Pub Date : 2024-02-01DOI: 10.1088/1674-4926/45/2/022801
Zhe He, Gentian Yue, Yueyue Gao, Chen Dong, Furui Tan
The TiO2 with nanoparticles (NPs), nanowires (NWs), nanorods (NRs) and nanotubes (NTs) structures were prepared by using a in-situ hydrothermal technique, and then proposed as a photoanode for flexible dye-sensitized solar cell (FDSSC). The influences of the morphology of TiO2 on the photovoltaic performances of FDSSCs were investigated. Under rear illumination of 100 mW·cm−2, the power conversion efficiencies of FDSSCs achieved 6.96%, 7.36%, 7.65%, and 7.83% with the TiO2 photoanodes of NPs, NWs, NRs, and NTs and PEDOT counter electrode. The FDSSCs based on TiO2 NRs and NTs photoanodes have higher short circuit current densities and power conversion efficiencies than that of the others. The enhanced power conversion efficiency is responsible for their nanotubes and rod-shaped ordered structures, which are more beneficial to transmission of electron and hole in semiconductor compared to the TiO2 nanoparticles and nanowires disordered structure.
{"title":"Efficient flexible dye-sensitized solar cells from rear illumination based on different morphologies of titanium dioxide photoanode","authors":"Zhe He, Gentian Yue, Yueyue Gao, Chen Dong, Furui Tan","doi":"10.1088/1674-4926/45/2/022801","DOIUrl":"https://doi.org/10.1088/1674-4926/45/2/022801","url":null,"abstract":"The TiO<sub>2</sub> with nanoparticles (NPs), nanowires (NWs), nanorods (NRs) and nanotubes (NTs) structures were prepared by using a <italic toggle=\"yes\">in-situ</italic> hydrothermal technique, and then proposed as a photoanode for flexible dye-sensitized solar cell (FDSSC). The influences of the morphology of TiO<sub>2</sub> on the photovoltaic performances of FDSSCs were investigated. Under rear illumination of 100 mW·cm<sup>−2</sup>, the power conversion efficiencies of FDSSCs achieved 6.96%, 7.36%, 7.65%, and 7.83% with the TiO<sub>2</sub> photoanodes of NPs, NWs, NRs, and NTs and PEDOT counter electrode. The FDSSCs based on TiO<sub>2</sub> NRs and NTs photoanodes have higher short circuit current densities and power conversion efficiencies than that of the others. The enhanced power conversion efficiency is responsible for their nanotubes and rod-shaped ordered structures, which are more beneficial to transmission of electron and hole in semiconductor compared to the TiO<sub>2</sub> nanoparticles and nanowires disordered structure.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":"2 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139761897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1088/1674-4926/45/2/022501
Peng Wu, Jianping Liu, Lei Hu, Xiaoyu Ren, Aiqin Tian, Wei Zhou, Fan Zhang, Xuan Li, Masao Ikeda, Hui Yang
A new kind of step-flow growth mode is proposed, which adopts sidewall as step source on patterned GaN substrate. The terrace width of steps originated from the sidewall was found to change with the growth temperature and ammonia flux. The growth mechanism is explained and simulated based on step motion model. This work helps better understand the behaviors of step advancement and puts forward a method of precisely modulating atomic steps.
{"title":"Controllable step-flow growth of GaN on patterned freestanding substrate","authors":"Peng Wu, Jianping Liu, Lei Hu, Xiaoyu Ren, Aiqin Tian, Wei Zhou, Fan Zhang, Xuan Li, Masao Ikeda, Hui Yang","doi":"10.1088/1674-4926/45/2/022501","DOIUrl":"https://doi.org/10.1088/1674-4926/45/2/022501","url":null,"abstract":"A new kind of step-flow growth mode is proposed, which adopts sidewall as step source on patterned GaN substrate. The terrace width of steps originated from the sidewall was found to change with the growth temperature and ammonia flux. The growth mechanism is explained and simulated based on step motion model. This work helps better understand the behaviors of step advancement and puts forward a method of precisely modulating atomic steps.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":"103 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139761893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, a two-step metal organic chemical vapor deposition (MOCVD) method was applied for growing β-Ga2O3 film on c-plane sapphire. Optimized buffer layer growth temperature (T