Rock-humus soils are found primarily in mountainous areas, where they are an important part of the soil landscape. Since they often only occur in small areas, their importance is frequently underestimated on large-scale maps. For example, this soil class is not shown at all on the 1:1,000,000 scale soil map of Europe (Panagos 2006), not even in mountainous regions. This is despite the fact that in the Bavarian Alps, rock-humus soils account for around 10% of the landscape (Olleck et al. 2021; cf. Figure 1). In the Polish part of the Tatra Mountains, a proportion of approximately 3.5% has been reported (Stolarczyk et al. 2024). In addition, the pedological classification of rock-humus soils is not straightforward. In the WRB classification system, they are largely classified as Folic Histosols, but can also be found within the group of Leptosols (Leitgeb et al. 2013). National classification systems often vary considerably in how they categorise these soils. In Bavaria, for example, they can be found under the designations Felshumusböden (rock-humus soil) and O/C-Böden (O/C soil; O for organic, C for parent material of soil development) (LfU 2017). What all rock-humus soils have in common is that their ecology is determined exclusively by the humus layer. It serves as the only rooting zone, nutrient store and water store. If the humus layer disappears, bare rock remains. Due to their unique formation conditions, the properties of the humus layers over rock differ significantly from those of typical humus layers of mineral soils. For this reason, they are classified in a separate humus class, which is widely referred to as Tangelhumus (Kolb and Göttlein 2021). In the Bavarian Alps, Tangel-humus preferentially forms over solid or coarse carbonate rocks with low residual clay content and can reach a thickness of more than 100 cm. It is mainly found in the montane to subalpine zone of the Limestone Alps, where a cool and humid climate favours the accumulation of organic matter (Kolb and Kohlpaintner 2018). However, such humus layers can be found not only on calcareous but also on acidic bedrock, showing expected differences in pH and cation composition at the contact zone with the respective bedrock (Kolb and Göttlein 2022; Stolarczyk et al. 2024). In addition to chemical properties, understanding the water storage capacity of Tangelhumus is crucial, both for estimating the water supply of the trees and for assessing the landscape water regimes. Extensive tables are available for the water storage capacity of mineral soil horizons, differentiated by texture, bulk density and humus content (AK Standortskartierung 2016). However, such values are not available for Tangelhumus horizons. Therefore, pF curves were derived for Tangelhumus horizons of the Bavarian Limestone Alps, which allowing for quantification of the storage
岩石腐殖质土壤主要存在于山区,是土壤景观的重要组成部分。由于它们通常只出现在小区域,因此在大比例尺地图上它们的重要性经常被低估。例如,在欧洲1:1万比例尺的土壤地图(Panagos 2006)上根本没有显示这种土壤类别,甚至在山区也没有。尽管在巴伐利亚阿尔卑斯山,岩石腐殖质土壤占景观的10%左右(Olleck et al. 2021;参见图1)。在塔特拉山脉的波兰部分,报告的比例约为3.5% (Stolarczyk et al. 2024)。此外,岩石-腐殖质土壤的土壤学分类并不简单。在WRB分类系统中,它们主要被归类为Folic Histosols,但也可以在Leptosols组中找到(Leitgeb et al. 2013)。各国的分类系统在如何对这些土壤进行分类方面往往差别很大。例如,在巴伐利亚,它们可以在Felshumusböden(岩石腐殖质土壤)和O/C-Böden (O/C土壤)的名称下找到;O代表有机,C代表土壤发育母质)(LfU 2017)。所有岩石-腐殖质土壤的共同之处在于它们的生态完全由腐殖质层决定。它是唯一的生根区、养分储藏库和水分储藏库。如果腐殖质层消失,剩下的是裸露的岩石。由于其独特的形成条件,岩石上的腐殖质层的性质与矿物土壤中典型的腐殖质层有很大的不同。因此,它们被分类在一个单独的腐殖质类中,被广泛地称为Tangelhumus (Kolb和Göttlein 2021)。在巴伐利亚阿尔卑斯山脉,坦格-腐殖质优先形成于固体或粗糙的碳酸盐岩上,残余粘土含量低,厚度可达100厘米以上。它主要存在于石灰岩阿尔卑斯山脉的山地到亚高山地带,那里凉爽潮湿的气候有利于有机质的积累(Kolb和Kohlpaintner 2018)。然而,这种腐殖质层不仅可以在钙质基岩上发现,也可以在酸性基岩上发现,在接触带与各自基岩的pH和阳离子组成存在预期的差异(Kolb和Göttlein 2022;Stolarczyk et al. 2024)。除了化学性质外,了解Tangelhumus的储水能力对于估计树木的供水和评估景观水状况至关重要。根据质地、体积密度和腐殖质含量的不同,矿质土壤层的储水能力有广泛的表格可供选择(AK Standortskartierung 2016)。然而,这些值并不适用于Tangelhumus的视界。因此,对巴伐利亚石灰岩阿尔卑斯山脉的Tangelhumus层导出了pF曲线,从而可以量化植物有效水的储存潜力(植物有效水容量,PAWC)和总保水能力(田间容量,FC)。在巴伐利亚石灰石阿尔卑斯山脉,对三个地点进行了取样(图1)。Simetsberg遗址是一个混合山林(山毛榉、云杉、枫树、冷杉),位于海拔927米的Walchensee湖附近的Werdenfelser Land。纯挪威云杉林Lange Au位于海拔943米的Tegernsee湖附近的Mangfallgebirge。在Berchtesgadener Alpen, Lattenberg遗址是海拔1436米的挪威云杉林。Simetsberg和Lange Au的基岩为白云岩(Hauptdolomit), Lattenberg的基岩为石灰岩(Dachsteinkalk)。pF曲线采用METER (Munich)的HYPROP和WP4C分析仪测定。HYPROP方法是基于Schindler(1980)的蒸发法。Schindler et al.(2010)扩大了测量范围,从含水饱和度到永久萎蔫点附近(pF 4.2)。用WP4C露点电位器测量pF 4.2左右及以上的值。为了进行分析,未受干扰的样品柱(直径8厘米,高度5厘米)从Tangelhumus地平线上取下,每个体积为250 cm3。采样被证明是具有挑战性的,因为从经常密集扎根的Tangelhumus剖面中获得完整的样品柱是困难的。使用HYPROP测量水张力曲线通常需要15至22天,有些样品需要长达38天。在此期间,必须保持收缩样品与内置最小张力计之间的连续接触,如果失去接触,则丢弃测量和样品。平均而言,单个样品的总处理时间需要3-4周。在实验室中,样品被水完全饱和并放置在HYPROP系统中。监测测量进度,并使用HYPROP-View软件(METER)记录数据。通过将WP4C测量值与HYPROP-FIT软件(METER;Pertassek et al. 2015)使用“无约束van Genuchten-Mualem”方法。 为了估计腐殖质层对景观水分平衡的重要性,采用Haude(1952)提出的简单模型,利用BGR(2000)给出的公式和表格,计算了不同厚度腐殖质层上虚拟针叶林的蒸散量。虽然Haude方法易于使用,并且只需要很少的输入数据,但它给出了相当好的结果(DVWK 1996)。每天使用simmetsberg站点附近的Mittenwald-Buckelwiesen气象站(站号3307)的气象数据来运行该模型。对于该站,德国气象局(DWD)提供1937-2022年的质量控制开放数据(https://opendata.dwd.de)。为了表示可能的水平衡范围,选择生长季节(5 - 10月)最温暖(2003年)、最干燥(1947年)、最寒冷(1974年)和最潮湿(1966年)的年份进行分析。图2显示了模拟的水张力曲线和Oh层的特征值。所有测量样本的值列在表1中。总孔隙体积(TPV)在80.5% ~ 89.9%之间,空气容量(AC)在17.4% ~ 30.2%之间。FC为56.3% ~ 71.9%,PAWC为40.6% ~ 59.8%。在西梅茨堡的地点,所有相关的坦吉胡穆斯视界都可以取样。腐殖质化程度从Of到Oh再到Ovh,测量值没有明显的变化趋势。视界内(以Oh测量)和地点之间的偏差通常大于腐殖化造成的差异。因此,表1中给出的平均值可以很好地估计整个Tangelhumus剖面的持水能力。与具有最高PAWC的粉土相比,Tangelhumus层的TPV几乎是粉土的两倍,PAWC是粉土的两倍多,AC也要高得多。只有沼泽泥炭层的值高于Tangelhumus(表1)。然而,Lange Au的Ovh-horizon的测量值与报道的凸起泥炭的值非常接近。在高山地区典型的强降水事件期间,非常高的储水能力可能导致水停滞,特别是在Ovh-horizon。这种效应很可能在向底层母物质过渡时被额外的毛细管屏障所强化。由此导致的暂时缺氧,加上相当低的温度,导致分解条件受损,因此可能是坦格胡姆斯层的重要稳定因素。利用表1中每个站点的平均值和每个站点的平均坦格胡姆斯厚度,可以估计植物有效水分的储存能力(表2)。这些高值确保了林分的良好供水和在强降雨期间的高储存能力。然而,气候变化,气温上升、湿润期减少和持续高氮输入,促进了矿化,从而导致Tangelhumus逐渐退化(Gangkofner and Göttlein 2014)。腐殖质的退化减少了以腐殖质为主的森林立地的可用生根空间,降低了它们的持水能力,在极端情况下,甚至损害了它们的森林生存能力。用一个简单的模型(图3)估算基于腐殖质层厚度的水分收支,揭示了一些有趣的方面。当腐殖层的植物有效水分不能满足林分的蒸散发时,该模型计算蒸腾亏缺。在最温暖最干燥
{"title":"Humus on the Rocks—Water Storage Capacity of Tangelhumus is Essential for Water Retention in Limestone Mountains","authors":"Axel Göttlein, Michael Kohlpaintner","doi":"10.1002/jpln.12022","DOIUrl":"https://doi.org/10.1002/jpln.12022","url":null,"abstract":"<p>Rock-humus soils are found primarily in mountainous areas, where they are an important part of the soil landscape. Since they often only occur in small areas, their importance is frequently underestimated on large-scale maps. For example, this soil class is not shown at all on the 1:1,000,000 scale soil map of Europe (Panagos <span>2006</span>), not even in mountainous regions. This is despite the fact that in the Bavarian Alps, rock-humus soils account for around 10% of the landscape (Olleck et al. <span>2021</span>; cf. Figure 1). In the Polish part of the Tatra Mountains, a proportion of approximately 3.5% has been reported (Stolarczyk et al. <span>2024</span>). In addition, the pedological classification of rock-humus soils is not straightforward. In the WRB classification system, they are largely classified as Folic Histosols, but can also be found within the group of Leptosols (Leitgeb et al. <span>2013</span>). National classification systems often vary considerably in how they categorise these soils. In Bavaria, for example, they can be found under the designations Felshumusböden (rock-humus soil) and O/C-Böden (O/C soil; O for organic, C for parent material of soil development) (LfU <span>2017</span>). What all rock-humus soils have in common is that their ecology is determined exclusively by the humus layer. It serves as the only rooting zone, nutrient store and water store. If the humus layer disappears, bare rock remains. Due to their unique formation conditions, the properties of the humus layers over rock differ significantly from those of typical humus layers of mineral soils. For this reason, they are classified in a separate humus class, which is widely referred to as Tangelhumus (Kolb and Göttlein <span>2021</span>). In the Bavarian Alps, Tangel-humus preferentially forms over solid or coarse carbonate rocks with low residual clay content and can reach a thickness of more than 100 cm. It is mainly found in the montane to subalpine zone of the Limestone Alps, where a cool and humid climate favours the accumulation of organic matter (Kolb and Kohlpaintner <span>2018</span>). However, such humus layers can be found not only on calcareous but also on acidic bedrock, showing expected differences in pH and cation composition at the contact zone with the respective bedrock (Kolb and Göttlein <span>2022</span>; Stolarczyk et al. <span>2024</span>). In addition to chemical properties, understanding the water storage capacity of Tangelhumus is crucial, both for estimating the water supply of the trees and for assessing the landscape water regimes. Extensive tables are available for the water storage capacity of mineral soil horizons, differentiated by texture, bulk density and humus content (AK Standortskartierung <span>2016</span>). However, such values are not available for Tangelhumus horizons. Therefore, pF curves were derived for Tangelhumus horizons of the Bavarian Limestone Alps, which allowing for quantification of the storage ","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"188 4","pages":"549-553"},"PeriodicalIF":2.8,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.12022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144782447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}