Pub Date : 2024-08-22DOI: 10.1016/j.jphotobiol.2024.113018
Cheng Yang , Zishan Zhang , Yuan Yuan , Deqi Zhang , Haiyang Jin , Ying Li , Simeng Du , Xiangdong Li , Baoting Fang , Fang Wei , Ge Yan
Early leaf senescence affects photosynthetic efficiency and limits growth during the late production stage of winter wheat (Triticum aestivum). Natural variation in photosystem response to senescence represents a valuable resource for improving the aging traits of flag leaves. To explore the natural variation of different phases of photosynthetic electron transport in modern wheat cultivars during senescence, we exposed the flag leaves of 32 wheat cultivars to dark conditions to induce senescence process, and simultaneously measured prompt fluorescence and modulated 820 nm reflection. The results showed that the chlorophyll content, activity of PSII donor side, PSI and electron transfer between PSII and PSI were all decreased during dark-induced senescence, but they showed different sensitivity to dark-induced senescence. Furthermore, natural variation in photosynthetic parameters among the 32 wheat cultivars were also observed and showed by variation coefficient of the different parameters. We observed that PSII and PSI activity showed less sensitivity to dark-induced senescence than electron transfer between them, while PSII and PSI activity exhibit greater natural variation than electron transport between PSII and PSI. It suggests that Cytb6f might degrade faster and have less variation than PSII and PSI during dark-induced senescence.
{"title":"Natural variation in photosynthetic electron transport of wheat flag leaves in response to dark-induced senescence","authors":"Cheng Yang , Zishan Zhang , Yuan Yuan , Deqi Zhang , Haiyang Jin , Ying Li , Simeng Du , Xiangdong Li , Baoting Fang , Fang Wei , Ge Yan","doi":"10.1016/j.jphotobiol.2024.113018","DOIUrl":"10.1016/j.jphotobiol.2024.113018","url":null,"abstract":"<div><p>Early leaf senescence affects photosynthetic efficiency and limits growth during the late production stage of winter wheat (<em>Triticum aestivum</em>). Natural variation in photosystem response to senescence represents a valuable resource for improving the aging traits of flag leaves. To explore the natural variation of different phases of photosynthetic electron transport in modern wheat cultivars during senescence, we exposed the flag leaves of 32 wheat cultivars to dark conditions to induce senescence process, and simultaneously measured prompt fluorescence and modulated 820 nm reflection. The results showed that the chlorophyll content, activity of PSII donor side, PSI and electron transfer between PSII and PSI were all decreased during dark-induced senescence, but they showed different sensitivity to dark-induced senescence. Furthermore, natural variation in photosynthetic parameters among the 32 wheat cultivars were also observed and showed by variation coefficient of the different parameters. We observed that PSII and PSI activity showed less sensitivity to dark-induced senescence than electron transfer between them, while PSII and PSI activity exhibit greater natural variation than electron transport between PSII and PSI. It suggests that Cyt<sub>b6f</sub> might degrade faster and have less variation than PSII and PSI during dark-induced senescence.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113018"},"PeriodicalIF":3.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.jphotobiol.2024.113009
Xiangyu Li, Zhiwei Zhao, Jianan He, Jie Shen
Previous studies have demonstrated the efficacy of betahistine mesylate in treating vertigo and angioneurotic headache, enhancing microcirculation, and facilitating histamine release. However, limited research has been conducted on the drug's potential in mitigating blue light-induced damage. Thus, this study utilized Drosophila as the model organism and employed the Siler model to investigate the impact of various concentrations of betahistine mesylate on the lifespan, under 3000 lx blue light irradiation. At the same time we measure food intake, spontaneous activity, and sleep duration of Drosophila. The findings of this study indicate that a high concentration of betahistine mesylate can decrease the initial mortality (b0) in male flies, mitigating the damage of blue light to Drosophila. Consequently, this delays the aging process in male Drosophila and extends their average lifespan. After betahistine mesylate ingestion, locomotor activity upon blue light exposure decreased significantly in male Drosophila. In conclusion, this study offers initial evidence supporting the investigation of the regulatory mechanisms of betahistine mesylate on lifespan and its potential anti-blue light effects.
{"title":"Betahistine mesylate reduces the damage of blue light exposure in Drosophila model","authors":"Xiangyu Li, Zhiwei Zhao, Jianan He, Jie Shen","doi":"10.1016/j.jphotobiol.2024.113009","DOIUrl":"10.1016/j.jphotobiol.2024.113009","url":null,"abstract":"<div><p>Previous studies have demonstrated the efficacy of betahistine mesylate in treating vertigo and angioneurotic headache, enhancing microcirculation, and facilitating histamine release. However, limited research has been conducted on the drug's potential in mitigating blue light-induced damage. Thus, this study utilized <em>Drosophila</em> as the model organism and employed the Siler model to investigate the impact of various concentrations of betahistine mesylate on the lifespan, under 3000 lx blue light irradiation. At the same time we measure food intake, spontaneous activity, and sleep duration of <em>Drosophila</em>. The findings of this study indicate that a high concentration of betahistine mesylate can decrease the initial mortality (b0) in male flies, mitigating the damage of blue light to <em>Drosophila</em>. Consequently, this delays the aging process in male <em>Drosophila</em> and extends their average lifespan. After betahistine mesylate ingestion, locomotor activity upon blue light exposure decreased significantly in male <em>Drosophila</em>. In conclusion, this study offers initial evidence supporting the investigation of the regulatory mechanisms of betahistine mesylate on lifespan and its potential anti-blue light effects.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113009"},"PeriodicalIF":3.9,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.jphotobiol.2024.113010
Martin Porubský , Jiří Hodoň , Jarmila Stanková , Petr Džubák , Marián Hajdúch , Milan Urban , Jan Hlaváč
Photodynamic therapy (PDT) is a clinically-approved cancer treatment that is based on production of cytotoxic reactive oxygen species to induce cell death. However, its efficiency depends on distribution of photosensitizer (PS) and depth of light penetration through the tissues. Tendency of pathological cancer tissues to exhibit lower pH than healthy tissues inspired us to explore dual-targeted pH-activatable photosensitizers based on tunable near-infrared (NIR) boron-dipyrromethene (BODIPY) dyes. Our BODIPY PSs were designed to carry three main attributes: (i) biotin or cRGD peptide as an effective cancer cell targeting unit, (ii) amino moiety that is protonated in acidic (pH <6.5) conditions for pH-activation of the PS based on photoinduced electron transfer (PET) and (iii) hydrophilic groups enhancing the water solubility of very hydrophobic BODIPY dyes. Illumination of such compounds with suitable light (>640nm) allowed for high phototoxicity against HeLa (αvβ3 integrin and biotin receptor positive) and A549 (biotin receptor positive) cells compared to healthy MRC-5 (biotin negative) cells. Moreover, no dark toxicity was observed on selected cell lines (>10 μM) providing promising photosensitizers for tumour-targeted photodynamic therapy.
{"title":"Near-infrared pH-switchable BODIPY photosensitizers for dual biotin/cRGD targeted photodynamic therapy","authors":"Martin Porubský , Jiří Hodoň , Jarmila Stanková , Petr Džubák , Marián Hajdúch , Milan Urban , Jan Hlaváč","doi":"10.1016/j.jphotobiol.2024.113010","DOIUrl":"10.1016/j.jphotobiol.2024.113010","url":null,"abstract":"<div><p>Photodynamic therapy (PDT) is a clinically-approved cancer treatment that is based on production of cytotoxic reactive oxygen species to induce cell death. However, its efficiency depends on distribution of photosensitizer (PS) and depth of light penetration through the tissues. Tendency of pathological cancer tissues to exhibit lower pH than healthy tissues inspired us to explore dual-targeted pH-activatable photosensitizers based on tunable near-infrared (NIR) boron-dipyrromethene (BODIPY) dyes. Our BODIPY PSs were designed to carry three main attributes: (i) biotin or cRGD peptide as an effective cancer cell targeting unit, (ii) amino moiety that is protonated in acidic (pH <6.5) conditions for pH-activation of the PS based on photoinduced electron transfer (PET) and (iii) hydrophilic groups enhancing the water solubility of very hydrophobic BODIPY dyes. Illumination of such compounds with suitable light (>640nm) allowed for high phototoxicity against HeLa (α<sub>v</sub>β<sub>3</sub> integrin and biotin receptor positive) and A549 (biotin receptor positive) cells compared to healthy MRC-5 (biotin negative) cells. Moreover, no dark toxicity was observed on selected cell lines (>10 μM) providing promising photosensitizers for tumour-targeted photodynamic therapy.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113010"},"PeriodicalIF":3.9,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Androgenic alopecia (AGA) typically manifests post-puberty, resulting in decreases in hair density, disruptions in the hair growth cycle, and alterations in hair follicle micro structure. Dihydrotestosterone (DHT) is a key hormone implicated in hair loss, especially on male. In this study, we found that each of arginine (Arg), arterial extract (AE) or biotin tripeptide-1 (BT-1), when combined with low level light therapy (LLLT, at 630 nm, 2 J/cm2), showed the efficacy in enhancing mitochondrial functions, cell proliferation and collagen synthesis in fibroblasts. Additionally, CARRIPOWER (the complexes of AE, BT-1, Arg, and Diaminopyrimidine derivatives), in conjunction with LLLT (630 nm, 2 J/cm2), showed promising results in dermal papilla cells (DPCs). The promising results contained not also inflammatory cytokines (IL-1β and IL-6) and cell pro apoptotic factor (TGF-β2) reduction, but also Wnt pathway inhibition by decreasing DKK1 level, and pro-hair growth factors (vascular endothelial growth factor (VEGF) and β-catenin) increase. This innovative combination therapy offers a potential solution for the treatment of AGA, addressing both hormonal and cellular factors involved in hair loss.
{"title":"The synergistic effect of phototherapy and active substances on hair growth","authors":"Shuting Qiu , Zhi Pan , Xiao Jiang , Guowen Lv , Anqi Feng , Hongbo Chen","doi":"10.1016/j.jphotobiol.2024.113008","DOIUrl":"10.1016/j.jphotobiol.2024.113008","url":null,"abstract":"<div><p>Androgenic alopecia (AGA) typically manifests post-puberty, resulting in decreases in hair density, disruptions in the hair growth cycle, and alterations in hair follicle micro structure. Dihydrotestosterone (DHT) is a key hormone implicated in hair loss, especially on male. In this study, we found that each of arginine (Arg), arterial extract (AE) or biotin tripeptide-1 (BT-1), when combined with low level light therapy (LLLT, at 630 nm, 2 J/cm<sup>2</sup>), showed the efficacy in enhancing mitochondrial functions, cell proliferation and collagen synthesis in fibroblasts. Additionally, CARRIPOWER (the complexes of AE, BT-1, Arg, and Diaminopyrimidine derivatives), in conjunction with LLLT (630 nm, 2 J/cm<sup>2</sup>), showed promising results in dermal papilla cells (DPCs). The promising results contained not also inflammatory cytokines (IL-1β and IL-6) and cell pro apoptotic factor (TGF-β2) reduction, but also Wnt pathway inhibition by decreasing DKK1 level, and pro-hair growth factors (vascular endothelial growth factor (VEGF) and β-catenin) increase. This innovative combination therapy offers a potential solution for the treatment of AGA, addressing both hormonal and cellular factors involved in hair loss.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113008"},"PeriodicalIF":3.9,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1016/j.jphotobiol.2024.113004
Fardad Didaran , Mojtaba Kordrostami , Ali Akbar Ghasemi-Soloklui , Pavel Pashkovskiy , Vladimir Kreslavski , Vladimir Kuznetsov , Suleyman I. Allakhverdiev
This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO2 fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.
{"title":"The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors","authors":"Fardad Didaran , Mojtaba Kordrostami , Ali Akbar Ghasemi-Soloklui , Pavel Pashkovskiy , Vladimir Kreslavski , Vladimir Kuznetsov , Suleyman I. Allakhverdiev","doi":"10.1016/j.jphotobiol.2024.113004","DOIUrl":"10.1016/j.jphotobiol.2024.113004","url":null,"abstract":"<div><p>This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO<sub>2</sub> fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113004"},"PeriodicalIF":3.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.jphotobiol.2024.113006
Anagha Thomas , Anaga Nair , Sandip Chakraborty , Roopasree O. Jayarajan , Joshy Joseph , Ayyappanpillai Ajayaghosh
Molecular probes for sensing and imaging of various analytes and biological specimens are of great importance in clinical diagnostics, therapy, and disease management. Since the cellular concentration of free Zn2+ varies from nanomolar to micromolar range during cellular processes and the high affinity Zn2+ imaging probes tend to saturate at lower concentrations of free Zn2+, fluorescence based probes with moderate binding affinity are desirable in distinguishing the occurrence of higher zinc concentrations in the cells. Herein, we report a new, pentacyclic pyridinium based probe, PYD-PA, having a pendant N,N-di(pyridin-2-ylmethyl)amine (DPA) for Zn2+ detection in the cellular environment. The designed probe is soluble in water and serves as a mitochondria targeting unit, whereas the pendent DPA acts as the coordination site for Zn2+. PYD-PA displayed a threefold enhancement in fluorescence intensity upon Zn2+ binding with a 1:1 binding stoichiometry. Further, the probe showed a selective response to Zn2+ over other biologically relevant metal ions with a moderate binding affinity (Ka = 6.29 × 104 M−1), good photostability, pH insensitivity, and low cytotoxicity. The demonstration of bioimaging in SK-BR-3 breast cancer cell lines confirmed the intracellular Zn ion sensing ability of the probe. The probe was successfully applied for real time monitoring of the fluctuation of intracellular free zinc ions during autophagy conditions, demonstrating its potential for cellular imaging of Zn2+ at higher intracellular concentrations.
{"title":"A Pyridinium fluorophore for the detection of zinc ions under autophagy conditions","authors":"Anagha Thomas , Anaga Nair , Sandip Chakraborty , Roopasree O. Jayarajan , Joshy Joseph , Ayyappanpillai Ajayaghosh","doi":"10.1016/j.jphotobiol.2024.113006","DOIUrl":"10.1016/j.jphotobiol.2024.113006","url":null,"abstract":"<div><p>Molecular probes for sensing and imaging of various analytes and biological specimens are of great importance in clinical diagnostics, therapy, and disease management. Since the cellular concentration of free Zn<sup>2+</sup> varies from nanomolar to micromolar range during cellular processes and the high affinity Zn<sup>2+</sup> imaging probes tend to saturate at lower concentrations of free Zn<sup>2+</sup>, fluorescence based probes with moderate binding affinity are desirable in distinguishing the occurrence of higher zinc concentrations in the cells. Herein, we report a new, pentacyclic pyridinium based probe, <strong>PYD-PA,</strong> having a pendant <em>N,N</em>-di(pyridin-2-ylmethyl)amine (DPA) for Zn<sup>2+</sup> detection in the cellular environment. The designed probe is soluble in water and serves as a mitochondria targeting unit, whereas the pendent DPA acts as the coordination site for Zn<sup>2+</sup>. <strong>PYD-PA</strong> displayed a threefold enhancement in fluorescence intensity upon Zn<sup>2+</sup> binding with a 1:1 binding stoichiometry. Further, the probe showed a selective response to Zn<sup>2+</sup> over other biologically relevant metal ions with a moderate binding affinity (K<sub>a</sub> = 6.29 × 10<sup>4</sup> M<sup>−1</sup>), good photostability, pH insensitivity, and low cytotoxicity. The demonstration of bioimaging in SK-BR-3 breast cancer cell lines confirmed the intracellular Zn ion sensing ability of the probe. The probe was successfully applied for real time monitoring of the fluctuation of intracellular free zinc ions during autophagy conditions, demonstrating its potential for cellular imaging of Zn<sup>2+</sup> at higher intracellular concentrations.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113006"},"PeriodicalIF":3.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.jphotobiol.2024.113007
Liubov E. Shimolina , Aleksandra E. Khlynova , Aleksander A. Gulin , Vadim V. Elagin , Margarita V. Gubina , Pavel A. Bureev , Petr S. Sherin , Marina K. Kuimova , Marina V. Shirmanova
Photodynamic therapy (PDT) is a minimally invasive method for cancer treatment, one of the effects of which is the oxidation of membrane lipids. However, changes in biophysical properties of lipid membranes during PDT have been poorly explored. In this work, we investigated the effects of PDT on membrane microviscosity in cancer cells in the culture and tumor xenografts. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive rotor BODIPY2. It was found that PDT using chlorine e6-based photosensitizer Photoditazine caused a quick, steady elevation of membrane microviscosity both in cellulo and in vivo. The proposed mechanisms responsible for the increase in microviscosity was lipid peroxidation by reactive oxygen species that resulted in a decrease of phosphatidylcholine and the fraction of unsaturated fatty acids in the membranes. Our results suggest that the increased microviscosity is an important factor that contributes to tumor cell damage during PDT.
{"title":"Photodynamic therapy with Photoditazine increases microviscosity of cancer cells membrane in cellulo and in vivo","authors":"Liubov E. Shimolina , Aleksandra E. Khlynova , Aleksander A. Gulin , Vadim V. Elagin , Margarita V. Gubina , Pavel A. Bureev , Petr S. Sherin , Marina K. Kuimova , Marina V. Shirmanova","doi":"10.1016/j.jphotobiol.2024.113007","DOIUrl":"10.1016/j.jphotobiol.2024.113007","url":null,"abstract":"<div><p>Photodynamic therapy (PDT) is a minimally invasive method for cancer treatment, one of the effects of which is the oxidation of membrane lipids. However, changes in biophysical properties of lipid membranes during PDT have been poorly explored. In this work, we investigated the effects of PDT on membrane microviscosity in cancer cells in the culture and tumor xenografts. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive rotor BODIPY2. It was found that PDT using chlorine e6-based photosensitizer Photoditazine caused a quick, steady elevation of membrane microviscosity both <em>in cellulo</em> and <em>in vivo</em>. The proposed mechanisms responsible for the increase in microviscosity was lipid peroxidation by reactive oxygen species that resulted in a decrease of phosphatidylcholine and the fraction of unsaturated fatty acids in the membranes. Our results suggest that the increased microviscosity is an important factor that contributes to tumor cell damage during PDT.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113007"},"PeriodicalIF":3.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.jphotobiol.2024.112997
Inês Mendonça , Daniela Silva , Tiago Conde , Tatiana Maurício , Helena Cardoso , Hugo Pereira , Maria Bartolomeu , Cátia Vieira , M. Rosário Domingues , Adelaide Almeida
Antibacterial resistance causes around 1.27 million deaths annually around the globe and has been recognized as a top 3 priority health threat. Antimicrobial photodynamic therapy (aPDT) is considered a promising alternative to conventional antibiotic treatments. Algal lipid extracts have shown antibacterial effects when used as photosensitizers (PSs) in aPDT. In this work we assessed the photodynamic efficiency of lipidic extracts of microalgae belonging to different phyla (Bacillariophyta, Chlorophyta, Cyanobacteria, Haptophyta, Ochrophyta and Rhodophyta). All the extracts (at 1 mg mL−1) demonstrated a reduction of Staphylococcus aureus >3 log10 (CFU mL−1), exhibiting bactericidal activity. Bacillariophyta and Haptophyta extracts were the top-performing phyla against S. aureus, achieving a reduction >6 log10 (CFU mL−1) with light doses of 60 J cm−2 (Bacillariophyta) and 90 J cm−2 (Haptophyta). The photodynamic properties of the Bacillariophyta Phaeodactylum tricornutum and the Haptophyta Tisochrysis lutea, the best effective microalgae lipid extracts, were also assessed at lower concentrations (75 μg mL−1, 7.5 μg mL−1, and 3.75 μg mL−1), reaching, in general, inactivation rates higher than those obtained with the widely used PSs, such as Methylene Blue and Chlorine e6, at lower concentration and light dose. The presence of chlorophyll c, which can absorb a greater amount of energy than chlorophylls a and b; rich content of polyunsaturated fatty acids (PUFAs) and fucoxanthin, which can also produce ROS, e.g. singlet oxygen (1O2), when photo-energized; a lack of photoprotective carotenoids such as β-carotene, and low content of tocopherol, were associated with the algal extracts with higher antimicrobial activity against S. aureus. The bactericidal activity exhibited by the extracts seems to result from the photooxidation of microalgae PUFAs by the 1O2 and/or other ROS produced by irradiated chlorophylls/carotenoids, which eventually led to bacterial lipid peroxidation and cell death, but further studies are needed to confirm this hypothesis. These results revealed the potential of an unexplored source of natural photosensitizers (microalgae lipid extracts) that can be used as PSs in aPDT as an alternative to conventional antibiotic treatments, and even to conventional PSs, to combat antibacterial resistance.
{"title":"Insight into the efficiency of microalgae’ lipidic extracts as photosensitizers for Antimicrobial Photodynamic Therapy against Staphylococcus aureus","authors":"Inês Mendonça , Daniela Silva , Tiago Conde , Tatiana Maurício , Helena Cardoso , Hugo Pereira , Maria Bartolomeu , Cátia Vieira , M. Rosário Domingues , Adelaide Almeida","doi":"10.1016/j.jphotobiol.2024.112997","DOIUrl":"10.1016/j.jphotobiol.2024.112997","url":null,"abstract":"<div><p>Antibacterial resistance causes around 1.27 million deaths annually around the globe and has been recognized as a top 3 priority health threat. Antimicrobial photodynamic therapy (aPDT) is considered a promising alternative to conventional antibiotic treatments. Algal lipid extracts have shown antibacterial effects when used as photosensitizers (PSs) in aPDT. In this work we assessed the photodynamic efficiency of lipidic extracts of microalgae belonging to different phyla (Bacillariophyta, Chlorophyta, Cyanobacteria, Haptophyta, Ochrophyta and Rhodophyta). All the extracts (at 1 mg mL<sup>−1</sup>) demonstrated a reduction of <em>Staphylococcus aureus</em> >3 log<sub>10</sub> (CFU mL<sup>−1</sup>), exhibiting bactericidal activity. Bacillariophyta and Haptophyta extracts were the top-performing phyla against <em>S. aureus</em>, achieving a reduction >6 log<sub>10</sub> (CFU mL<sup>−1</sup>) with light doses of 60 J cm<sup>−2</sup> (Bacillariophyta) and 90 J cm<sup>−2</sup> (Haptophyta). The photodynamic properties of the Bacillariophyta <em>Phaeodactylum tricornutum</em> and the Haptophyta <em>Tisochrysis lutea</em>, the best effective microalgae lipid extracts, were also assessed at lower concentrations (75 μg mL<sup>−1</sup>, 7.5 μg mL<sup>−1</sup>, and 3.75 μg mL<sup>−1</sup>), reaching, in general, inactivation rates higher than those obtained with the widely used PSs, such as Methylene Blue and Chlorine e6, at lower concentration and light dose. The presence of chlorophyll <em>c</em>, which can absorb a greater amount of energy than chlorophylls a and b; rich content of polyunsaturated fatty acids (PUFAs) and fucoxanthin, which can also produce ROS, e.g. singlet oxygen (<sup>1</sup>O<sub>2</sub>), when photo-energized; a lack of photoprotective carotenoids such as β-carotene, and low content of tocopherol, were associated with the algal extracts with higher antimicrobial activity against <em>S. aureus</em>. The bactericidal activity exhibited by the extracts seems to result from the photooxidation of microalgae PUFAs by the <sup>1</sup>O<sub>2</sub> and/or other ROS produced by irradiated chlorophylls/carotenoids, which eventually led to bacterial lipid peroxidation and cell death, but further studies are needed to confirm this hypothesis. These results revealed the potential of an unexplored source of natural photosensitizers (microalgae lipid extracts) that can be used as PSs in aPDT as an alternative to conventional antibiotic treatments, and even to conventional PSs, to combat antibacterial resistance.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 112997"},"PeriodicalIF":3.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S101113442400157X/pdfft?md5=bcb5cb9c338cd331e68952e5ebc3d709&pid=1-s2.0-S101113442400157X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.jphotobiol.2024.113002
Rupal Kothari, Venkata Vamsi Krishna Venuganti
The hypoxic environment within a solid tumor is a limitation to the effectiveness of photodynamic therapy. Here, we demonstrate the use of oxygen generating nanozymes (CeO2, Fe3O4, and MnO2) to improve the photodynamic effect. The optimized combination of process parameters for irradiation was obtained using the Box Behnken experimental design. Indocyanine green, IR 820, and their different combinations with oxygen generators were studied for their effect on oral carcinoma. Dynamic light scattering technique showed the average particle size of CeO2, MnO2, and Fe3O4 to be 211 ± 16, and 157 ± 28, 143 ± 19 nm with PDI of 0.23, 0.28 and 0.20 and a zeta potential of −2.6 ± 0.45, −2.4 ± 0.60 and −6.1 ± 0.23 mV, respectively. The formation of metal oxides was confirmed using UV–visible, FTIR, and X-ray photon spectroscopies. The amount of dissolved oxygen produced by CeO2, MnO2, and Fe3O4 in the presence of H2O2 within 2 min was 1.7 ± 0.15, 1.7 ± 0.16, and 1.4 ± 0.12 mg/l, respectively. Growth inhibition studies in the FaDu oral carcinoma spheroid model showed a significant (P < 0.05) increase in growth reduction from 81 ± 2.9 and 88 ± 2.1% to 97 ± 1.2 and 99 ± 1.0% for ICG and IR 820, respectively, after irradiation (808 nm laser, 1 W/cm2, 5 min) in the presence of CeO2 (25 μg/ml). In conclusion, oxygen-generating nanozymes can improve the photodynamic effect of ICG and IR 820.
{"title":"Effect of oxygen generating nanozymes on indocyanine green and IR 820 mediated phototherapy against oral cancer","authors":"Rupal Kothari, Venkata Vamsi Krishna Venuganti","doi":"10.1016/j.jphotobiol.2024.113002","DOIUrl":"10.1016/j.jphotobiol.2024.113002","url":null,"abstract":"<div><p>The hypoxic environment within a solid tumor is a limitation to the effectiveness of photodynamic therapy. Here, we demonstrate the use of oxygen generating nanozymes (CeO<sub>2</sub>, Fe<sub>3</sub>O<sub>4</sub>, and MnO<sub>2</sub>) to improve the photodynamic effect. The optimized combination of process parameters for irradiation was obtained using the Box Behnken experimental design. Indocyanine green, IR 820, and their different combinations with oxygen generators were studied for their effect on oral carcinoma. Dynamic light scattering technique showed the average particle size of CeO<sub>2</sub>, MnO<sub>2</sub>, and Fe<sub>3</sub>O<sub>4</sub> to be 211 ± 16, and 157 ± 28, 143 ± 19 nm with PDI of 0.23, 0.28 and 0.20 and a zeta potential of −2.6 ± 0.45, −2.4 ± 0.60 and −6.1 ± 0.23 mV, respectively. The formation of metal oxides was confirmed using UV–visible, FTIR, and X-ray photon spectroscopies. The amount of dissolved oxygen produced by CeO<sub>2</sub>, MnO<sub>2</sub>, and Fe<sub>3</sub>O<sub>4</sub> in the presence of H<sub>2</sub>O<sub>2</sub> within 2 min was 1.7 ± 0.15, 1.7 ± 0.16, and 1.4 ± 0.12 mg/l, respectively. Growth inhibition studies in the FaDu oral carcinoma spheroid model showed a significant (<em>P</em> < 0.05) increase in growth reduction from 81 ± 2.9 and 88 ± 2.1% to 97 ± 1.2 and 99 ± 1.0% for ICG and IR 820, respectively, after irradiation (808 nm laser, 1 W/cm<sup>2</sup>, 5 min) in the presence of CeO<sub>2</sub> (25 μg/ml). In conclusion, oxygen-generating nanozymes can improve the photodynamic effect of ICG and IR 820.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113002"},"PeriodicalIF":3.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.jphotobiol.2024.113005
Lei Ye , Xin Li , Lingzi Zhang , Yu Huang , Bo Zhang , Xuezhen Yang , Wei Tan , Xiaolin Li , Xiaoping Zhang
Light exposure significantly impacted the coloration and metabolism of Auricularia cornea, although the underlying mechanisms remain unclear. This study aimed to test the apparent color and pigment metabolic profiles of A. cornea in response to red (λp = 630 nm) and blue (λp = 463 nm) visible light exposure. Colorimeter analysis showed that fruiting bodies appeared bright-white under red-light and deeper-red under blue-light, both with a yellow tinge. On the 40th day of light-exposure, bodies were collected for metabolite detection. A total of 481 metabolites were targeted analysis, resulting in 18 carotenoids and 11 anthocyanins. Under red and blue light exposure, the total carotenoids levels were 1.1652 μg/g and 1.1576 μg/g, the total anthocyanins levels were 0.0799 μg/g and 0.1286 μg/g, respectively. Four differential metabolites and three putative gene linked to the visual coloration of A. cornea were identified. This pioneering study provides new insights into the role of light in regulating A. cornea pigmentation and metabolic profile.
{"title":"LC-MS/MS-based targeted carotenoid and anthocyanidin metabolic profile of Auricularia cornea under blue and red LED light exposure","authors":"Lei Ye , Xin Li , Lingzi Zhang , Yu Huang , Bo Zhang , Xuezhen Yang , Wei Tan , Xiaolin Li , Xiaoping Zhang","doi":"10.1016/j.jphotobiol.2024.113005","DOIUrl":"10.1016/j.jphotobiol.2024.113005","url":null,"abstract":"<div><p>Light exposure significantly impacted the coloration and metabolism of <em>Auricularia cornea</em>, although the underlying mechanisms remain unclear. This study aimed to test the apparent color and pigment metabolic profiles of <em>A. cornea</em> in response to red (λp = 630 nm) and blue (λp = 463 nm) visible light exposure. Colorimeter analysis showed that fruiting bodies appeared bright-white under red-light and deeper-red under blue-light, both with a yellow tinge. On the 40th day of light-exposure, bodies were collected for metabolite detection. A total of 481 metabolites were targeted analysis, resulting in 18 carotenoids and 11 anthocyanins. Under red and blue light exposure, the total carotenoids levels were 1.1652 μg/g and 1.1576 μg/g, the total anthocyanins levels were 0.0799 μg/g and 0.1286 μg/g, respectively. Four differential metabolites and three putative gene linked to the visual coloration of <em>A. cornea</em> were identified. This pioneering study provides new insights into the role of light in regulating <em>A. cornea</em> pigmentation and metabolic profile.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113005"},"PeriodicalIF":3.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}