首页 > 最新文献

Journal of The American Leather Chemists Association最新文献

英文 中文
Awards Banquet Opening and Closing Remarks 颁奖晚宴开幕式和闭幕致辞
IF 0.9 4区 工程技术 Q3 Chemistry Pub Date : 2023-12-01 DOI: 10.34314/jalca.v118i12.8260
Joseph Hoefler
Awards Banquet Opening and Closing Remarks
颁奖宴会开幕及闭幕致辞
{"title":"Awards Banquet Opening and Closing Remarks","authors":"Joseph Hoefler","doi":"10.34314/jalca.v118i12.8260","DOIUrl":"https://doi.org/10.34314/jalca.v118i12.8260","url":null,"abstract":"Awards Banquet Opening and Closing Remarks","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138609872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Independent Accountant's Report on the Application of Agreed-upon Procedures 独立会计师关于商定程序应用情况的报告
IF 0.9 4区 工程技术 Q3 Chemistry Pub Date : 2023-12-01 DOI: 10.34314/jalca.v118i12.8258
Scott Northam
Acountant's Report
Acountant的报告
{"title":"Independent Accountant's Report on the Application of Agreed-upon Procedures","authors":"Scott Northam","doi":"10.34314/jalca.v118i12.8258","DOIUrl":"https://doi.org/10.34314/jalca.v118i12.8258","url":null,"abstract":"Acountant's Report","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138619462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bactericidal and Fungicidal Action of Copper Nanoparticles on Leather Surface 纳米铜粒子对皮革表面的杀菌和防霉作用
IF 0.9 4区 工程技术 Q3 Chemistry Pub Date : 2023-12-01 DOI: 10.34314/jalca.v118i12.8252
Deepak N, Inbasekar C, Nishad Fathima Nishter
Although tanning makes the collagen matrix resilient against microbial attack, the chemicals used in the finishing process are susceptible to microbes. Hence, it is imperative to develop a finishing process with inherent antimicrobial properties. Leathers with antimicrobial properties evoke a considerable array of interest in consumers. The present study aims to enhance the antimicrobial properties of the leather using copper nanoparticles in the finishing and retanning process. Copper nanoparticles have been synthesized by chemical reduction using copper sulphate pentahydrate as the precursor with dialdehyde starch and gallic acid. The prepared nanoparticles have been characterized using UV-Visible spectrometry, dynamic light scattering, scanning electron microscopy, transmission electron microscopy, and X-ray  diffraction techniques. The prepared nanoparticles have been used in both retanning and finishing processes. The experimental leather retanned using copper nanoparticles possess good mechanical strength properties and color index value compare to the control. Nanoparticles are effective against both gram negative and positive bacterial organisms. The nanoparticles also inhibit the growth of common fungus, which can colonize on leather. Thus, the current study paves the way for a novel solution that is an alternative to biocides and antimicrobial chemicals and is more effective in inhibiting microbial growth.
虽然晒黑使胶原蛋白基质具有抗微生物的弹性,但在整理过程中使用的化学物质很容易受到微生物的影响。因此,开发具有固有抗菌性能的整理工艺势在必行。具有抗菌性能的皮革引起了消费者的广泛兴趣。本研究的目的是在皮革整理和复鞣过程中使用铜纳米颗粒来提高皮革的抗菌性能。以五水硫酸铜为前驱体,以二醛淀粉和没食子酸为原料,采用化学还原法制备了纳米铜。利用紫外可见光谱法、动态光散射、扫描电子显微镜、透射电子显微镜和x射线衍射技术对制备的纳米颗粒进行了表征。制备的纳米颗粒已用于复鞣和整理工艺。实验用纳米铜复鞣的皮革具有良好的机械强度和显色指数值。纳米粒子对革兰氏阴性和阳性细菌都有效。纳米颗粒还能抑制常见真菌的生长,这种真菌可以在皮革上繁殖。因此,目前的研究为一种新的解决方案铺平了道路,这种解决方案可以替代杀菌剂和抗菌化学品,并更有效地抑制微生物的生长。
{"title":"Bactericidal and Fungicidal Action of Copper Nanoparticles on Leather Surface","authors":"Deepak N, Inbasekar C, Nishad Fathima Nishter","doi":"10.34314/jalca.v118i12.8252","DOIUrl":"https://doi.org/10.34314/jalca.v118i12.8252","url":null,"abstract":"Although tanning makes the collagen matrix resilient against microbial attack, the chemicals used in the finishing process are susceptible to microbes. Hence, it is imperative to develop a finishing process with inherent antimicrobial properties. Leathers with antimicrobial properties evoke a considerable array of interest in consumers. The present study aims to enhance the antimicrobial properties of the leather using copper nanoparticles in the finishing and retanning process. Copper nanoparticles have been synthesized by chemical reduction using copper sulphate pentahydrate as the precursor with dialdehyde starch and gallic acid. The prepared nanoparticles have been characterized using UV-Visible spectrometry, dynamic light scattering, scanning electron microscopy, transmission electron microscopy, and X-ray  diffraction techniques. The prepared nanoparticles have been used in both retanning and finishing processes. The experimental leather retanned using copper nanoparticles possess good mechanical strength properties and color index value compare to the control. Nanoparticles are effective against both gram negative and positive bacterial organisms. The nanoparticles also inhibit the growth of common fungus, which can colonize on leather. Thus, the current study paves the way for a novel solution that is an alternative to biocides and antimicrobial chemicals and is more effective in inhibiting microbial growth.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138621426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bittersweet Occasion 苦乐参半的时刻
IF 0.9 4区 工程技术 Q3 Chemistry Pub Date : 2023-12-01 DOI: 10.34314/jalca.v118i12.8259
The Editors
After almost 24 years we had to say farewell to our beloved Executive Secretary, Carol Adcock
在将近24年之后,我们不得不向我们敬爱的执行秘书卡罗尔·阿德科克说再见
{"title":"A Bittersweet Occasion","authors":"The Editors","doi":"10.34314/jalca.v118i12.8259","DOIUrl":"https://doi.org/10.34314/jalca.v118i12.8259","url":null,"abstract":"After almost 24 years we had to say farewell to our beloved Executive Secretary, Carol Adcock","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138622196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-Ectoparasite Activity of Medicinal Herbal Plant in Terms of Reducing Ectoparasites Effect on Sheep and Goat Skins 药用草本植物在减少绵羊和山羊皮外寄生虫影响方面的抗外寄生虫活性
IF 0.9 4区 工程技术 Q3 Chemistry Pub Date : 2023-11-01 DOI: 10.34314/jalca.v118i11.8240
F. E. Ahmed, Aschalew Shitu, Zerihun Teshome, Endalamaw Yihune, Misganaw Bitew, H. Fenta
Ethiopia has one of the world’s largest livestock resources. However, the effects of disease, inadequate nutrition and management constrain the potential of this resource. Ectoparasites are one of the primary contributing factors in the tanneries for sheep and goat skin rejection. The aim of this study is to assess the impact of medicinal herbal plant extracts on ectoparasites (ticks) on small ruminants in Ethiopia. According to scientific and ethnomedical data gathered from respondents (farmers), the plant species P. dodecandra, E. globulus, C. macrostachyus, J. schimperiana, and C. aurea were used (by farmers) for the study. Phytochemical screening of extracts revealed the presence of flavonoids, alkaloids, phenols and saponins, tannins. Ticks from small ruminants (i.e goat and sheep) were collected and an in vitro adult tick immersion test was carried out using concentrations of 6.25, 12.5, 25, 50, and 100 mg/ml of all medicinal plant extracts. The temporal tick mortality was observed within 24-hours. In order to compare the results, distilled water and 12.5% amitraz was used as positive and negative controls, respectively. After 24 hours of exposure, P. dodecandra, J. schimperiana, and C. macrostachyus extracts had a moderate (60%) effect on tick mortality; however, C. aurea extract at 100 mg/ml and E. globulus extract at 50 mg/ml and 100 mg/ml had the highest mortality rate (80%). The study found that following in vitro treatment for the studied plants, the mean tick mortality increased considerably with increasing concentration and exposure duration. The existence of phytochemicals (active ingredients) in several plants, such as phenols, flavonoids, alkaloids, tannin, saponin, etc., may be the cause of their anti-ectoparasite effects. The study’s findings suggested that these plants might be crucial in reducing the need for chemical based medicines as well as managing the population of resistant ticks in an environmentally friendly manner.
埃塞俄比亚拥有世界上最大的牲畜资源之一。然而,疾病、营养不足和管理不善限制了这一资源的潜力。体外寄生虫是导致绵羊和山羊皮制革厂拒收的主要因素之一。本研究旨在评估药用植物提取物对埃塞俄比亚小型反刍动物体外寄生虫(蜱虫)的影响。根据从受访者(农民)处收集到的科学和民族医学数据,本研究(农民)使用了 P. dodecandra、E. globulus、C. macrostachyus、J. schimperiana 和 C. aurea 等植物物种。对提取物进行的植物化学筛选显示,其中含有黄酮类、生物碱、酚类、皂苷和单宁酸。收集小反刍动物(即山羊和绵羊)身上的蜱虫,使用浓度为 6.25、12.5、25、50 和 100 毫克/毫升的所有药用植物提取物进行体外成蜱浸泡试验。在 24 小时内观察到暂时性蜱死亡。为了比较结果,分别使用蒸馏水和 12.5% 的双甲脒作为阳性对照和阴性对照。接触 24 小时后,P. dodecandra、J. schimperiana 和 C. macrostachyus 提取物对蜱虫死亡率的影响适中(60%);但 C. aurea 提取物(100 毫克/毫升)和 E. globulus 提取物(50 毫克/毫升和 100 毫克/毫升)的死亡率最高(80%)。研究发现,在对所研究的植物进行体外处理后,随着浓度和暴露时间的增加,蜱的平均死亡率大幅上升。几种植物中存在的植物化学物质(活性成分),如酚类、黄酮类、生物碱、单宁、皂苷等,可能是它们具有抗外来寄生虫作用的原因。研究结果表明,这些植物对于减少对化学药物的需求以及以环保的方式管理抗药性蜱虫的数量至关重要。
{"title":"Anti-Ectoparasite Activity of Medicinal Herbal Plant in Terms of Reducing Ectoparasites Effect on Sheep and Goat Skins","authors":"F. E. Ahmed, Aschalew Shitu, Zerihun Teshome, Endalamaw Yihune, Misganaw Bitew, H. Fenta","doi":"10.34314/jalca.v118i11.8240","DOIUrl":"https://doi.org/10.34314/jalca.v118i11.8240","url":null,"abstract":"Ethiopia has one of the world’s largest livestock resources. However, the effects of disease, inadequate nutrition and management constrain the potential of this resource. Ectoparasites are one of the primary contributing factors in the tanneries for sheep and goat skin rejection. The aim of this study is to assess the impact of medicinal herbal plant extracts on ectoparasites (ticks) on small ruminants in Ethiopia. According to scientific and ethnomedical data gathered from respondents (farmers), the plant species P. dodecandra, E. globulus, C. macrostachyus, J. schimperiana, and C. aurea were used (by farmers) for the study. Phytochemical screening of extracts revealed the presence of flavonoids, alkaloids, phenols and saponins, tannins. Ticks from small ruminants (i.e goat and sheep) were collected and an in vitro adult tick immersion test was carried out using concentrations of 6.25, 12.5, 25, 50, and 100 mg/ml of all medicinal plant extracts. The temporal tick mortality was observed within 24-hours. In order to compare the results, distilled water and 12.5% amitraz was used as positive and negative controls, respectively. After 24 hours of exposure, P. dodecandra, J. schimperiana, and C. macrostachyus extracts had a moderate (60%) effect on tick mortality; however, C. aurea extract at 100 mg/ml and E. globulus extract at 50 mg/ml and 100 mg/ml had the highest mortality rate (80%). The study found that following in vitro treatment for the studied plants, the mean tick mortality increased considerably with increasing concentration and exposure duration. The existence of phytochemicals (active ingredients) in several plants, such as phenols, flavonoids, alkaloids, tannin, saponin, etc., may be the cause of their anti-ectoparasite effects. The study’s findings suggested that these plants might be crucial in reducing the need for chemical based medicines as well as managing the population of resistant ticks in an environmentally friendly manner.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139303893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and Computational Fluid Dynamics Investigation on Tanning Process in a Rotating Drum 旋转滚筒中制革过程的实验和计算流体动力学研究
IF 0.9 4区 工程技术 Q3 Chemistry Pub Date : 2023-11-01 DOI: 10.34314/jalca.v118i11.8242
Yirui Lin, Zhoucheng Jiang, Ya-nan Wang, Yunhang Zeng, Guo Xie, Bi Shi
Mass transfer of chemicals greatly affects leather production efficiency and product quality. Leather shows different motions in a rotating drum during processing, which is strongly associated with chemicals’ mass transfer. However, how leather motions affect mass transfer remains unclear, which disfavors highly efficient leather manufacturing process. Here, different leather motion states were obtained by adjusting the drum rotation speed. Experimental results showed that the duration of leather rolling motion greatly increased by 41% when the rotation speed increased from 5 r/min to 20 r/min, and the uptake of the tanning agent was consequently improved, which indicated that the rolling motion is beneficial to mass transfer. Computational fluid dynamics simulation results showed that the mass transfer rate under rolling motion was higher than those under slipping, elevating and hanging motions, because the flow velocity and concentration gradient near the leather surface were higher under rolling motion. Accordingly, increasing the rolling motion enhanced the mass transfer in leather processing. This work identifies the leather motion beneficial for mass transfer and provides guidance on operating condition optimization and drum design for high-efficiency leather production.
化学品的质量传递在很大程度上影响着皮革生产的效率和产品质量。皮革在加工过程中会在旋转的滚筒中产生不同的运动,这与化学品的传质密切相关。然而,皮革运动如何影响传质仍不清楚,这不利于皮革生产过程的高效率。在此,我们通过调节转鼓转速来获得不同的皮革运动状态。实验结果表明,当转速从 5 r/min 提高到 20 r/min 时,皮革滚动运动的持续时间大大增加了 41%,鞣剂的吸收率也随之提高,这表明滚动运动有利于传质。计算流体动力学模拟结果表明,滚动运动下的传质速率高于滑动、提升和悬挂运动下的传质速率,这是因为滚动运动下皮革表面附近的流速和浓度梯度更高。因此,增加滚动运动可提高皮革加工中的传质效果。这项研究确定了有利于传质的皮革运动,为高效皮革生产的操作条件优化和转鼓设计提供了指导。
{"title":"Experimental and Computational Fluid Dynamics Investigation on Tanning Process in a Rotating Drum","authors":"Yirui Lin, Zhoucheng Jiang, Ya-nan Wang, Yunhang Zeng, Guo Xie, Bi Shi","doi":"10.34314/jalca.v118i11.8242","DOIUrl":"https://doi.org/10.34314/jalca.v118i11.8242","url":null,"abstract":"Mass transfer of chemicals greatly affects leather production efficiency and product quality. Leather shows different motions in a rotating drum during processing, which is strongly associated with chemicals’ mass transfer. However, how leather motions affect mass transfer remains unclear, which disfavors highly efficient leather manufacturing process. Here, different leather motion states were obtained by adjusting the drum rotation speed. Experimental results showed that the duration of leather rolling motion greatly increased by 41% when the rotation speed increased from 5 r/min to 20 r/min, and the uptake of the tanning agent was consequently improved, which indicated that the rolling motion is beneficial to mass transfer. Computational fluid dynamics simulation results showed that the mass transfer rate under rolling motion was higher than those under slipping, elevating and hanging motions, because the flow velocity and concentration gradient near the leather surface were higher under rolling motion. Accordingly, increasing the rolling motion enhanced the mass transfer in leather processing. This work identifies the leather motion beneficial for mass transfer and provides guidance on operating condition optimization and drum design for high-efficiency leather production.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139301414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Method and Principle of Soft and Transparent Leather Manufacturing 制造柔软透明皮革的方法和原理
IF 0.9 4区 工程技术 Q3 Chemistry Pub Date : 2023-11-01 DOI: 10.34314/jalca.v118i11.8239
Xiu He, Jinwei Zhang
For preparing a new kind of leather with transmittance and softness at the same time, glycerol was used to treat delimed and bleached split pelt. The softness, transmittance and mechanical properties were tested to evaluate the performance of soft and transparent leather (STL). FT-IR, SEM, XRD, DSC and TG were used to character the structure of STL and reveal the basic principle of STL manufacturing. The results showed that 25% glycerol based on limed pelt weight could make leather soft and transparent simultaneously. Pig pelt was more suitable for thin and transparent leather while cattle split was better for uniform and clear leather. Glycerol combined with collagen through multipoint hydrogen bonds, and the combination had slight positive effect on improving STL thermal stability. Fiber bundles of STL trended to disperse and collagen hierarchical structure including triple helix remained during transparent treatment. The soft and transparent leather could be a new choice for leather goods designers and might be a selectable substrate for high-performance electronic skin.
为了制备一种同时具有透光性和柔软性的新型皮革,使用甘油处理了经脱脂和漂白的分切毛皮。测试了柔软度、透光率和机械性能,以评估柔软透明皮革(STL)的性能。傅立叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线衍射(XRD)、DSC和TG被用来描述STL的结构特征,揭示STL制造的基本原理。结果表明,基于浸灰毛皮重量的 25% 甘油可同时使皮革柔软和透明。猪皮更适合制作薄而透明的皮革,而牛皮则更适合制作均匀而透明的皮革。甘油通过多点氢键与胶原蛋白结合,这种结合对提高 STL 的热稳定性有轻微的积极作用。在透明处理过程中,STL 的纤维束呈分散趋势,而胶原蛋白的分层结构(包括三螺旋结构)依然存在。这种柔软透明的皮革可以成为皮具设计师的新选择,也可能成为高性能电子皮肤的可选基材。
{"title":"A Method and Principle of Soft and Transparent Leather Manufacturing","authors":"Xiu He, Jinwei Zhang","doi":"10.34314/jalca.v118i11.8239","DOIUrl":"https://doi.org/10.34314/jalca.v118i11.8239","url":null,"abstract":"For preparing a new kind of leather with transmittance and softness at the same time, glycerol was used to treat delimed and bleached split pelt. The softness, transmittance and mechanical properties were tested to evaluate the performance of soft and transparent leather (STL). FT-IR, SEM, XRD, DSC and TG were used to character the structure of STL and reveal the basic principle of STL manufacturing. The results showed that 25% glycerol based on limed pelt weight could make leather soft and transparent simultaneously. Pig pelt was more suitable for thin and transparent leather while cattle split was better for uniform and clear leather. Glycerol combined with collagen through multipoint hydrogen bonds, and the combination had slight positive effect on improving STL thermal stability. Fiber bundles of STL trended to disperse and collagen hierarchical structure including triple helix remained during transparent treatment. The soft and transparent leather could be a new choice for leather goods designers and might be a selectable substrate for high-performance electronic skin.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139302169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Electrostatic Interaction between Collagen and Enzymes on Permeation of Protease into the Pelt during Leather Bating Process 胶原蛋白与酶之间的静电相互作用对皮革打浆过程中蛋白酶渗入毛皮的影响
IF 0.9 4区 工程技术 Q3 Chemistry Pub Date : 2023-10-02 DOI: 10.34314/jalca.v118i10.8231
Yiwen Zhu, Jinzhi Song, Xu Zhang, Mengchu Gao, B. Peng, Chunxiao Zhang
The enzymatic delimed pelts bating process using proteases is critical to improving the overall performance of the leather. Bating effectiveness is determined not only by the properties but also by the permeation behavior of the proteases. Imperfect methods to control protease permeation often results in uneven distribution of enzyme proteins in the pelts, leading to excessive enzymolysis of the surface layer and inadequate opening-up of the inner layer. In this study, the relative size of proteases and delimed pelts were analyzed, the permeation behavior of fluorescein-labeled proteases in the pelt was observed using a confocal laser scanning microscope (CLSM), and the effect of electrostatic interaction between protease and collagen proteins on the permeation of protease into the pelt was investigated. The results showed that, after dehairing, liming and deliming operations, the enzyme can easily permeate into the pelts due to the formation of large cavities and interfibrillar gaps. The permeation of protease within the delimed pelt is significantly influenced by the affinity (electrostatic interactions) between the collagen and protease proteins. The isoelectric point (pI) of the protease protein, the collagen and the pH of the solution directly influence the electrostatic properties and interactions. When the enzyme and collagen are similarly charged (electrostatic repulsion), the enzyme can easily permeate into the pelts; when the enzyme and collagen are oppositely charged (electrostatic attraction), the permeation of the enzyme into the inner layer is difficult, resulting in the accumulation of protease on the grain and excessive hydrolysis of the grain layer. Therefore, the established permeation regulation mechanism of protease based on electrostatic interactions between enzyme and collagen could serve as an important basis for the selection of protease and the regulation of the enzymatic bating process.
使用蛋白酶的酶法脱脂工艺对于提高皮革的整体性能至关重要。浸酸效果不仅取决于性能,还取决于蛋白酶的渗透行为。控制蛋白酶渗透的方法不完善往往会导致酶蛋白在毛皮中的分布不均匀,从而导致表层过度酶解和内层开放不足。本研究分析了蛋白酶和脱毛皮层的相对大小,使用激光共聚焦扫描显微镜(CLSM)观察了荧光素标记的蛋白酶在皮层中的渗透行为,并研究了蛋白酶和胶原蛋白之间的静电作用对蛋白酶渗透皮层的影响。结果表明,经过脱毛、浸灰和脱灰操作后,由于形成了较大的空腔和纤维间隙,酶很容易渗透到毛皮中。蛋白酶在脱毛毛皮中的渗透受胶原蛋白和蛋白酶蛋白之间亲和力(静电相互作用)的显著影响。蛋白酶蛋白、胶原蛋白的等电点(pI)和溶液的 pH 值直接影响静电特性和相互作用。当酶和胶原蛋白的电荷相近时(静电排斥),酶很容易渗透到颗粒中;当酶和胶原蛋白的电荷相反时(静电吸引),酶很难渗透到内层,导致蛋白酶在颗粒上积聚和颗粒层过度水解。因此,基于酶和胶原之间的静电作用而建立的蛋白酶渗透调节机制,可以作为选择蛋白酶和调节酶巴氏过程的重要依据。
{"title":"Effect of Electrostatic Interaction between Collagen and Enzymes on Permeation of Protease into the Pelt during Leather Bating Process","authors":"Yiwen Zhu, Jinzhi Song, Xu Zhang, Mengchu Gao, B. Peng, Chunxiao Zhang","doi":"10.34314/jalca.v118i10.8231","DOIUrl":"https://doi.org/10.34314/jalca.v118i10.8231","url":null,"abstract":"The enzymatic delimed pelts bating process using proteases is critical to improving the overall performance of the leather. Bating effectiveness is determined not only by the properties but also by the permeation behavior of the proteases. Imperfect methods to control protease permeation often results in uneven distribution of enzyme proteins in the pelts, leading to excessive enzymolysis of the surface layer and inadequate opening-up of the inner layer. In this study, the relative size of proteases and delimed pelts were analyzed, the permeation behavior of fluorescein-labeled proteases in the pelt was observed using a confocal laser scanning microscope (CLSM), and the effect of electrostatic interaction between protease and collagen proteins on the permeation of protease into the pelt was investigated. The results showed that, after dehairing, liming and deliming operations, the enzyme can easily permeate into the pelts due to the formation of large cavities and interfibrillar gaps. The permeation of protease within the delimed pelt is significantly influenced by the affinity (electrostatic interactions) between the collagen and protease proteins. The isoelectric point (pI) of the protease protein, the collagen and the pH of the solution directly influence the electrostatic properties and interactions. When the enzyme and collagen are similarly charged (electrostatic repulsion), the enzyme can easily permeate into the pelts; when the enzyme and collagen are oppositely charged (electrostatic attraction), the permeation of the enzyme into the inner layer is difficult, resulting in the accumulation of protease on the grain and excessive hydrolysis of the grain layer. Therefore, the established permeation regulation mechanism of protease based on electrostatic interactions between enzyme and collagen could serve as an important basis for the selection of protease and the regulation of the enzymatic bating process.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139324084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomass-based Tanning Agent for Sustainable Leather Manufacture via Cyanuric Chloride Modified Chitooligosaccharide 通过氯化氰改性壳寡糖生产可持续皮革制造用生物质鞣剂
IF 0.9 4区 工程技术 Q3 Chemistry Pub Date : 2023-10-02 DOI: 10.34314/jalca.v118i10.8230
Min Jiang, Yuanhang Xiao, Jun Sang, Chunhua Wang, Jiajing Zhou, Wei Lin
Developing alternative tanning agents to avoid the potential environmental and human health risks from the conventional chrome tanning is essential for the leather industry. In this work, we prepared an eco-friendly biomass-based tanning agent dichlorotriazinyl chitooligosaccharide (DTCS) by modifying chitooligosaccharide (COS) with cyanuric chloride (CC) for chrome-free leather manufacture. The synthesis of such biomass-based tanning agent was systematically optimized to obtain the target product with high grafting degree of 67% and weight-average molecular weight (Mw) of 1465 g/mol. The non-pickling tanning procedure using DTCS was investigated, and the interactions between DTCS and collagen fibers were studied. Our results showed that the hydrothermal stability of the tanned leather was significantly increased, i.e., the shrinkage temperature (Ts) exceeding 82.0°C, and the mechanical properties were improved. Moreover, the organoleptic properties of leather (e.g., fullness, softness and grain tightness) exhibited obvious improvement. This research not only offers a reliable approach for cleaner leather manufacturing while addressing the underlying ecological pressure, but also highlights the emerging use of biomass materials in the leather industry.
开发替代鞣剂以避免传统铬鞣带来的潜在环境和人类健康风险,对皮革行业至关重要。在这项工作中,我们通过将壳寡糖(COS)与氯化氰(CC)进行改性,制备了一种生态友好型生物质基鞣剂--二氯三嗪基壳寡糖(DTCS),用于无铬皮革制造。对这种生物质基鞣剂的合成进行了系统优化,以获得接枝度高达 67%、重量平均分子量(Mw)为 1465 g/mol 的目标产品。研究了使用 DTCS 的非挑染鞣制过程,并研究了 DTCS 与胶原纤维之间的相互作用。结果表明,鞣革的水热稳定性显著提高,即收缩温度(Ts)超过 82.0°C,机械性能也得到改善。此外,皮革的感官特性(如丰满度、柔软度和粒面紧密度)也有明显改善。这项研究不仅为清洁皮革制造提供了一种可靠的方法,同时也解决了潜在的生态压力,还凸显了生物质材料在皮革工业中的新兴用途。
{"title":"Biomass-based Tanning Agent for Sustainable Leather Manufacture via Cyanuric Chloride Modified Chitooligosaccharide","authors":"Min Jiang, Yuanhang Xiao, Jun Sang, Chunhua Wang, Jiajing Zhou, Wei Lin","doi":"10.34314/jalca.v118i10.8230","DOIUrl":"https://doi.org/10.34314/jalca.v118i10.8230","url":null,"abstract":"Developing alternative tanning agents to avoid the potential environmental and human health risks from the conventional chrome tanning is essential for the leather industry. In this work, we prepared an eco-friendly biomass-based tanning agent dichlorotriazinyl chitooligosaccharide (DTCS) by modifying chitooligosaccharide (COS) with cyanuric chloride (CC) for chrome-free leather manufacture. The synthesis of such biomass-based tanning agent was systematically optimized to obtain the target product with high grafting degree of 67% and weight-average molecular weight (Mw) of 1465 g/mol. The non-pickling tanning procedure using DTCS was investigated, and the interactions between DTCS and collagen fibers were studied. Our results showed that the hydrothermal stability of the tanned leather was significantly increased, i.e., the shrinkage temperature (Ts) exceeding 82.0°C, and the mechanical properties were improved. Moreover, the organoleptic properties of leather (e.g., fullness, softness and grain tightness) exhibited obvious improvement. This research not only offers a reliable approach for cleaner leather manufacturing while addressing the underlying ecological pressure, but also highlights the emerging use of biomass materials in the leather industry.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139324702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction between Amphoteric Polymer and Silicic Acid Tanned Leather 两性聚合物与硅酸鞣革之间的相互作用
IF 0.9 4区 工程技术 Q3 Chemistry Pub Date : 2023-10-02 DOI: 10.34314/jalca.v118i10.8229
Ze Liang, Zetian Zhang, Yang Liu, Zhengjun Li
Silicic acid-based tanning system is an effective and promising chrome-free tanning technology, and it is urgent to develop compatible post-tanning processes. Fatliquoring is one of the key procedures to determine the quality of resulted leather and fatliquoring agents mainly play the role of an effective softer/ plasticizer in leather production. However, there is a mismatch between most commercial fatliquoring agents (mainly compatible with chrome tanned leather) and silicic acid tanned leather (named SATL). Herein, an amphoteric polymer emulsion (APE) was prepared by free radical polymerization using methacryloxyethyl trimethyl ammonium chloride (DMC), 2-acrylamido-2-methylpropanesulfonate (AMPS), lauryl methacrylate (LMA), dimethylaminoethyl methacrylate (DMAEMA) as monomers. And in order to improve the lubricating property, APE was further compounded with castor oil to obtain an amphoteric fatliquoring agent (named COAPE). Comprehensive characterization showed that the amphoteric (pI=8.22) and amphiphilic APE could reduce the surface tension of water to 38.6 mN/m. The fatliquoring process was controlled by ingenious regulation of pH based on isoelectric points (pIs) of APE and SATL. In the initial stage, the pH of the bath was adjusted to be lower than the pIs of APE and SATL, amphoteric polymer molecules could easily penetrate into SATL leather as they are all positively charged. While during the fixing stage, the pH of the bath was adjusted between the pIs of APE and SATL, so the electrostatic interaction between amphoteric polymer molecules and SATL leather, as well as the aggregation of amphoteric polymers can promote their combination synergistically. As a fatliquoring agent, the application of COAPE demonstrated that its absorpotion rate (90.5%) was much higher than anionic commercial fatliquoring agent (63.2%), thus imparting SATL leather better softness (6.5 mm), elongation at break (95.5%) and tensile strength (11.6 N/mm2). These findings therefore provided scientific basis and technical support for the application of amphoteric materials to silicic acid-modified collagen matrix and would promote the practical application of silicic acid-based chrome-free tanning technology
硅酸基鞣制体系是一种有效且前景广阔的无铬鞣制技术,因此开发兼容的鞣后工艺迫在眉睫。加脂是决定成品革质量的关键工序之一,加脂剂在皮革生产中主要起着有效的软化剂/增塑剂的作用。然而,大多数商用加脂剂(主要与铬鞣革兼容)与硅酸鞣革(名为 SATL)之间存在不匹配。本文以甲基丙烯酰氧乙基三甲基氯化铵(DMC)、2-丙烯酰胺基-2-甲基丙磺酸盐(AMPS)、甲基丙烯酸月桂酯(LMA)和甲基丙烯酸二甲胺基乙酯(DMAEMA)为单体,通过自由基聚合制备了两性聚合物乳液(APE)。为了改善润滑性能,APE 进一步与蓖麻油复合,得到了两性加脂剂(命名为 COAPE)。综合表征结果表明,两性(pI=8.22)和两亲性 APE 可将水的表面张力降至 38.6 mN/m。根据 APE 和 SATL 的等电点(pIs),通过巧妙调节 pH 值来控制加脂过程。在初始阶段,浴液的 pH 值被调节到低于 APE 和 SATL 的等电点,两性聚合物分子很容易渗透到 SATL 皮革中,因为它们都带正电。而在固色阶段,浴液的 pH 值调节在 APE 和 SATL 的 pI 之间,两性聚合物分子和 SATL 皮革之间的静电作用以及两性聚合物的聚集可促进它们协同结合。作为加脂剂,COAPE 的吸收率(90.5%)远高于阴离子商业加脂剂(63.2%),从而赋予 SATL 皮革更好的柔软度(6.5 毫米)、断裂伸长率(95.5%)和拉伸强度(11.6 牛/平方毫米)。因此,这些研究结果为两性材料在硅酸改性胶原基质中的应用提供了科学依据和技术支持,并将促进基于硅酸的无铬鞣制技术的实际应用。
{"title":"Interaction between Amphoteric Polymer and Silicic Acid Tanned Leather","authors":"Ze Liang, Zetian Zhang, Yang Liu, Zhengjun Li","doi":"10.34314/jalca.v118i10.8229","DOIUrl":"https://doi.org/10.34314/jalca.v118i10.8229","url":null,"abstract":"Silicic acid-based tanning system is an effective and promising chrome-free tanning technology, and it is urgent to develop compatible post-tanning processes. Fatliquoring is one of the key procedures to determine the quality of resulted leather and fatliquoring agents mainly play the role of an effective softer/ plasticizer in leather production. However, there is a mismatch between most commercial fatliquoring agents (mainly compatible with chrome tanned leather) and silicic acid tanned leather (named SATL). Herein, an amphoteric polymer emulsion (APE) was prepared by free radical polymerization using methacryloxyethyl trimethyl ammonium chloride (DMC), 2-acrylamido-2-methylpropanesulfonate (AMPS), lauryl methacrylate (LMA), dimethylaminoethyl methacrylate (DMAEMA) as monomers. And in order to improve the lubricating property, APE was further compounded with castor oil to obtain an amphoteric fatliquoring agent (named COAPE). Comprehensive characterization showed that the amphoteric (pI=8.22) and amphiphilic APE could reduce the surface tension of water to 38.6 mN/m. The fatliquoring process was controlled by ingenious regulation of pH based on isoelectric points (pIs) of APE and SATL. In the initial stage, the pH of the bath was adjusted to be lower than the pIs of APE and SATL, amphoteric polymer molecules could easily penetrate into SATL leather as they are all positively charged. While during the fixing stage, the pH of the bath was adjusted between the pIs of APE and SATL, so the electrostatic interaction between amphoteric polymer molecules and SATL leather, as well as the aggregation of amphoteric polymers can promote their combination synergistically. As a fatliquoring agent, the application of COAPE demonstrated that its absorpotion rate (90.5%) was much higher than anionic commercial fatliquoring agent (63.2%), thus imparting SATL leather better softness (6.5 mm), elongation at break (95.5%) and tensile strength (11.6 N/mm2). These findings therefore provided scientific basis and technical support for the application of amphoteric materials to silicic acid-modified collagen matrix and would promote the practical application of silicic acid-based chrome-free tanning technology","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139324309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of The American Leather Chemists Association
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1