis reveals that the ZnO transmittance was greater than 95% for all deposition times. The highest bandgap energy value of the ZnO thin film is 3.24 eV at a deposition time of 1.25 min. With great optical and structural properties, our ZnO thin film has a big potential to be used for dye-sensitised solar cells (DSSC).
{"title":"Electroplated ZnO Thin Film: Influence of Deposition Time on Optical and Structural Properties","authors":"N. Siregar, M. Motlan, M. Sirait","doi":"10.21315/jps2023.34.1.4","DOIUrl":"https://doi.org/10.21315/jps2023.34.1.4","url":null,"abstract":"Zinc oxide (ZnO) thin film, an important n-type semiconductor for various applications, needs to be prepared by a simple and low-cost method. Herein, ZnO thin films with various deposition times (1.25 min, 2.50 min, 5.00 min and 7.5 min) have been successfully fabricated by the electroplating method. The X-ray diffraction analysis demonstrates that the crystal structure of all samples was hexagonal, with the largest crystal size of 28.17 nm and a deposition time of 2.50 min. The scanning electron microscopy (SEM) analysis shows that the deposition time increased along with the more visible size distribution of the crystallite grains and the smaller, more spherical and uniform, compact coating of the substrate. It is found that increasing the deposition time from 1.25 min to 7.5 min leads to an increment of thickness from 0.84 µm to 4.4 µm. The elemental analysis reveals the presence of zinc (Zn) and oxygen (O) without impurities. The optical analysis reveals that the ZnO transmittance was greater than 95% for all deposition times. The highest bandgap energy value of the ZnO thin film is 3.24 eV at a deposition time of 1.25 min. With great optical and structural properties, our ZnO thin film has a big potential to be used for dye-sensitised solar cells (DSSC).","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88711245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andi Muhammad Afdhal Saputra, Nadea Agustina, A. -, Zurnansyah -, Samnur -, E. H. Sujiono
In this paper, we report the synthesis and physical properties of the graphene oxide (GO) /chitosan (CS) composite membrane, which is effectively synthesised using natural waste. The GO/CS composite membrane analysis results were confirmed using XRD, FTIR and SEM. The XRD results of the GO/CS composite membrane showed that the diffraction peak of chitosan appeared at 2θ = 19.3o and the diffraction peak of GO appeared at 2θ = 26.3o, with the GO peak being dominant, which makes the crystallinity of CS decrease. The FTIR spectrum of the GO/CS membrane showed the disappearance of the CS glucopyranose band and the functional group (C=O) of GO at 891 cm–1 and 1,704 cm–1 and the functional group (C=C) of GO decreased at a wavelength of 1,557 cm–1. The SEM results showed the surface morphology of the GO/CS membrane, where the surface of the GO/CS composite membrane became smooth due to the contact between the hydroxyl and NH groups in CS with oxygen-containing groups in GO. The XRD, FTIR and SEM results showed the physical interaction between GO and CS. They are increasing the value of Young’s modulus, elasticity, elongation at break and absorption of metal ions. The GO/CS composite membranes are expected to have potential applications in metal absorption, biochemistry and electrochemistry.
{"title":"Synthesis and Characterisation of Graphene Oxide/Chitosan Composite Membranes from Natural Waste","authors":"Andi Muhammad Afdhal Saputra, Nadea Agustina, A. -, Zurnansyah -, Samnur -, E. H. Sujiono","doi":"10.21315/jps2022.33.3.5","DOIUrl":"https://doi.org/10.21315/jps2022.33.3.5","url":null,"abstract":"In this paper, we report the synthesis and physical properties of the graphene oxide (GO) /chitosan (CS) composite membrane, which is effectively synthesised using natural waste. The GO/CS composite membrane analysis results were confirmed using XRD, FTIR and SEM. The XRD results of the GO/CS composite membrane showed that the diffraction peak of chitosan appeared at 2θ = 19.3o and the diffraction peak of GO appeared at 2θ = 26.3o, with the GO peak being dominant, which makes the crystallinity of CS decrease. The FTIR spectrum of the GO/CS membrane showed the disappearance of the CS glucopyranose band and the functional group (C=O) of GO at 891 cm–1 and 1,704 cm–1 and the functional group (C=C) of GO decreased at a wavelength of 1,557 cm–1. The SEM results showed the surface morphology of the GO/CS membrane, where the surface of the GO/CS composite membrane became smooth due to the contact between the hydroxyl and NH groups in CS with oxygen-containing groups in GO. The XRD, FTIR and SEM results showed the physical interaction between GO and CS. They are increasing the value of Young’s modulus, elasticity, elongation at break and absorption of metal ions. The GO/CS composite membranes are expected to have potential applications in metal absorption, biochemistry and electrochemistry.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82635942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Considering the importance of statistics related to microfields in the spectral line shapes in plasma, many researchers were interested in calculating statistical distributions related to microfields with different models and approximations. Analytical approaches and numerical simulation methods can be used to study the variations of the magnitude or the directions of the microfield. The aim of this work is the calculation of distributions of microfield angles and distributions of microfield angular velocities on ions in plasmas. The article briefly presents an overview of previous work and the molecular dynamics simulation (MDS) technique used in this work. We consider interaction between all ions of the plasma according to Debye potential, and we follow evolution of the positions and velocities of particles according to Verlet algorithm. The results present effects of temperature and ion densities on calculated distributions. We compare our results with those of an analytical model based on Holtsmark model at the temperature 105 K, the ionic density 2.1015 cm–3 and for Z = +2 and Z = +5. Another comparison is done with independent particles model (IPM) for ionic coupling parameter equal to 0.17. Our values of the most probable angular velocity are less than those of the analytical calculation; differences may be caused mainly by the choice of the interaction potential and interaction between all ions in the plasma.
{"title":"Calculating Microfield Angular Velocity Distribution in Plasma through Using Molecular Dynamics Simulation","authors":"Abdallah Bekkouche, F. Khelfaoui","doi":"10.21315/jps2022.33.3.6","DOIUrl":"https://doi.org/10.21315/jps2022.33.3.6","url":null,"abstract":"Considering the importance of statistics related to microfields in the spectral line shapes in plasma, many researchers were interested in calculating statistical distributions related to microfields with different models and approximations. Analytical approaches and numerical simulation methods can be used to study the variations of the magnitude or the directions of the microfield. The aim of this work is the calculation of distributions of microfield angles and distributions of microfield angular velocities on ions in plasmas. The article briefly presents an overview of previous work and the molecular dynamics simulation (MDS) technique used in this work. We consider interaction between all ions of the plasma according to Debye potential, and we follow evolution of the positions and velocities of particles according to Verlet algorithm. The results present effects of temperature and ion densities on calculated distributions. We compare our results with those of an analytical model based on Holtsmark model at the temperature 105 K, the ionic density 2.1015 cm–3 and for Z = +2 and Z = +5. Another comparison is done with independent particles model (IPM) for ionic coupling parameter equal to 0.17. Our values of the most probable angular velocity are less than those of the analytical calculation; differences may be caused mainly by the choice of the interaction potential and interaction between all ions in the plasma.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74820931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}