Pub Date : 2024-09-10DOI: 10.1016/j.jphotobiol.2024.113034
Longfang Yao , Li Zhang , Liwen Chen , Yiyan Fei , Simone Lamon , Min Gu , Lan Mi , Jing Wang , Jiong Ma
Expansion Microscopy (ExM) is a widely used super-resolution technique that enables imaging of structures beyond the diffraction limit of light. However, ExM suffers from weak labeling signals and expansion distortions, limiting its applicability. Here, we present an innovative approach called Tetrahedral DNA nanostructure Expansion Microscopy (TDN-ExM), addressing these limitations by using tetrahedral DNA nanostructures (TDNs) for fluorescence labeling. Our approach demonstrates a 3- to 10-fold signal amplification due to the multivertex nature of TDNs, allowing the modification of multiple dyes. Previous studies have confirmed minimal distortion on a large scale, and our strategy can reduce the distortion at the ultrastructural level in samples because it does not rely on anchoring agents and is not affected by digestion. This results in a brighter fluorescence, better uniformity, and compatibility with different labeling strategies and optical super-resolution technologies. We validated the utility of TDN-ExM by imaging various biological structures with improved resolutions and signal-to-noise ratios.
膨胀显微镜(ExM)是一种广泛使用的超分辨率技术,可对光衍射极限以外的结构成像。然而,ExM 存在标记信号弱和膨胀失真等问题,限制了其适用性。在这里,我们提出了一种名为四面体DNA纳米结构膨胀显微镜(TDN-ExM)的创新方法,通过使用四面体DNA纳米结构(TDNs)进行荧光标记来解决这些局限性。由于四维 DNA 纳米结构具有多维性,允许对多种染料进行修饰,因此我们的方法可将信号放大 3 到 10 倍。以前的研究已经证实,大范围的失真极小,而我们的策略可以减少样品超微结构层面的失真,因为它不依赖锚定剂,也不受消化的影响。这使得荧光更明亮、均匀度更高,并与不同的标记策略和光学超分辨率技术兼容。我们通过对各种生物结构进行成像,提高了分辨率和信噪比,从而验证了 TDN-ExM 的实用性。
{"title":"Visualizing highly bright and uniform cellular ultrastructure by expansion-microscopy with tetrahedral DNA nanostructures","authors":"Longfang Yao , Li Zhang , Liwen Chen , Yiyan Fei , Simone Lamon , Min Gu , Lan Mi , Jing Wang , Jiong Ma","doi":"10.1016/j.jphotobiol.2024.113034","DOIUrl":"10.1016/j.jphotobiol.2024.113034","url":null,"abstract":"<div><p>Expansion Microscopy (ExM) is a widely used super-resolution technique that enables imaging of structures beyond the diffraction limit of light. However, ExM suffers from weak labeling signals and expansion distortions, limiting its applicability. Here, we present an innovative approach called Tetrahedral DNA nanostructure Expansion Microscopy (TDN-ExM), addressing these limitations by using tetrahedral DNA nanostructures (TDNs) for fluorescence labeling. Our approach demonstrates a 3- to 10-fold signal amplification due to the multivertex nature of TDNs, allowing the modification of multiple dyes. Previous studies have confirmed minimal distortion on a large scale, and our strategy can reduce the distortion at the ultrastructural level in samples because it does not rely on anchoring agents and is not affected by digestion. This results in a brighter fluorescence, better uniformity, and compatibility with different labeling strategies and optical super-resolution technologies. We validated the utility of TDN-ExM by imaging various biological structures with improved resolutions and signal-to-noise ratios.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"260 ","pages":"Article 113034"},"PeriodicalIF":3.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1016/j.jphotobiol.2024.113026
Pınar Aysert-Yıldız , Ayşe Kalkancı , Merve Erdoğan , Hasan Selçuk Özger , Ali Öztürk , Özlem Güzel-Tunçcan , Murat Dizbay , Kayhan Çağlar
Background/Aim
This experimental study aimed to examine the effectiveness of transdermal antimicrobial photodynamic therapy (APDT) with and without antimicrobial lock therapy (ALT), on catheter biofilms.
Methods
S. epidermidis and C. orthopsilosis biofilms were formed within peripheral venous catheters positioned in the marginal ear veins of New Zealand white rabbits. Biofilm formation was confirmed with scanning electron microscopy in two catheters. 24 catheters with staphylococcal biofilms and 24 with fungal biofilms were treated with APDT, ALT or “APDT plus ALT” for five days. Six catheters were separated as controls. APDT was applied with a red colored LED lamp and methylene blue as the photosensitizer. Vancomycin lock solutions were used as ALT for staphylococcal biofilms and amphotericin B for fungal biofilms. The effect of treatment procedures was evaluated by intraluminal biofilm viability testing based on spectrophotometric evaluation, and a quantitative (OD) value was obtained for each catheter.
Results
The mean OD values obtained by 600 nm spectrophotometric reading at 24 h (biofilm viability) after “ALT”, “APDT” and “ALT plus APDT” procedures were 0.363, 0.151 and 0.128 for S. epidermidis and 0.092, 0.104 and 0.227 for C. orthopsilosis, respectively. All these OD values obtained after treatment procedures were lower than controls for both S. epidermidis (OD: 0,802) and C. orthopsilosis (OD: 0,315), although there were large fluctuations in our results.
Conclusions
Our results suggest that transdermal APDT may be an effective method for treating staphylococcal and candida biofilms formed within intravenous catheters in our rabbit ear model. The combined use of APDT and ALT might be beneficial in these staphylococcal biofilms.
背景/目的:本实验研究旨在探讨经皮抗菌素光动力疗法(APDT)与抗菌素锁疗法(ALT)对导管生物膜的效果:方法:在新西兰白兔耳缘静脉中的外周静脉导管内形成表皮葡萄球菌和正表皮葡萄球菌生物膜。用扫描电子显微镜确认了两根导管中生物膜的形成。用 APDT、ALT 或 "APDT 加 ALT "处理 24 个有葡萄球菌生物膜的导管和 24 个有真菌生物膜的导管,为期五天。六根导管作为对照组。APDT 使用红色 LED 灯和亚甲蓝作为光敏剂。万古霉素锁溶液作为 ALT 用于葡萄球菌生物膜,两性霉素 B 用于真菌生物膜。通过分光光度法检测管腔内生物膜的存活率,评估处理程序的效果,并得出每根导管的定量(OD)值:结果:经过 "ALT"、"APDT "和 "ALT 加 APDT "处理后,在 24 小时内通过 600 纳米分光光度法读取的平均 OD 值(生物膜存活率)分别为:表皮葡萄球菌 0.363、0.151 和 0.128;正表皮葡萄球菌 0.092、0.104 和 0.227。表皮葡萄球菌(OD 值:0,802)和正表皮葡萄球菌(OD 值:0,315)在治疗过程后的 OD 值均低于对照组,但结果波动较大:我们的研究结果表明,透皮 APDT 可能是治疗兔耳模型中静脉导管内形成的葡萄球菌和念珠菌生物膜的有效方法。联合使用 APDT 和 ALT 可能对葡萄球菌生物膜有益。
{"title":"The effectiveness of antimicrobial photodynamic therapy on catheter infection model","authors":"Pınar Aysert-Yıldız , Ayşe Kalkancı , Merve Erdoğan , Hasan Selçuk Özger , Ali Öztürk , Özlem Güzel-Tunçcan , Murat Dizbay , Kayhan Çağlar","doi":"10.1016/j.jphotobiol.2024.113026","DOIUrl":"10.1016/j.jphotobiol.2024.113026","url":null,"abstract":"<div><h3>Background/Aim</h3><p>This experimental study aimed to examine the effectiveness of transdermal antimicrobial photodynamic therapy (APDT) with and without antimicrobial lock therapy (ALT), on catheter biofilms.</p></div><div><h3>Methods</h3><p><em>S. epidermidis</em> and <em>C. orthopsilosis</em> biofilms were formed within peripheral venous catheters positioned in the marginal ear veins of New Zealand white rabbits. Biofilm formation was confirmed with scanning electron microscopy in two catheters. 24 catheters with staphylococcal biofilms and 24 with fungal biofilms were treated with APDT, ALT or “APDT plus ALT” for five days. Six catheters were separated as controls. APDT was applied with a red colored LED lamp and methylene blue as the photosensitizer. Vancomycin lock solutions were used as ALT for staphylococcal biofilms and amphotericin B for fungal biofilms. The effect of treatment procedures was evaluated by intraluminal biofilm viability testing based on spectrophotometric evaluation, and a quantitative (OD) value was obtained for each catheter.</p></div><div><h3>Results</h3><p>The mean OD values obtained by 600 nm spectrophotometric reading at 24 h (biofilm viability) after “ALT”, “APDT” and “ALT plus APDT” procedures were 0.363, 0.151 and 0.128 for <em>S. epidermidis</em> and 0.092, 0.104 and 0.227 for <em>C. orthopsilosis,</em> respectively<em>.</em> All these OD values obtained after treatment procedures were lower than controls for both <em>S. epidermidis</em> (OD: 0,802) and <em>C. orthopsilosis</em> (OD<strong>:</strong> 0,315), although there were large fluctuations in our results.</p></div><div><h3>Conclusions</h3><p>Our results suggest that transdermal APDT may be an effective method for treating staphylococcal and candida biofilms formed within intravenous catheters in our rabbit ear model. The combined use of APDT and ALT might be beneficial in these staphylococcal biofilms.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"260 ","pages":"Article 113026"},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prolonged exposure of human dermal fibroblasts (HDF) to ultraviolet (UV) radiation triggers the production of reactive oxygen species by upregulating the expression of matrix metalloproteinases (MMPs), causing type-I collagen degradation and photoaging. A sulfated (1 → 3)/(1 → 4) mannogalactan exopolysaccharide (BVP-2) characterized as [→3)-α-Galp-{(1 → 4)-α-6-O-SO3-Manp}-(1 → 3)-α-6-O-SO3-Galp-(1→] was isolated from seaweed-associated heterotrophic bacterium Bacillus velezensis MTCC13097. Whole genome analysis of B. velezensis MTCC13097 (Accession number JAKYLL000000000) revealed saccharine biosynthetic gene clusters for exopolysaccharide production. BVP-2 administered cells showed noteworthy reduction in mitochondrial superoxide (∼85 %, p < 0.05) and ROS production (62 %) than those exhibited by UV-A irradiated HDF cells. Oxidative imbalance in HDF cells (after UV-A exposure) was recovered with BVP-2 treatment by significantly downregulating nitric oxide (NO) production (98.6 μM/mL, 1.9-fold) and DNA damage (⁓67 %) in comparison with UV-A induced cells (191.8 μM/mL and 98.7 %, respectively). UV-irradiated HDF cells showed a ∼30-50 % downregulation in the expression of MMPs (1, 2, and 9) following treatment with BVP-2. Considerable amount of sulfation (18 %) along with (1 → 3)/(1 → 4) glycosidic linkages in BVP-2 could be pivotal factors for down-regulation of the intracellular MMP-1, which was further supported by molecular docking and structure-activity studies. The (1 → 3)/(1 → 4)-linked bacterial exopolysaccharide (BVP-2) might be used as prospective natural lead to attenuate and mitigate UV-A-induced photoaging.
{"title":"Photoprotective sulfated mannogalactan from heterotrophic Bacillus velezensis blocks UV-A mediated matrix metalloproteinase expression and nuclear DNA damage in human dermal fibroblast","authors":"Sumayya Asharaf , Kajal Chakraborty , Silpa Kunnappilly Paulose , Shubhajit Dhara , Rekha Devi Chakraborty , Chesvin Varghese","doi":"10.1016/j.jphotobiol.2024.113022","DOIUrl":"10.1016/j.jphotobiol.2024.113022","url":null,"abstract":"<div><p>Prolonged exposure of human dermal fibroblasts (HDF) to ultraviolet (UV) radiation triggers the production of reactive oxygen species by upregulating the expression of matrix metalloproteinases (MMPs), causing type-I collagen degradation and photoaging. A sulfated (1 → 3)/(1 → 4) mannogalactan exopolysaccharide (BVP-2) characterized as [→3)-<em>α</em>-Gal<em>p</em>-{(1 → 4)-<em>α</em>-6-<em>O</em>-SO<sub>3</sub>-Man<em>p</em>}-(1 → 3)<em>-α</em>-6-<em>O</em>-SO<sub>3</sub>-Gal<em>p</em>-(1→] was isolated from seaweed-associated heterotrophic bacterium <em>Bacillus velezensis</em> MTCC13097. Whole genome analysis of <em>B. velezensis</em> MTCC13097 (Accession number JAKYLL000000000) revealed saccharine biosynthetic gene clusters for exopolysaccharide production. BVP-2 administered cells showed noteworthy reduction in mitochondrial superoxide (∼85 %, <em>p</em> < 0.05) and ROS production (62 %) than those exhibited by UV-A irradiated HDF cells. Oxidative imbalance in HDF cells (after UV-A exposure) was recovered with BVP-2 treatment by significantly downregulating nitric oxide (NO) production (98.6 μM/mL, 1.9-fold) and DNA damage (⁓67 %) in comparison with UV-A induced cells (191.8 μM/mL and 98.7 %, respectively). UV-irradiated HDF cells showed a ∼30-50 % downregulation in the expression of MMPs (1, 2, and 9) following treatment with BVP-2. Considerable amount of sulfation (18 %) along with (1 → 3)/(1 → 4) glycosidic linkages in BVP-2 could be pivotal factors for down-regulation of the intracellular MMP-1, which was further supported by molecular docking and structure-activity studies. The (1 → 3)/(1 → 4)-linked bacterial exopolysaccharide (BVP-2) might be used as prospective natural lead to attenuate and mitigate UV-A-induced photoaging.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"260 ","pages":"Article 113022"},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Two monocarbonyl dimethylamino curcuminoids, one derived from acetone (C3) and the second one from cyclohexane (C6), were synthesized aiming to study their photophysical properties and anticancer photodynamic potential. Compound C6 exhibited lower absorbance and fluorescence than C3. Photobleaching studies showed that C3 and C6 photostability behavior in DMSO differ significantly. C3 was completely photoconverted into a new species absorbing at lower wavelength than the parent compound, whereas, C6, upon a 30 min irradiation at λ = 440 nm with 15 mW/cm2 reached a photostationary phase where a smaller amount of the initial compound coexists with some photoproducts of higher and lower absorbance. Both compounds were able to generate significant amounts of ROS upon irradiation in an aqueous environment and exhibited successful intracellular localization in skin cancer cells (A431 cells). After dark cytotoxicity studies the concentrations of 5 μM and 1 μM for C3 and C6, respectively, were selected for the PDT assessment. C3 presented light dose-dependent photodynamic activity against A431 cells, resulting in 40 % cell viability after 12 min of light irradiation (440 nm, 15 mW/cm2). On the other side, C6 showed a biphasic light dose PDT effect with cell viability gradually decreasing up to 50 % after 5 min of light exposure, and then increasing again after 8 and 12 min of light exposure. The photodynamic performance of C6 may provide a new insight into the development of PSs with reduced prolonged photosensitivity.
{"title":"Monocarbonyl curcuminoids as potential photosensitizers in photodynamic therapy against skin cancer","authors":"Alexandra Karagianni , Styliani Timotheatou , Vasiliki Manakou , Andreas Moutselos , Alexandros Athanasopoulos , Konstantinos Politopoulos , Dimitris Matiadis , Marina Sagnou , Eleni Alexandratou","doi":"10.1016/j.jphotobiol.2024.113025","DOIUrl":"10.1016/j.jphotobiol.2024.113025","url":null,"abstract":"<div><p>Two monocarbonyl dimethylamino curcuminoids, one derived from acetone (C3) and the second one from cyclohexane (C6), were synthesized aiming to study their photophysical properties and anticancer photodynamic potential. Compound C6 exhibited lower absorbance and fluorescence than C3. Photobleaching studies showed that C3 and C6 photostability behavior in DMSO differ significantly. C3 was completely photoconverted into a new species absorbing at lower wavelength than the parent compound, whereas, C6, upon a 30 min irradiation at λ = 440 nm with 15 mW/cm<sup>2</sup> reached a photostationary phase where a smaller amount of the initial compound coexists with some photoproducts of higher and lower absorbance. Both compounds were able to generate significant amounts of ROS upon irradiation in an aqueous environment and exhibited successful intracellular localization in skin cancer cells (A431 cells). After dark cytotoxicity studies the concentrations of 5 μM and 1 μM for C3 and C6, respectively, were selected for the PDT assessment. C3 presented light dose-dependent photodynamic activity against A431 cells, resulting in 40 % cell viability after 12 min of light irradiation (440 nm, 15 mW/cm<sup>2</sup>). On the other side, C6 showed a biphasic light dose PDT effect with cell viability gradually decreasing up to 50 % after 5 min of light exposure, and then increasing again after 8 and 12 min of light exposure. The photodynamic performance of C6 may provide a new insight into the development of PSs with reduced prolonged photosensitivity.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"260 ","pages":"Article 113025"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1016/j.jphotobiol.2024.113024
Yu He , Rongan Ye , Yinbo Peng , Qing Pei , Lei Wu , Caixia Wang , Wei Ni , Ming Li , Yiqiu Zhang , Min Yao
Ovarian aging is a serious clinical concern. Few safe and effective methods are currently available to improve ovarian functions. Photobiomodulation (PBM) is a safe and noninvasive physical therapy that can modulate a series of biological processes. Recently, several studies have noted its potential to improve the function of ovary and reproductive cells. However, the effects of PBM treatment on natural ovarian aging remain unclear. In this study, we used a naturally reproductive aging mouse model to observe the effect of PBM on ovarian function. Young and aged female ICR mice were treated with or without PBM for 2 months. PBM was performed using a semiconductor InGaAlP laser emitting at 650 nm (80 mW, 6.7 mW/cm2 for 5 or 10 min, resulting in a dose of 2 or 4 J/cm2, respectively). After treatment, the effects of PBM and its role in oxidative stress, inflammation, and mitochondrial function were investigated. We found that PBM (4 J/cm2) effectively recovered the levels of sex hormones, increased the number of primordial and growing follicles, improved angiogenesis, and decreased cell apoptosis in naturally aged mice. Moreover, PBM reduced oxidative stress, inhibited chronic ovarian inflammation, and improved mitochondrial function in aged ovaries. Similar protective effects of PBM were observed in a hydrogen peroxide-induced oxidative stress model of human granulosa cell line (KGN) in vitro. Increased cell viability, cell proliferation, hormone secretion, mitochondrial membrane potential, and adenosine triphosphate levels and decreased apoptosis and oxidative stress were detected in KGN cells after PBM treatment. Collectively, this study suggest that PBM treatment is beneficial for restoring ovarian function in naturally reproductive aging mice and has a significant protective effect against oxidative stress damage in KGN cells. The mechanisms underlying the benefits of PBM in ovarian aging include antioxidant stress, reduction of inflammation, and preservation of mitochondrial function. Therefore, this study emphasizes the potential of PBM as a therapeutic intervention to ameliorate ovarian aging.
{"title":"Photobiomodulation ameliorates ovarian aging by alleviating oxidative stress and inflammation damage and improving mitochondrial function","authors":"Yu He , Rongan Ye , Yinbo Peng , Qing Pei , Lei Wu , Caixia Wang , Wei Ni , Ming Li , Yiqiu Zhang , Min Yao","doi":"10.1016/j.jphotobiol.2024.113024","DOIUrl":"10.1016/j.jphotobiol.2024.113024","url":null,"abstract":"<div><p>Ovarian aging is a serious clinical concern. Few safe and effective methods are currently available to improve ovarian functions. Photobiomodulation (PBM) is a safe and noninvasive physical therapy that can modulate a series of biological processes. Recently, several studies have noted its potential to improve the function of ovary and reproductive cells. However, the effects of PBM treatment on natural ovarian aging remain unclear. In this study, we used a naturally reproductive aging mouse model to observe the effect of PBM on ovarian function. Young and aged female ICR mice were treated with or without PBM for 2 months. PBM was performed using a semiconductor InGaAlP laser emitting at 650 nm (80 mW, 6.7 mW/cm<sup>2</sup> for 5 or 10 min, resulting in a dose of 2 or 4 J/cm<sup>2</sup>, respectively). After treatment, the effects of PBM and its role in oxidative stress, inflammation, and mitochondrial function were investigated. We found that PBM (4 J/cm<sup>2</sup>) effectively recovered the levels of sex hormones, increased the number of primordial and growing follicles, improved angiogenesis, and decreased cell apoptosis in naturally aged mice. Moreover, PBM reduced oxidative stress, inhibited chronic ovarian inflammation, and improved mitochondrial function in aged ovaries. Similar protective effects of PBM were observed in a hydrogen peroxide-induced oxidative stress model of human granulosa cell line (KGN) in vitro. Increased cell viability, cell proliferation, hormone secretion, mitochondrial membrane potential, and adenosine triphosphate levels and decreased apoptosis and oxidative stress were detected in KGN cells after PBM treatment. Collectively, this study suggest that PBM treatment is beneficial for restoring ovarian function in naturally reproductive aging mice and has a significant protective effect against oxidative stress damage in KGN cells. The mechanisms underlying the benefits of PBM in ovarian aging include antioxidant stress, reduction of inflammation, and preservation of mitochondrial function. Therefore, this study emphasizes the potential of PBM as a therapeutic intervention to ameliorate ovarian aging.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"260 ","pages":"Article 113024"},"PeriodicalIF":3.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1016/j.jphotobiol.2024.113023
Yucheng Wang , Xue Li , Hongtong Chen , Xinyi Yang , Lei Guo , Rui Ju , Tianhong Dai , Guoqing Li
Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of P. aeruginosa. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing P. aeruginosa using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2′,7′-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl3, MnCl2, ZnCl2, or the iron chelator 2,2′-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.
{"title":"Antimicrobial blue light inactivation of Pseudomonas aeruginosa: Unraveling the multifaceted impact of wavelength, growth stage, and medium composition","authors":"Yucheng Wang , Xue Li , Hongtong Chen , Xinyi Yang , Lei Guo , Rui Ju , Tianhong Dai , Guoqing Li","doi":"10.1016/j.jphotobiol.2024.113023","DOIUrl":"10.1016/j.jphotobiol.2024.113023","url":null,"abstract":"<div><p><em>Pseudomonas aeruginosa</em>, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating <em>P. aeruginosa</em> infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of <em>P. aeruginosa</em>. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing <em>P. aeruginosa</em> using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2′,7′-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl<sub>3</sub>, MnCl<sub>2</sub>, ZnCl<sub>2</sub>, or the iron chelator 2,2′-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113023"},"PeriodicalIF":3.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1016/j.jphotobiol.2024.113021
Min Ji Kim , Mi-Hye Kim , Sehwan Kim , Jung Jae Lee , Hee Jung Kim
Alzheimer's disease, a prevalent neurodegenerative condition primarily affecting older adults, remains incurable. Its principle pathological hallmark is the accelerated accumulation of amyloid β (Aβ) protein. This study investigates the potential of photobiomodulation using near infrared light to counteract Aβ1–42-induced synaptic degeneration and neurotoxicity. We focused on the effect of 808 nm near-infrared laser diode (LD) on Aβ1–42 cytotoxicity in primary cultured cortical neurons. We assessed cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, observing substantial benefits from LD irradiation with a power of 10 mW and a dose of 30 J. Cells exposed to Aβ1–42 exhibited morphological changes indicative of synaptic damage and a significant decrease in the number of postsynaptic density protein-95 (PSD-95) contacts, which were significantly improved with near-infrared LD therapy. Furthermore, this therapy reduced Aβ and phosphorylated tau (P-tau) protein accumulation. Additionally, near-infrared LD irradiation substantially lessened the Aβ1–42–induced rise in glial fibrillary acid protein (GFAP) and ionized calcium-binding adaptor molecule 1 (IBA1) in astrocytes and microglia. Remarkably, near-infrared LD irradiation effectively inhibited phosphorylation of key proteins involved in Aβ1–42-induced necroptosis, namely Receptor-interacting protein kinase-3 (RIP3) and Mixed Lineage Kinase domain-Like protein (MLKL). Our findings suggest that near-infrared LD treatment significantly reduces neurodegeneration by reducing glial overactivation and neuronal necroptosis triggered by Aβ1–42. Thus, near-infrared LD treatment emerges as a promising approach for slowing or treating Alzheimer's disease, offering new avenues in its management.
{"title":"Near-infrared laser diode mitigates Aβ1–42-induced neurodegeneration in cortical neurons","authors":"Min Ji Kim , Mi-Hye Kim , Sehwan Kim , Jung Jae Lee , Hee Jung Kim","doi":"10.1016/j.jphotobiol.2024.113021","DOIUrl":"10.1016/j.jphotobiol.2024.113021","url":null,"abstract":"<div><p>Alzheimer's disease, a prevalent neurodegenerative condition primarily affecting older adults, remains incurable. Its principle pathological hallmark is the accelerated accumulation of amyloid β (Aβ) protein. This study investigates the potential of photobiomodulation using near infrared light to counteract Aβ<sub>1–42</sub>-induced synaptic degeneration and neurotoxicity. We focused on the effect of 808 nm near-infrared laser diode (LD) on Aβ<sub>1–42</sub> cytotoxicity in primary cultured cortical neurons. We assessed cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, observing substantial benefits from LD irradiation with a power of 10 mW and a dose of 30 J. Cells exposed to Aβ<sub>1–42</sub> exhibited morphological changes indicative of synaptic damage and a significant decrease in the number of postsynaptic density protein-95 (PSD-95) contacts, which were significantly improved with near-infrared LD therapy. Furthermore, this therapy reduced Aβ and phosphorylated tau (P-tau) protein accumulation. Additionally, near-infrared LD irradiation substantially lessened the Aβ<sub>1–42</sub>–induced rise in glial fibrillary acid protein (GFAP) and ionized calcium-binding adaptor molecule 1 (IBA1) in astrocytes and microglia. Remarkably, near-infrared LD irradiation effectively inhibited phosphorylation of key proteins involved in Aβ<sub>1–42</sub>-induced necroptosis, namely Receptor-interacting protein kinase-3 (RIP3) and Mixed Lineage Kinase domain-Like protein (MLKL). Our findings suggest that near-infrared LD treatment significantly reduces neurodegeneration by reducing glial overactivation and neuronal necroptosis triggered by Aβ<sub>1–42</sub>. Thus, near-infrared LD treatment emerges as a promising approach for slowing or treating Alzheimer's disease, offering new avenues in its management.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113021"},"PeriodicalIF":3.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1016/j.jphotobiol.2024.113020
Weijia Chen , Xuyang Wang , Mark L. Wells , Kunshan Gao
While solar ultraviolet radiation (UVR) is known to impact zooplankton, little has been documented on its impacts under elevated pCO2. Here, we show that exposure to UVR decreased the feeding and survival rates of the copepod Acartia spinicauda, that artificial UV-B of 2.25 W·m−2 for 4 h resulted in a 52 % inhibition of its grazing rates and a 45 % reduction in survival rates compared to visible light alone. On the other hand, an increase in pCO2 to 1000 μatm (pH drop of 0.4) immediately and significantly increased the UVR-induced inhibition of feeding. Subsequently, the combination of the high pCO2 (1000 μatm) and UVR resulted in about 65 % lethal impact, with UV-A contributing 21 % and UV-B 44 % compared to the visible light alone and ambient pCO2 conditions. While the copepod was shown to be able to sense and escape from UV-exposed areas, these findings suggest that UVR impacts on the copepod can be exacerbated with progressive ocean acidification or in high CO2 waters, including upwelled regions.
{"title":"The copepod Acartia spinicauda feeds less and dies more under the influences of solar ultraviolet radiation and elevated pCO2","authors":"Weijia Chen , Xuyang Wang , Mark L. Wells , Kunshan Gao","doi":"10.1016/j.jphotobiol.2024.113020","DOIUrl":"10.1016/j.jphotobiol.2024.113020","url":null,"abstract":"<div><p>While solar ultraviolet radiation (UVR) is known to impact zooplankton, little has been documented on its impacts under elevated pCO<sub>2</sub>. Here, we show that exposure to UVR decreased the feeding and survival rates of the copepod <em>Acartia spinicauda</em>, that artificial UV-B of 2.25 W·m<sup>−2</sup> for 4 h resulted in a 52 % inhibition of its grazing rates and a 45 % reduction in survival rates compared to visible light alone. On the other hand, an increase in pCO<sub>2</sub> to 1000 μatm (pH drop of 0.4) immediately and significantly increased the UVR-induced inhibition of feeding. Subsequently, the combination of the high pCO<sub>2</sub> (1000 μatm) and UVR resulted in about 65 % lethal impact, with UV-A contributing 21 % and UV-B 44 % compared to the visible light alone and ambient pCO<sub>2</sub> conditions. While the copepod was shown to be able to sense and escape from UV-exposed areas, these findings suggest that UVR impacts on the copepod can be exacerbated with progressive ocean acidification or in high CO<sub>2</sub> waters, including upwelled regions.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"260 ","pages":"Article 113020"},"PeriodicalIF":3.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photobiomodulation therapy (PBMT) is a form of treatment commonly used for routine clinical applications, such as wound healing of the skin and reduction of inflammation. Additionally, PBMT has been explored for its potential in pain relief.
In this work, we investigated the effect of PBMT on ion content within the 50B11 sensory neurons cell line in vitro using X-Ray fluorescence (XRF) and atomic force microscope (AFM) analysis.
Two irradiation protocols were selected utilizing near-infrared laser lights at 800 and 970 nm, with cell fixation immediately following irradiation.
Results showed a decrease in Calcium content after irradiation with both protocols, and with lidocaine, used as an analgesic control. Furthermore, a reduction in Potassium content was observed, particularly evident when normalized to cellular volume.
These findings provide valuable insights into the molecular impact of PBMT within 50B11 sensory neurons under normal conditions. Such understanding may contribute to the wider adoption of PBMT as a therapeutic approach.
{"title":"The effect of near-infrared Photobiomodulation therapy on the ion content of 50B11 sensory neurons measured through XRF analysis","authors":"Luisa Zupin , Alessandra Gianoncelli , Fulvio Celsi , Valentina Bonanni , George Kourousias , Pietro Parisse , Murielle Salomé , Sergio Crovella , Egidio Barbi , Giuseppe Ricci , Lorella Pascolo","doi":"10.1016/j.jphotobiol.2024.113019","DOIUrl":"10.1016/j.jphotobiol.2024.113019","url":null,"abstract":"<div><p>Photobiomodulation therapy (PBMT) is a form of treatment commonly used for routine clinical applications, such as wound healing of the skin and reduction of inflammation. Additionally, PBMT has been explored for its potential in pain relief.</p><p>In this work, we investigated the effect of PBMT on ion content within the 50B11 sensory neurons cell line in vitro using X-Ray fluorescence (XRF) and atomic force microscope (AFM) analysis.</p><p>Two irradiation protocols were selected utilizing near-infrared laser lights at 800 and 970 nm, with cell fixation immediately following irradiation.</p><p>Results showed a decrease in Calcium content after irradiation with both protocols, and with lidocaine, used as an analgesic control. Furthermore, a reduction in Potassium content was observed, particularly evident when normalized to cellular volume.</p><p>These findings provide valuable insights into the molecular impact of PBMT within 50B11 sensory neurons under normal conditions. Such understanding may contribute to the wider adoption of PBMT as a therapeutic approach.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113019"},"PeriodicalIF":3.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1011134424001799/pdfft?md5=da1fea496ddc549ae3e55bc26d9bfed5&pid=1-s2.0-S1011134424001799-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.jphotobiol.2024.113017
Qi Zhang , Weijun Wang , Sen Shang , Xu Li , Tingting Zhao , Peng Zhang , Dai Wu , Kui Zhou , Xiaoyun Lu
As terahertz (THz) technology advances, the interaction between THz radiation and the living body, particularly its effects on the immune system, has attracted extensive attention but remains poorly understood. This study firstly elucidated that exposure to 3 THz-FEL radiation markedly suppressed contact hypersensitivity reactions in mice induced by DNFB, as evidenced by a reduction in ear thickness and a discernible recovery in the Th1/Th2 cell balance. 3 THz irradiation led to cellular stress in the irradiated skin locale, increasing the levels of IL-4 and IL-10 and modulating the activity and migration of dendritic cells and mast cells. Furthermore, THz irradiation precipitated a rapid alteration in the skin lipidome, altering several categories of bioactive lipids. These findings offer new insights into the immunomodulatory effects of THz radiation on living organisms and the potential underlying mechanisms, with implications for the development of therapeutic approaches in managing skin allergic diseases.
{"title":"Unveiling the immune-modulating power of THz-FEL irradiation","authors":"Qi Zhang , Weijun Wang , Sen Shang , Xu Li , Tingting Zhao , Peng Zhang , Dai Wu , Kui Zhou , Xiaoyun Lu","doi":"10.1016/j.jphotobiol.2024.113017","DOIUrl":"10.1016/j.jphotobiol.2024.113017","url":null,"abstract":"<div><p>As terahertz (THz) technology advances, the interaction between THz radiation and the living body, particularly its effects on the immune system, has attracted extensive attention but remains poorly understood. This study firstly elucidated that exposure to 3 THz-FEL radiation markedly suppressed contact hypersensitivity reactions in mice induced by DNFB, as evidenced by a reduction in ear thickness and a discernible recovery in the Th1/Th2 cell balance. 3 THz irradiation led to cellular stress in the irradiated skin locale, increasing the levels of IL-4 and IL-10 and modulating the activity and migration of dendritic cells and mast cells. Furthermore, THz irradiation precipitated a rapid alteration in the skin lipidome, altering several categories of bioactive lipids. These findings offer new insights into the immunomodulatory effects of THz radiation on living organisms and the potential underlying mechanisms, with implications for the development of therapeutic approaches in managing skin allergic diseases.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113017"},"PeriodicalIF":3.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}